Klebsiella oxytoca inhibits Salmonella infection through multiple microbiota-context-dependent mechanisms.
Journal
Nature microbiology
ISSN: 2058-5276
Titre abrégé: Nat Microbiol
Pays: England
ID NLM: 101674869
Informations de publication
Date de publication:
11 Jun 2024
11 Jun 2024
Historique:
received:
06
06
2023
accepted:
22
04
2024
medline:
12
6
2024
pubmed:
12
6
2024
entrez:
11
6
2024
Statut:
aheadofprint
Résumé
The Klebsiella oxytoca species complex is part of the human microbiome, especially during infancy and childhood. K. oxytoca species complex strains can produce enterotoxins, namely, tilimycin and tilivalline, while also contributing to colonization resistance (CR). The relationship between these seemingly contradictory roles is not well understood. Here, by coupling ex vivo assays with CRISPR-mutagenesis and various mouse models, we show that K. oxytoca provides CR against Salmonella Typhimurium. In vitro, the antimicrobial activity against various Salmonella strains depended on tilimycin production and was induced by various simple carbohydrates. In vivo, CR against Salmonella depended on toxin production in germ-free mice, while it was largely toxin-independent in mice with residual microbiota. This was linked to the relative levels of toxin-inducing carbohydrates in vivo. Finally, dulcitol utilization was essential for toxin-independent CR in gnotobiotic mice. Together, this demonstrates that nutrient availability is key to both toxin-dependent and substrate-driven competition between K. oxytoca and Salmonella.
Identifiants
pubmed: 38862602
doi: 10.1038/s41564-024-01710-0
pii: 10.1038/s41564-024-01710-0
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Joint Programming Initiative on Antimicrobial Resistance (Joint Programming Initiative for Antimicrobial Resistance)
ID : 01KI1824
Informations de copyright
© 2024. The Author(s).
Références
Buffie, C. G. & Pamer, E. G. Microbiota-mediated colonization resistance against intestinal pathogens. Nat. Rev. Immunol. 13, 790–801 (2013).
pubmed: 24096337
pmcid: 4194195
doi: 10.1038/nri3535
Kamada, N. et al. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 336, 1325–1329 (2012).
pubmed: 22582016
pmcid: 3439148
doi: 10.1126/science.1222195
Ng, K. M. et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 502, 96–99 (2013).
pubmed: 23995682
pmcid: 3825626
doi: 10.1038/nature12503
Osbelt, L. et al. Klebsiella oxytoca causes colonization resistance against multidrug-resistant K. pneumoniae in the gut via cooperative carbohydrate competition. Cell Host Microbe https://doi.org/10.1016/j.chom.2021.09.003 (2021).
doi: 10.1016/j.chom.2021.09.003
pubmed: 34610293
Fang, K., Jin, X. & Hong, S. H. Probiotic Escherichia coli inhibits biofilm formation of pathogenic E. coli via extracellular activity of DegP. Sci. Rep. 8, 4939 (2018).
pubmed: 29563542
pmcid: 5862908
doi: 10.1038/s41598-018-23180-1
Lam, L. H. & Monack, D. M. Intraspecies competition for niches in the distal gut dictate transmission during persistent Salmonella infection. PLoS Pathog. 10, e1004527 (2014).
pubmed: 25474319
pmcid: 4256465
doi: 10.1371/journal.ppat.1004527
Sorbara, M. T. et al. Inhibiting antibiotic-resistant Enterobacteriaceae by microbiota-mediated intracellular acidification. J. Exp. Med. 216, 84–98 (2019).
pubmed: 30563917
pmcid: 6314524
doi: 10.1084/jem.20181639
Osbelt, L. et al. Variations in microbiota composition of laboratory mice influence Citrobacter rodentium infection via variable short-chain fatty acid production. PLoS Pathog. 16, 1008448 (2020).
doi: 10.1371/journal.ppat.1008448
Silpe, J. E., Wong, J. W. H., Owen, S. V., Baym, M. & Balskus, E. P. The bacterial toxin colibactin triggers prophage induction. Nature 603, 315–320 (2022).
pubmed: 35197633
pmcid: 8907063
doi: 10.1038/s41586-022-04444-3
Becattini, S. et al. Commensal microbes provide first line defense against Listeria monocytogenes infection. J. Exp. Med. 214, 1973–1989 (2017).
pubmed: 28588016
pmcid: 5502438
doi: 10.1084/jem.20170495
Kim, S. G. et al. Microbiota-derived lantibiotic restores resistance against vancomycin-resistant Enterococcus. Nature 572, 665–669 (2019).
pubmed: 31435014
pmcid: 6717508
doi: 10.1038/s41586-019-1501-z
Hecht, A. L. et al. Strain competition restricts colonization of an enteric pathogen and prevents colitis. EMBO Rep. 17, 1281 (2016).
pubmed: 27432285
pmcid: 5007561
doi: 10.15252/embr.201642282
Spiga, L. et al. An oxidative central metabolism enables Salmonella to utilize microbiota-derived succinate. Cell Host Microbe 22, 291–301.e6 (2017).
pubmed: 28844888
pmcid: 5599368
doi: 10.1016/j.chom.2017.07.018
Thiemann, S. et al. Enhancement of IFNγ production by distinct commensals ameliorates Salmonella-induced disease. Cell Host Microbe 21, 682–694.e5 (2017).
pubmed: 28618267
doi: 10.1016/j.chom.2017.05.005
Stecher, B. et al. Like will to like: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLoS Pathog. 6, 1000711 (2010).
doi: 10.1371/journal.ppat.1000711
Mullineaux-Sanders, C. et al. Citrobacter amalonaticus inhibits the growth of Citrobacter rodentium in the gut lumen. MBio https://doi.org/10.1128/mBio.02410-21 (2021).
Yang, J. et al. Klebsiella oxytoca complex: update on taxonomy, antimicrobial resistance, and virulence. Clin. Microbiol. Rev. https://doi.org/10.1128/CMR.00006-21 (2022).
Oliveira, R. A. et al. Klebsiella michiganensis transmission enhances resistance to Enterobacteriaceae gut invasion by nutrition competition. Nat. Microbiol. https://doi.org/10.1038/s41564-019-0658-4 (2020).
doi: 10.1038/s41564-019-0658-4
pubmed: 31959968
Velazquez, E. M. et al. Endogenous Enterobacteriaceae underlie variation in susceptibility to Salmonella infection. Nat. Microbiol. 4, 1057–1064 (2019).
pubmed: 30911125
pmcid: 6533147
doi: 10.1038/s41564-019-0407-8
Schluter, J. et al. The TaxUMAP atlas: efficient display of large clinical microbiome data reveals ecological competition in protection against bacteremia. Cell Host Microbe. 31, 1126–1139.e6 (2023).
pubmed: 37329880
doi: 10.1016/j.chom.2023.05.027
Schwartz, D. J. et al. Gut pathogen colonization precedes bloodstream infection in the neonatal intensive care unit. Sci. Transl. Med. 15, eadg5562 (2023).
pubmed: 37134153
pmcid: 10259202
doi: 10.1126/scitranslmed.adg5562
Greimel, T. M. et al. Toxin-producing Klebsiella oxytoca in healthy infants: commensal or pathobiont? J. Pediatr. Gastroenterol. Nutr. 74, E1–E7 (2022).
pubmed: 34520403
doi: 10.1097/MPG.0000000000003299
Shao, Y. et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature 574, 117–121 (2019).
pubmed: 31534227
pmcid: 6894937
doi: 10.1038/s41586-019-1560-1
Chen, Y. et al. Preterm infants harbour diverse Klebsiella populations, including atypical species that encode and produce an array of antimicrobial resistance-and virulence-associated factors. Microb. Genom. https://doi.org/10.1099/mgen.0.000377 (2020).
Shibu, P. et al. Improved molecular characterization of the Klebsiella oxytoca complex reveals the prevalence of the kleboxymycin biosynthetic gene cluster. Microb. Genom. 7, 592 (2021).
Stewart, J. et al. Epidemiology and genomic analysis of Klebsiella oxytoca from a single hospital network in Australia. BMC Infect. Dis. 22, 704 (2022).
pubmed: 36002802
pmcid: 9400251
doi: 10.1186/s12879-022-07687-7
Dornisch, E. et al. Biosynthese des enterotoxischen Pyrrolobenzodiazepin-Naturstoffs Tilivallin. Angew. Chem. 129, 14948–14952 (2017).
doi: 10.1002/ange.201707737
Högenauer, C. et al. Klebsiella oxytoca as a causative organism of antibiotic-associated hemorrhagic colitis. N. Engl. J. Med. 355, 2418–2426 (2006).
pubmed: 17151365
doi: 10.1056/NEJMoa054765
Zollner‐Schwetz, I. et al. Role of Klebsiella oxytoca in antibiotic‐associated diarrhea. Clin. Infect. Dis. 47, e74–e78 (2008).
pubmed: 18808355
doi: 10.1086/592074
Schneditz, G. et al. Enterotoxicity of a nonribosomal peptide causes antibiotic-associated colitis. Proc. Natl Acad. Sci. USA 111, 13181–13186 (2014).
pubmed: 25157164
pmcid: 4246982
doi: 10.1073/pnas.1403274111
Paveglio, S. et al. Cytotoxin-producing Klebsiella oxytoca in the preterm gut and its association with necrotizing enterocolitis. Emerg. Microbes Infect. 9, 1321–1329 (2020).
pubmed: 32525754
pmcid: 7473113
doi: 10.1080/22221751.2020.1773743
Unterhauser, K. et al. Klebsiella oxytoca enterotoxins tilimycin and tilivalline have distinct host DNA-damaging and microtubule-stabilizing activities. Proc. Natl Acad. Sci. USA 116, 3774–3783 (2019).
pubmed: 30808763
pmcid: 6397511
doi: 10.1073/pnas.1819154116
Alexander, E. M. et al. Biosynthesis, mechanism of action, and inhibition of the enterotoxin tilimycin produced by the opportunistic pathogen Klebsiella oxytoca. ACS Infect. Dis. 6, 1976–1997 (2020).
pubmed: 32485104
pmcid: 7354218
doi: 10.1021/acsinfecdis.0c00326
Pöltl, L. et al. Microbiota-derived genotoxin tilimycin generates colonic stem cell mutations. Cell Rep. 42, 112199 (2023).
pubmed: 36870054
doi: 10.1016/j.celrep.2023.112199
Kienesberger, S. et al. Enterotoxin tilimycin from gut-resident Klebsiella promotes mutational evolution and antibiotic resistance in mice. Nat. Microbiol. 7, 1834–1848 (2022).
pubmed: 36289400
pmcid: 9613472
doi: 10.1038/s41564-022-01260-3
Chen, J. et al. A commensal-encoded genotoxin drives restriction of Vibrio cholerae colonization and host gut microbiome remodeling. Proc. Natl Acad. Sci. USA 119, e2121180119 (2022).
pubmed: 35254905
pmcid: 8931321
doi: 10.1073/pnas.2121180119
Majowicz, S. E. et al. The global burden of nontyphoidal Salmonella gastroenteritis. Clin. Infect. Dis. 50, 882–889 (2010).
pubmed: 20158401
doi: 10.1086/650733
Pulford, C. V. et al. Stepwise evolution of Salmonella Typhimurium ST313 causing bloodstream infection in Africa. Nat. Microbiol. 6, 327–338 (2021).
pubmed: 33349664
doi: 10.1038/s41564-020-00836-1
Herp, S. et al. Mucispirillum schaedleri antagonizes Salmonella virulence to protect mice against colitis. Cell Host Microbe. 25, 681–694.e8 (2019).
pubmed: 31006637
doi: 10.1016/j.chom.2019.03.004
Lamy-Besnier, Q. et al. Prophylactic administration of a bacteriophage cocktail is safe and effective in reducing Salmonella enterica serovar Typhimurium burden in vivo. Microbiol. Spectr. 9, e0049721 (2021).
pubmed: 34431719
doi: 10.1128/Spectrum.00497-21
Eberl, C. et al. E. coli enhance colonization resistance against Salmonella Typhimurium by competing for galactitol, a context-dependent limiting carbon source. Cell Host Microbe. 29, 1680–1692.e7 (2021).
pubmed: 34610296
doi: 10.1016/j.chom.2021.09.004
Tse, H. et al. A tricyclic pyrrolobenzodiazepine produced by Klebsiella oxytoca is associated with cytotoxicity in antibiotic-associated hemorrhagic colitis. J. Biol. Chem. 292, 19503–19520 (2017).
pubmed: 28972161
pmcid: 5702686
doi: 10.1074/jbc.M117.791558
Burby, P. E. & Simmons, L. A. Regulation of cell division in bacteria by monitoring genome integrity and DNA replication status. J. Bacteriol. 202, e00408-19 (2020).
pubmed: 31548275
pmcid: 6941525
doi: 10.1128/JB.00408-19
Ledala, N. et al. Bacterial indole as a multifunctional regulator of Klebsiella oxytoca complex enterotoxicity. MBio. 13, e0375221 (2022).
pubmed: 35073747
doi: 10.1128/mbio.03752-21
Rodríguez-Valverde, D. et al. cAMP receptor protein positively regulates the expression of genes involved in the biosynthesis of Klebsiella oxytoca tilivalline cytotoxin. Front. Microbiol. 12, 2807 (2021).
doi: 10.3389/fmicb.2021.743594
Eberl, C. et al. Reproducible colonization of germ-free mice with the oligo-mouse-microbiota in different animal facilities. Front. Microbiol. 10, 2999 (2020).
pubmed: 31998276
pmcid: 6965490
doi: 10.3389/fmicb.2019.02999
Flaugnatti, N. et al. Human commensal gut Proteobacteria withstand type VI secretion attacks through immunity protein-independent mechanisms. Nat. Commun. 12, 5751 (2021).
pubmed: 34599171
pmcid: 8486750
doi: 10.1038/s41467-021-26041-0
Cascales, E. et al. Colicin biology. Microbiol. Mol. Biol. Rev. 71, 158–229 (2007).
pubmed: 17347522
pmcid: 1847374
doi: 10.1128/MMBR.00036-06
Roelofs, K. G., Coyne, M. J., Gentyala, R. R., Chatzidaki-Livanis, M. & Comstock, L. E. Bacteroidales secreted antimicrobial proteins target surface molecules necessary for gut colonization and mediate competition in vivo. MBio. 7, e01055-16 (2016).
pubmed: 27555309
pmcid: 4999547
doi: 10.1128/mBio.01055-16
Brugiroux, S. et al. Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium. Nat. Microbiol. 2, 16215 (2016).
pubmed: 27869789
doi: 10.1038/nmicrobiol.2016.215
Freter, R., Brickner, H., Fekete, J., Vickerman, M. M. & Carey, K. E. Survival and implantation of Escherichia coli in the intestinal tract. Infect. Immun. 39, 686–703 (1983).
pubmed: 6339389
pmcid: 348005
doi: 10.1128/iai.39.2.686-703.1983
Freter, R., Brickner, H., Botney, M., Cleven, D. & Aranki, A. Mechanisms that control bacterial populations in continuous-flow culture models of mouse large intestinal flora. Infect. Immun. 39, 676–685 (1983).
pubmed: 6339388
pmcid: 348004
doi: 10.1128/iai.39.2.676-685.1983
Spragge, F. et al. Microbiome diversity protects against pathogens by nutrient blocking. Science. 382, eadj3502 (2023).
pubmed: 38096285
doi: 10.1126/science.adj3502
Nash, M. J., Frank, D. N. & Friedman, J. E. Early microbes modify immune system development and metabolic homeostasis—the ‘restaurant’ hypothesis revisited. Front. Endocrinol. 8, 349 (2017).
doi: 10.3389/fendo.2017.00349
Conway, T. & Cohen, P. S. Commensal and pathogenic Escherichia coli metabolism in the gut.Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.mbp-0006-2014 (2015).
Leatham-Jensen, M. P. et al. The streptomycin-treated mouse intestine selects Escherichia coli envZ missense mutants that interact with dense and diverse intestinal microbiota. Infect. Immun. 80, 1716–1727 (2012).
pubmed: 22392928
pmcid: 3347456
doi: 10.1128/IAI.06193-11
Chu, D. M. et al. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat. Med. 23, 314–326 (2017).
pubmed: 28112736
pmcid: 5345907
doi: 10.1038/nm.4272
Lundgren, S. N. et al. Maternal diet during pregnancy is related with the infant stool microbiome in a delivery mode-dependent manner. Microbiome. 6, 109 (2018).
pubmed: 29973274
pmcid: 6033232
doi: 10.1186/s40168-018-0490-8
Constantinides, M. G. et al. MAIT cells are imprinted by the microbiota in early life and promote tissue repair. Science 366, eaax6624 (2019).
pubmed: 31649166
pmcid: 7603427
doi: 10.1126/science.aax6624
Stehr, M. et al. Charles River altered Schaedler flora (CRASF®) remained stable for four years in a mouse colony housed in individually ventilated cages. Lab. Anim. 43, 362–370 (2009).
pubmed: 19535393
doi: 10.1258/la.2009.0080075
Flentie, K. N. et al. Stably integrated luxCDABE for assessment of Salmonella invasion kinetics. Mol. Imaging. 7, 222–233 (2008).
pubmed: 19123992
doi: 10.2310/7290.2008.00024
Wang, Y. et al. CRISPRCas9 and CRISPR-assisted cytidine deaminase enable precise and efficient genome editing in Klebsiella pneumoniae. Appl. Environ. Microbiol. 84, 1834–1852 (2018).
doi: 10.1128/AEM.01834-18
Almási, E. d. H. et al. An adapted method for Cas9-mediated editing reveals the species-specific role of β-glucoside utilization driving competition between Klebsiella species. J. Bacteriol. 206, e00317-23 (2024).
pubmed: 38353529
doi: 10.1128/jb.00317-23
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
pubmed: 22743772
doi: 10.1038/nmeth.2019
Qin, D., Xia, Y. & Whitesides, G. M. Soft lithography for micro- and nanoscale patterning. Nat. Protoc. 5, 491–502 (2010).
pubmed: 20203666
doi: 10.1038/nprot.2009.234
Lamprecht, O. et al. Regulation by cyclic di-GMP attenuates dynamics and enhances robustness of bimodal curli gene activation in Escherichia coli. PLoS Genet. 19, 1010750 (2023).
doi: 10.1371/journal.pgen.1010750
Berg, S. et al. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232 (2019).
pubmed: 31570887
doi: 10.1038/s41592-019-0582-9
Mähler, M. et al. Differential susceptibility of inbred mouse strains to dextran sulfate sodium-induced colitis. Am. J. Physiol. 274, 544–551 (1998).
Pils, M. C. et al. Monocytes/macrophages and/or neutrophils are the target of IL-10 in the LPS endotoxemia model. Eur. J. Immunol. 40, 443–448 (2010).
pubmed: 19941312
doi: 10.1002/eji.200939592
Glabonjat, R. A. et al. Simultaneous quantification of enterotoxins tilimycin and tilivalline in biological matrices using HPLC high resolution ESMS
pubmed: 33167283
doi: 10.1016/j.talanta.2020.121677
Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3, 1101–1108 (2008).
pubmed: 18546601
doi: 10.1038/nprot.2008.73
Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci. 108, 4516–4522 (2011).
pubmed: 20534432
doi: 10.1073/pnas.1000080107
Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).
pubmed: 20383131
pmcid: 3156573
doi: 10.1038/nmeth.f.303
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).
pubmed: 20709691
doi: 10.1093/bioinformatics/btq461
Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).
pubmed: 17586664
pmcid: 1950982
doi: 10.1128/AEM.00062-07
Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).
pubmed: 20224823
pmcid: 2835736
doi: 10.1371/journal.pone.0009490
McMurdie, P. J. & Holmes, S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).
pubmed: 23630581
pmcid: 3632530
doi: 10.1371/journal.pone.0061217
Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).
pubmed: 21702898
pmcid: 3218848
doi: 10.1186/gb-2011-12-6-r60
Kaganovitch, E. et al. SalmoLab/MotherMachine_NatMicro2024: MotherMachine_NatMicro2024_v1. Zenodo https://doi.org/10.5281/zenodo.10974764 (2024).