Klebsiella oxytoca inhibits Salmonella infection through multiple microbiota-context-dependent mechanisms.


Journal

Nature microbiology
ISSN: 2058-5276
Titre abrégé: Nat Microbiol
Pays: England
ID NLM: 101674869

Informations de publication

Date de publication:
11 Jun 2024
Historique:
received: 06 06 2023
accepted: 22 04 2024
medline: 12 6 2024
pubmed: 12 6 2024
entrez: 11 6 2024
Statut: aheadofprint

Résumé

The Klebsiella oxytoca species complex is part of the human microbiome, especially during infancy and childhood. K. oxytoca species complex strains can produce enterotoxins, namely, tilimycin and tilivalline, while also contributing to colonization resistance (CR). The relationship between these seemingly contradictory roles is not well understood. Here, by coupling ex vivo assays with CRISPR-mutagenesis and various mouse models, we show that K. oxytoca provides CR against Salmonella Typhimurium. In vitro, the antimicrobial activity against various Salmonella strains depended on tilimycin production and was induced by various simple carbohydrates. In vivo, CR against Salmonella depended on toxin production in germ-free mice, while it was largely toxin-independent in mice with residual microbiota. This was linked to the relative levels of toxin-inducing carbohydrates in vivo. Finally, dulcitol utilization was essential for toxin-independent CR in gnotobiotic mice. Together, this demonstrates that nutrient availability is key to both toxin-dependent and substrate-driven competition between K. oxytoca and Salmonella.

Identifiants

pubmed: 38862602
doi: 10.1038/s41564-024-01710-0
pii: 10.1038/s41564-024-01710-0
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Joint Programming Initiative on Antimicrobial Resistance (Joint Programming Initiative for Antimicrobial Resistance)
ID : 01KI1824

Informations de copyright

© 2024. The Author(s).

Références

Buffie, C. G. & Pamer, E. G. Microbiota-mediated colonization resistance against intestinal pathogens. Nat. Rev. Immunol. 13, 790–801 (2013).
pubmed: 24096337 pmcid: 4194195 doi: 10.1038/nri3535
Kamada, N. et al. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 336, 1325–1329 (2012).
pubmed: 22582016 pmcid: 3439148 doi: 10.1126/science.1222195
Ng, K. M. et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 502, 96–99 (2013).
pubmed: 23995682 pmcid: 3825626 doi: 10.1038/nature12503
Osbelt, L. et al. Klebsiella oxytoca causes colonization resistance against multidrug-resistant K. pneumoniae in the gut via cooperative carbohydrate competition. Cell Host Microbe https://doi.org/10.1016/j.chom.2021.09.003 (2021).
doi: 10.1016/j.chom.2021.09.003 pubmed: 34610293
Fang, K., Jin, X. & Hong, S. H. Probiotic Escherichia coli inhibits biofilm formation of pathogenic E. coli via extracellular activity of DegP. Sci. Rep. 8, 4939 (2018).
pubmed: 29563542 pmcid: 5862908 doi: 10.1038/s41598-018-23180-1
Lam, L. H. & Monack, D. M. Intraspecies competition for niches in the distal gut dictate transmission during persistent Salmonella infection. PLoS Pathog. 10, e1004527 (2014).
pubmed: 25474319 pmcid: 4256465 doi: 10.1371/journal.ppat.1004527
Sorbara, M. T. et al. Inhibiting antibiotic-resistant Enterobacteriaceae by microbiota-mediated intracellular acidification. J. Exp. Med. 216, 84–98 (2019).
pubmed: 30563917 pmcid: 6314524 doi: 10.1084/jem.20181639
Osbelt, L. et al. Variations in microbiota composition of laboratory mice influence Citrobacter rodentium infection via variable short-chain fatty acid production. PLoS Pathog. 16, 1008448 (2020).
doi: 10.1371/journal.ppat.1008448
Silpe, J. E., Wong, J. W. H., Owen, S. V., Baym, M. & Balskus, E. P. The bacterial toxin colibactin triggers prophage induction. Nature 603, 315–320 (2022).
pubmed: 35197633 pmcid: 8907063 doi: 10.1038/s41586-022-04444-3
Becattini, S. et al. Commensal microbes provide first line defense against Listeria monocytogenes infection. J. Exp. Med. 214, 1973–1989 (2017).
pubmed: 28588016 pmcid: 5502438 doi: 10.1084/jem.20170495
Kim, S. G. et al. Microbiota-derived lantibiotic restores resistance against vancomycin-resistant Enterococcus. Nature 572, 665–669 (2019).
pubmed: 31435014 pmcid: 6717508 doi: 10.1038/s41586-019-1501-z
Hecht, A. L. et al. Strain competition restricts colonization of an enteric pathogen and prevents colitis. EMBO Rep. 17, 1281 (2016).
pubmed: 27432285 pmcid: 5007561 doi: 10.15252/embr.201642282
Spiga, L. et al. An oxidative central metabolism enables Salmonella to utilize microbiota-derived succinate. Cell Host Microbe 22, 291–301.e6 (2017).
pubmed: 28844888 pmcid: 5599368 doi: 10.1016/j.chom.2017.07.018
Thiemann, S. et al. Enhancement of IFNγ production by distinct commensals ameliorates Salmonella-induced disease. Cell Host Microbe 21, 682–694.e5 (2017).
pubmed: 28618267 doi: 10.1016/j.chom.2017.05.005
Stecher, B. et al. Like will to like: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLoS Pathog. 6, 1000711 (2010).
doi: 10.1371/journal.ppat.1000711
Mullineaux-Sanders, C. et al. Citrobacter amalonaticus inhibits the growth of Citrobacter rodentium in the gut lumen. MBio https://doi.org/10.1128/mBio.02410-21 (2021).
Yang, J. et al. Klebsiella oxytoca complex: update on taxonomy, antimicrobial resistance, and virulence. Clin. Microbiol. Rev. https://doi.org/10.1128/CMR.00006-21 (2022).
Oliveira, R. A. et al. Klebsiella michiganensis transmission enhances resistance to Enterobacteriaceae gut invasion by nutrition competition. Nat. Microbiol. https://doi.org/10.1038/s41564-019-0658-4 (2020).
doi: 10.1038/s41564-019-0658-4 pubmed: 31959968
Velazquez, E. M. et al. Endogenous Enterobacteriaceae underlie variation in susceptibility to Salmonella infection. Nat. Microbiol. 4, 1057–1064 (2019).
pubmed: 30911125 pmcid: 6533147 doi: 10.1038/s41564-019-0407-8
Schluter, J. et al. The TaxUMAP atlas: efficient display of large clinical microbiome data reveals ecological competition in protection against bacteremia. Cell Host Microbe. 31, 1126–1139.e6 (2023).
pubmed: 37329880 doi: 10.1016/j.chom.2023.05.027
Schwartz, D. J. et al. Gut pathogen colonization precedes bloodstream infection in the neonatal intensive care unit. Sci. Transl. Med. 15, eadg5562 (2023).
pubmed: 37134153 pmcid: 10259202 doi: 10.1126/scitranslmed.adg5562
Greimel, T. M. et al. Toxin-producing Klebsiella oxytoca in healthy infants: commensal or pathobiont? J. Pediatr. Gastroenterol. Nutr. 74, E1–E7 (2022).
pubmed: 34520403 doi: 10.1097/MPG.0000000000003299
Shao, Y. et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature 574, 117–121 (2019).
pubmed: 31534227 pmcid: 6894937 doi: 10.1038/s41586-019-1560-1
Chen, Y. et al. Preterm infants harbour diverse Klebsiella populations, including atypical species that encode and produce an array of antimicrobial resistance-and virulence-associated factors. Microb. Genom. https://doi.org/10.1099/mgen.0.000377 (2020).
Shibu, P. et al. Improved molecular characterization of the Klebsiella oxytoca complex reveals the prevalence of the kleboxymycin biosynthetic gene cluster. Microb. Genom. 7, 592 (2021).
Stewart, J. et al. Epidemiology and genomic analysis of Klebsiella oxytoca from a single hospital network in Australia. BMC Infect. Dis. 22, 704 (2022).
pubmed: 36002802 pmcid: 9400251 doi: 10.1186/s12879-022-07687-7
Dornisch, E. et al. Biosynthese des enterotoxischen Pyrrolobenzodiazepin-Naturstoffs Tilivallin. Angew. Chem. 129, 14948–14952 (2017).
doi: 10.1002/ange.201707737
Högenauer, C. et al. Klebsiella oxytoca as a causative organism of antibiotic-associated hemorrhagic colitis. N. Engl. J. Med. 355, 2418–2426 (2006).
pubmed: 17151365 doi: 10.1056/NEJMoa054765
Zollner‐Schwetz, I. et al. Role of Klebsiella oxytoca in antibiotic‐associated diarrhea. Clin. Infect. Dis. 47, e74–e78 (2008).
pubmed: 18808355 doi: 10.1086/592074
Schneditz, G. et al. Enterotoxicity of a nonribosomal peptide causes antibiotic-associated colitis. Proc. Natl Acad. Sci. USA 111, 13181–13186 (2014).
pubmed: 25157164 pmcid: 4246982 doi: 10.1073/pnas.1403274111
Paveglio, S. et al. Cytotoxin-producing Klebsiella oxytoca in the preterm gut and its association with necrotizing enterocolitis. Emerg. Microbes Infect. 9, 1321–1329 (2020).
pubmed: 32525754 pmcid: 7473113 doi: 10.1080/22221751.2020.1773743
Unterhauser, K. et al. Klebsiella oxytoca enterotoxins tilimycin and tilivalline have distinct host DNA-damaging and microtubule-stabilizing activities. Proc. Natl Acad. Sci. USA 116, 3774–3783 (2019).
pubmed: 30808763 pmcid: 6397511 doi: 10.1073/pnas.1819154116
Alexander, E. M. et al. Biosynthesis, mechanism of action, and inhibition of the enterotoxin tilimycin produced by the opportunistic pathogen Klebsiella oxytoca. ACS Infect. Dis. 6, 1976–1997 (2020).
pubmed: 32485104 pmcid: 7354218 doi: 10.1021/acsinfecdis.0c00326
Pöltl, L. et al. Microbiota-derived genotoxin tilimycin generates colonic stem cell mutations. Cell Rep. 42, 112199 (2023).
pubmed: 36870054 doi: 10.1016/j.celrep.2023.112199
Kienesberger, S. et al. Enterotoxin tilimycin from gut-resident Klebsiella promotes mutational evolution and antibiotic resistance in mice. Nat. Microbiol. 7, 1834–1848 (2022).
pubmed: 36289400 pmcid: 9613472 doi: 10.1038/s41564-022-01260-3
Chen, J. et al. A commensal-encoded genotoxin drives restriction of Vibrio cholerae colonization and host gut microbiome remodeling. Proc. Natl Acad. Sci. USA 119, e2121180119 (2022).
pubmed: 35254905 pmcid: 8931321 doi: 10.1073/pnas.2121180119
Majowicz, S. E. et al. The global burden of nontyphoidal Salmonella gastroenteritis. Clin. Infect. Dis. 50, 882–889 (2010).
pubmed: 20158401 doi: 10.1086/650733
Pulford, C. V. et al. Stepwise evolution of Salmonella Typhimurium ST313 causing bloodstream infection in Africa. Nat. Microbiol. 6, 327–338 (2021).
pubmed: 33349664 doi: 10.1038/s41564-020-00836-1
Herp, S. et al. Mucispirillum schaedleri antagonizes Salmonella virulence to protect mice against colitis. Cell Host Microbe. 25, 681–694.e8 (2019).
pubmed: 31006637 doi: 10.1016/j.chom.2019.03.004
Lamy-Besnier, Q. et al. Prophylactic administration of a bacteriophage cocktail is safe and effective in reducing Salmonella enterica serovar Typhimurium burden in vivo. Microbiol. Spectr. 9, e0049721 (2021).
pubmed: 34431719 doi: 10.1128/Spectrum.00497-21
Eberl, C. et al. E. coli enhance colonization resistance against Salmonella Typhimurium by competing for galactitol, a context-dependent limiting carbon source. Cell Host Microbe. 29, 1680–1692.e7 (2021).
pubmed: 34610296 doi: 10.1016/j.chom.2021.09.004
Tse, H. et al. A tricyclic pyrrolobenzodiazepine produced by Klebsiella oxytoca is associated with cytotoxicity in antibiotic-associated hemorrhagic colitis. J. Biol. Chem. 292, 19503–19520 (2017).
pubmed: 28972161 pmcid: 5702686 doi: 10.1074/jbc.M117.791558
Burby, P. E. & Simmons, L. A. Regulation of cell division in bacteria by monitoring genome integrity and DNA replication status. J. Bacteriol. 202, e00408-19 (2020).
pubmed: 31548275 pmcid: 6941525 doi: 10.1128/JB.00408-19
Ledala, N. et al. Bacterial indole as a multifunctional regulator of Klebsiella oxytoca complex enterotoxicity. MBio. 13, e0375221 (2022).
pubmed: 35073747 doi: 10.1128/mbio.03752-21
Rodríguez-Valverde, D. et al. cAMP receptor protein positively regulates the expression of genes involved in the biosynthesis of Klebsiella oxytoca tilivalline cytotoxin. Front. Microbiol. 12, 2807 (2021).
doi: 10.3389/fmicb.2021.743594
Eberl, C. et al. Reproducible colonization of germ-free mice with the oligo-mouse-microbiota in different animal facilities. Front. Microbiol. 10, 2999 (2020).
pubmed: 31998276 pmcid: 6965490 doi: 10.3389/fmicb.2019.02999
Flaugnatti, N. et al. Human commensal gut Proteobacteria withstand type VI secretion attacks through immunity protein-independent mechanisms. Nat. Commun. 12, 5751 (2021).
pubmed: 34599171 pmcid: 8486750 doi: 10.1038/s41467-021-26041-0
Cascales, E. et al. Colicin biology. Microbiol. Mol. Biol. Rev. 71, 158–229 (2007).
pubmed: 17347522 pmcid: 1847374 doi: 10.1128/MMBR.00036-06
Roelofs, K. G., Coyne, M. J., Gentyala, R. R., Chatzidaki-Livanis, M. & Comstock, L. E. Bacteroidales secreted antimicrobial proteins target surface molecules necessary for gut colonization and mediate competition in vivo. MBio. 7, e01055-16 (2016).
pubmed: 27555309 pmcid: 4999547 doi: 10.1128/mBio.01055-16
Brugiroux, S. et al. Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium. Nat. Microbiol. 2, 16215 (2016).
pubmed: 27869789 doi: 10.1038/nmicrobiol.2016.215
Freter, R., Brickner, H., Fekete, J., Vickerman, M. M. & Carey, K. E. Survival and implantation of Escherichia coli in the intestinal tract. Infect. Immun. 39, 686–703 (1983).
pubmed: 6339389 pmcid: 348005 doi: 10.1128/iai.39.2.686-703.1983
Freter, R., Brickner, H., Botney, M., Cleven, D. & Aranki, A. Mechanisms that control bacterial populations in continuous-flow culture models of mouse large intestinal flora. Infect. Immun. 39, 676–685 (1983).
pubmed: 6339388 pmcid: 348004 doi: 10.1128/iai.39.2.676-685.1983
Spragge, F. et al. Microbiome diversity protects against pathogens by nutrient blocking. Science. 382, eadj3502 (2023).
pubmed: 38096285 doi: 10.1126/science.adj3502
Nash, M. J., Frank, D. N. & Friedman, J. E. Early microbes modify immune system development and metabolic homeostasis—the ‘restaurant’ hypothesis revisited. Front. Endocrinol. 8, 349 (2017).
doi: 10.3389/fendo.2017.00349
Conway, T. & Cohen, P. S. Commensal and pathogenic Escherichia coli metabolism in the gut.Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.mbp-0006-2014 (2015).
Leatham-Jensen, M. P. et al. The streptomycin-treated mouse intestine selects Escherichia coli envZ missense mutants that interact with dense and diverse intestinal microbiota. Infect. Immun. 80, 1716–1727 (2012).
pubmed: 22392928 pmcid: 3347456 doi: 10.1128/IAI.06193-11
Chu, D. M. et al. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat. Med. 23, 314–326 (2017).
pubmed: 28112736 pmcid: 5345907 doi: 10.1038/nm.4272
Lundgren, S. N. et al. Maternal diet during pregnancy is related with the infant stool microbiome in a delivery mode-dependent manner. Microbiome. 6, 109 (2018).
pubmed: 29973274 pmcid: 6033232 doi: 10.1186/s40168-018-0490-8
Constantinides, M. G. et al. MAIT cells are imprinted by the microbiota in early life and promote tissue repair. Science 366, eaax6624 (2019).
pubmed: 31649166 pmcid: 7603427 doi: 10.1126/science.aax6624
Stehr, M. et al. Charles River altered Schaedler flora (CRASF®) remained stable for four years in a mouse colony housed in individually ventilated cages. Lab. Anim. 43, 362–370 (2009).
pubmed: 19535393 doi: 10.1258/la.2009.0080075
Flentie, K. N. et al. Stably integrated luxCDABE for assessment of Salmonella invasion kinetics. Mol. Imaging. 7, 222–233 (2008).
pubmed: 19123992 doi: 10.2310/7290.2008.00024
Wang, Y. et al. CRISPRCas9 and CRISPR-assisted cytidine deaminase enable precise and efficient genome editing in Klebsiella pneumoniae. Appl. Environ. Microbiol. 84, 1834–1852 (2018).
doi: 10.1128/AEM.01834-18
Almási, E. d. H. et al. An adapted method for Cas9-mediated editing reveals the species-specific role of β-glucoside utilization driving competition between Klebsiella species. J. Bacteriol. 206, e00317-23 (2024).
pubmed: 38353529 doi: 10.1128/jb.00317-23
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
pubmed: 22743772 doi: 10.1038/nmeth.2019
Qin, D., Xia, Y. & Whitesides, G. M. Soft lithography for micro- and nanoscale patterning. Nat. Protoc. 5, 491–502 (2010).
pubmed: 20203666 doi: 10.1038/nprot.2009.234
Lamprecht, O. et al. Regulation by cyclic di-GMP attenuates dynamics and enhances robustness of bimodal curli gene activation in Escherichia coli. PLoS Genet. 19, 1010750 (2023).
doi: 10.1371/journal.pgen.1010750
Berg, S. et al. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232 (2019).
pubmed: 31570887 doi: 10.1038/s41592-019-0582-9
Mähler, M. et al. Differential susceptibility of inbred mouse strains to dextran sulfate sodium-induced colitis. Am. J. Physiol. 274, 544–551 (1998).
Pils, M. C. et al. Monocytes/macrophages and/or neutrophils are the target of IL-10 in the LPS endotoxemia model. Eur. J. Immunol. 40, 443–448 (2010).
pubmed: 19941312 doi: 10.1002/eji.200939592
Glabonjat, R. A. et al. Simultaneous quantification of enterotoxins tilimycin and tilivalline in biological matrices using HPLC high resolution ESMS
pubmed: 33167283 doi: 10.1016/j.talanta.2020.121677
Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3, 1101–1108 (2008).
pubmed: 18546601 doi: 10.1038/nprot.2008.73
Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci. 108, 4516–4522 (2011).
pubmed: 20534432 doi: 10.1073/pnas.1000080107
Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).
pubmed: 20383131 pmcid: 3156573 doi: 10.1038/nmeth.f.303
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).
pubmed: 20709691 doi: 10.1093/bioinformatics/btq461
Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).
pubmed: 17586664 pmcid: 1950982 doi: 10.1128/AEM.00062-07
Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).
pubmed: 20224823 pmcid: 2835736 doi: 10.1371/journal.pone.0009490
McMurdie, P. J. & Holmes, S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).
pubmed: 23630581 pmcid: 3632530 doi: 10.1371/journal.pone.0061217
Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).
pubmed: 21702898 pmcid: 3218848 doi: 10.1186/gb-2011-12-6-r60
Kaganovitch, E. et al. SalmoLab/MotherMachine_NatMicro2024: MotherMachine_NatMicro2024_v1. Zenodo https://doi.org/10.5281/zenodo.10974764 (2024).

Auteurs

Lisa Osbelt (L)

Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany.
ESF International Graduate School on Analysis, Imaging and Modelling of Neuronal and Inflammatory Processes, Otto-von-Guericke University, Magdeburg, Germany.
Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.

Éva D H Almási (ÉDH)

Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany.

Marie Wende (M)

Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany.
ESF International Graduate School on Analysis, Imaging and Modelling of Neuronal and Inflammatory Processes, Otto-von-Guericke University, Magdeburg, Germany.

Sabine Kienesberger (S)

Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz, Graz, Austria.

Alexander Voltz (A)

Department Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany.
Department of Pharmacy, Saarland University, Saarbrücken, Germany.

Till R Lesker (TR)

Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany.

Uthayakumar Muthukumarasamy (U)

Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany.

Nele Knischewski (N)

Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany.

Elke Nordmann (E)

Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany.

Agata A Bielecka (AA)

Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany.

María Giralt-Zúñiga (M)

Institute for Biology-Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany.

Eugen Kaganovitch (E)

Institute for Biology-Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany.

Caroline Kühne (C)

Institute for Biology-Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany.

Claas Baier (C)

Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.

Michael Pietsch (M)

Division of Enteropathogenic Bacteria and Legionella (FG11)/National Reference Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch Institute, Wernigerode, Germany.

Mathias Müsken (M)

Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany.

Marina C Greweling-Pils (MC)

Mouse-Pathology Platform, Helmholtz Centre for Infection Research, Braunschweig, Germany.

Rolf Breinbauer (R)

BioTechMed-Graz, Institute of Organic Chemistry, Graz University of Technology, Graz, Austria.

Antje Flieger (A)

Division of Enteropathogenic Bacteria and Legionella (FG11)/National Reference Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch Institute, Wernigerode, Germany.

Dirk Schlüter (D)

Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.
German Center for Infection Research (DZIF),Partner Site Hannover-Braunschweig, Braunschweig, Germany.

Rolf Müller (R)

Department Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany.
Department of Pharmacy, Saarland University, Saarbrücken, Germany.
German Center for Infection Research (DZIF),Partner Site Hannover-Braunschweig, Braunschweig, Germany.

Marc Erhardt (M)

Institute for Biology-Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany.
Max Planck Unit for the Science of Pathogens, Berlin, Germany.

Ellen L Zechner (EL)

Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz, Graz, Austria.

Till Strowig (T)

Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany. till.strowig@helmholtz-hzi.de.
Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany. till.strowig@helmholtz-hzi.de.
German Center for Infection Research (DZIF),Partner Site Hannover-Braunschweig, Braunschweig, Germany. till.strowig@helmholtz-hzi.de.
Center for Individualized Infection Medicine, Hannover, Germany. till.strowig@helmholtz-hzi.de.

Classifications MeSH