Differential methylation of OPRK1 in borderline personality disorder is associated with childhood trauma.
Journal
Molecular psychiatry
ISSN: 1476-5578
Titre abrégé: Mol Psychiatry
Pays: England
ID NLM: 9607835
Informations de publication
Date de publication:
11 Jun 2024
11 Jun 2024
Historique:
received:
19
09
2023
accepted:
28
05
2024
revised:
21
05
2024
medline:
12
6
2024
pubmed:
12
6
2024
entrez:
11
6
2024
Statut:
aheadofprint
Résumé
According to a growing body of neurobiological evidence, the core symptoms of borderline personality disorder (BPD) may be linked to an opioidergic imbalance between the hedonic and stimulatory activity of mu opioid receptors (MOR) and the reward system inhibiting effects of kappa opioid receptors (KOR). Childhood trauma (CT), which is etiologically relevant to BPD, is also likely to lead to epigenetic and neurobiological adaptations by extensive activation of the stress and endogenous opioid systems. In this study, we investigated the methylation differences in the promoter of the KOR gene (OPRK1) in subjects with BPD (N = 47) and healthy controls (N = 48). Comparing the average methylation rates of regulatorily relevant subregions (specified regions CGI-1, CGI-2, EH1), we found no differences between BPD and HC. Analyzing individual CG nucleotides (N = 175), we found eight differentially methylated CG sites, all of which were less methylated in BPD, with five showing highly interrelated methylation rates. This differentially methylated region (DMR) was found on the falling slope (5') of the promoter methylation gap, whose effect is enhanced by the DMR hypomethylation in BPD. A dimensional assessment of the correlation between disease severity and DMR methylation rate revealed DMR hypomethylation to be negatively associated with BPD symptom severity (measured by BSL-23). Finally, analyzing the influence of CT on DMR methylation, we found DMR hypomethylation to correlate with physical and emotional neglect in childhood (quantified by CTQ). Thus, the newly identified DMR may be a biomarker of the risks caused by CT, which likely epigenetically contribute to the development of BPD.
Identifiants
pubmed: 38862675
doi: 10.1038/s41380-024-02628-z
pii: 10.1038/s41380-024-02628-z
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s).
Références
Bohus M, Stoffers-Winterling J, Sharp C, Krause-Utz A, Schmahl C, Lieb K. Borderline personality disorder. Lancet. 2021;398:1528–40. https://doi.org/10.1016/S0140-6736(21)00476-1 .
doi: 10.1016/S0140-6736(21)00476-1
pubmed: 34688371
Zanarini MC, Horwood J, Wolke D, Waylen A, Fitzmaurice G, Grant BF. Prevalence of DSM-IV borderline personality disorder in two community samples: 6,330 English 11-year-olds and 34,653 American adults. J Pers Disord. 2011;25:607–19. https://doi.org/10.1521/pedi.2011.25.5.607 .
doi: 10.1521/pedi.2011.25.5.607
pubmed: 22023298
pmcid: 4678770
Trull TJ, Jahng S, Tomko RL, Wood PK, Sher KJ. Revised NESARC personality disorder diagnoses: gender, prevalence, and comorbidity with substance dependence disorders. J Pers Disord. 2010;24:412–26. https://doi.org/10.1521/pedi.2010.24.4.412 .
doi: 10.1521/pedi.2010.24.4.412
pubmed: 20695803
pmcid: 3771514
Schmahl C, Herpertz SC, Bertsch K, Ende G, Flor H, Kirsch P, et al. Mechanisms of disturbed emotion processing and social interaction in borderline personality disorder: state of knowledge and research agenda of the German Clinical Research Unit. Borderline Personal Disord Emot Dysregul. 2014;1:12. https://doi.org/10.1186/2051-6673-1-12 .
doi: 10.1186/2051-6673-1-12
pubmed: 26401296
pmcid: 4579501
Herpertz SC, Bertsch K, Jeung H. Neurobiology of criterion a: self and interpersonal personality functioning. Curr Opin Psychol. 2018;21:23–7. https://doi.org/10.1016/j.copsyc.2017.08.032 .
doi: 10.1016/j.copsyc.2017.08.032
pubmed: 28946053
Bandelow B, Schmahl C, Falkai P, Wedekind D. Borderline personality disorder: a dysregulation of the endogenous opioid system? Psychol Rev. 2010;117:623–36. https://doi.org/10.1037/a0018095 .
doi: 10.1037/a0018095
pubmed: 20438240
Anderson G. Pathoetiology and pathophysiology of borderline personality: Role of prenatal factors, gut microbiome, mu- and kappa-opioid receptors in amygdala-PFC interactions. Prog Neuropsychopharmacol Biol Psychiatry. 2020;98:109782. https://doi.org/10.1016/j.pnpbp.2019.109782 .
doi: 10.1016/j.pnpbp.2019.109782
pubmed: 31689444
Panksepp J, Nelson E, Siviy S. Brain opioids and mother-infant social motivation. Acta Paediatr Suppl. 1994;397:40–6. https://doi.org/10.1111/j.1651-2227.1994.tb13264.x .
doi: 10.1111/j.1651-2227.1994.tb13264.x
pubmed: 7981473
Narayanan S, Lam H, Christian L, Levine MS, Grandy D, Rubinstein M, et al. Endogenous opioids mediate basal hedonic tone independent of dopamine D-1 or D-2 receptor activation. Neuroscience. 2004;124:241–6. https://doi.org/10.1016/j.neuroscience.2003.11.011 .
doi: 10.1016/j.neuroscience.2003.11.011
pubmed: 14960355
Turtonen O, Saarinen A, Nummenmaa L, Tuominen L, Tikka M, Armio RL, et al. Adult attachment system links with brain mu-opioid receptor availability in vivo. Biol Psychiatry Cogn Neurosci Neuroimaging. 2021;6:360–9. https://doi.org/10.1016/j.bpsc.2020.10.013 .
doi: 10.1016/j.bpsc.2020.10.013
pubmed: 33431346
Lutz PE, Kieffer BL. Opioid receptors: distinct roles in mood disorders. Trends Neurosci. 2013;36:195–206. https://doi.org/10.1016/j.tins.2012.11.002 .
doi: 10.1016/j.tins.2012.11.002
pubmed: 23219016
Bruchas MR, Land BB, Chavkin C. The dynorphin/kappa opioid system as a modulator of stress-induced and pro-addictive behaviors. Brain Res. 2010;1314:44–55. https://doi.org/10.1016/j.brainres.2009.08.062 .
doi: 10.1016/j.brainres.2009.08.062
pubmed: 19716811
Tejeda HA, Shippenberg TS, Henriksson R. The dynorphin/κ-opioid receptor system and its role in psychiatric disorders. Cell Mol Life Sci. 2012;69:857–96. https://doi.org/10.1007/s00018-011-0844-x .
doi: 10.1007/s00018-011-0844-x
pubmed: 22002579
Land BB, Bruchas MR, Lemos JC, Xu M, Melief EJ, Chavkin C. The dysphoric component of stress is encoded by activation of the dynorphin kappa-opioid system. J Neurosci. 2008;28:407–14. https://doi.org/10.1523/JNEUROSCI.4458-07.2008 .
doi: 10.1523/JNEUROSCI.4458-07.2008
pubmed: 18184783
pmcid: 2612708
Prossin AR, Love TM, Koeppe RA, Zubieta JK, Silk KR. Dysregulation of regional endogenous opioid function in borderline personality disorder. Am J Psychiatry. 2010;167:925–33. https://doi.org/10.1176/appi.ajp.2010.09091348 .
doi: 10.1176/appi.ajp.2010.09091348
pubmed: 20439388
pmcid: 6863154
Timäus C, Meiser M, Wiltfang J, Bandelow B, Wedekind D. Efficacy of naltrexone in borderline personality disorder, a retrospective analysis in inpatients. Hum Psychopharmacol. 2021;36:e2800. https://doi.org/10.1002/hup.2800 .
doi: 10.1002/hup.2800
pubmed: 34029405
Martin-Blanco A, Patrizi B, Soler J, Gasol X, Elices M, Gasol M, et al. Use of nalmefene in patients with comorbid borderline personality disorder and alcohol use disorder: a preliminary report. Int Clin Psychopharmacol. 2017;32:231–4. https://doi.org/10.1097/YIC.0000000000000170 .
doi: 10.1097/YIC.0000000000000170
pubmed: 28181957
Yovell Y, Bar G, Mashiah M, Baruch Y, Briskman I, Asherov J, et al. Ultra-low-dose buprenorphine as a time-limited treatment for severe suicidal ideation: a randomized controlled trial. Am J Psychiatry. 2016;173:491–8. https://doi.org/10.1176/appi.ajp.2015.15040535 .
doi: 10.1176/appi.ajp.2015.15040535
pubmed: 26684923
Enning F, Schmahl C. Behandlung dissoziativer Symptome mit Nalmefen bei Patienten mit Borderline-Persönlichkeitsstörung und komplexer posttraumatischer Belastungsstörung [Treatment of dissociative symptoms with nalmefene in patients with borderline personality disorder and complex posttraumatic stress disorder]. Nervenarzt. 2022;93:503–5. https://doi.org/10.1007/s00115-021-01239-1 .
doi: 10.1007/s00115-021-01239-1
pubmed: 34860275
Schmahl C, Kleindienst N, Limberger M, Ludäscher P, Mauchnik J, Deibler P. Evaluation of naltrexone for dissociative symptoms in borderline personality disorder. Int Clin Psychopharmacol. 2012;27:61–8. https://doi.org/10.1097/YIC.0b013e32834d0e50 .
doi: 10.1097/YIC.0b013e32834d0e50
pubmed: 22002175
Zanarini MC. Childhood experiences associated with the development of borderline personality disorder. Psychiatr Clin North Am. 2000;23:89–101. https://doi.org/10.1016/s0193-953x(05)70145-3 .
doi: 10.1016/s0193-953x(05)70145-3
pubmed: 10729933
Schulze A, Cloos L, Zdravkovic M, Lis S, Krause-Utz A. On the interplay of borderline personality features, childhood trauma severity, attachment types, and social support. Borderline Personal Disord Emot Dysregul. 2022;9:35. https://doi.org/10.1186/s40479-022-00206-9 .
doi: 10.1186/s40479-022-00206-9
pubmed: 36529765
pmcid: 9762015
Martín-Blanco A, Ferrer M, Soler J, Arranz MJ, Vega D, Calvo N, et al. The role of hypothalamus-pituitary-adrenal genes and childhood trauma in borderline personality disorder. Eur Arch Psychiatry Clin Neurosci. 2016;266:307–16. https://doi.org/10.1007/s00406-015-0612-2 .
doi: 10.1007/s00406-015-0612-2
pubmed: 26182893
Fonagy P, Target M, Gergely G. Attachment and borderline personality disorder. A theory and some evidence. Psychiatr Clin North Am. 2000;23:103–22. https://doi.org/10.1016/s0193-953x(05)70146-5 .
doi: 10.1016/s0193-953x(05)70146-5
pubmed: 10729934
Gunderson JG, Herpertz SC, Skodol AE, Torgersen S, Zanarini MC. Borderline personality disorder. Nat Rev Dis Primers. 2018;4:18029. https://doi.org/10.1038/nrdp.2018.29 .
doi: 10.1038/nrdp.2018.29
pubmed: 29795363
Winsper C. Borderline personality disorder: course and outcomes across the lifespan. Curr Opin Psychol. 2021;37:94–7. https://doi.org/10.1016/j.copsyc.2020.09.010 .
doi: 10.1016/j.copsyc.2020.09.010
pubmed: 33091693
Szyf M, Bick J. DNA methylation: a mechanism for embedding early life experiences in the genome. Child Dev. 2013;84:49–57. https://doi.org/10.1111/j.1467-8624.2012.01793.x .
doi: 10.1111/j.1467-8624.2012.01793.x
pubmed: 22880724
Weaver IC, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR, et al. Epigenetic programming by maternal behavior. Nat Neurosci. 2004;7:847–54. https://doi.org/10.1038/nn1276 .
doi: 10.1038/nn1276
pubmed: 15220929
Roth TL, Lubin FD, Funk AJ, Sweatt JD. Lasting epigenetic influence of early-life adversity on the BDNF gene. Biol Psychiatry. 2009;65:760–9. https://doi.org/10.1016/j.biopsych.2008.11.028 .
doi: 10.1016/j.biopsych.2008.11.028
pubmed: 19150054
pmcid: 3056389
Heim C, Binder EB. Current research trends in early life stress and depression: review of human studies on sensitive periods, gene-environment interactions, and epigenetics. Exp Neurol. 2012;233:102–11. https://doi.org/10.1016/j.expneurol.2011.10.032 .
doi: 10.1016/j.expneurol.2011.10.032
pubmed: 22101006
Murgatroyd C, Patchev AV, Wu Y, Micale V, Bockmuhl Y, Fischer D, et al. Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat Neurosci. 2009;12:1559–66. https://doi.org/10.1038/nn.2436 .
doi: 10.1038/nn.2436
pubmed: 19898468
Klengel T, Pape J, Binder EB, Mehta D. The role of DNA methylation in stress-related psychiatric disorders. Neuropharmacology. 2014;80:115–32. https://doi.org/10.1016/j.neuropharm.2014.01.013 .
doi: 10.1016/j.neuropharm.2014.01.013
pubmed: 24452011
Zhang TY, Labonté B, Wen XL, Turecki G, Meaney MJ. Epigenetic mechanisms for the early environmental regulation of hippocampal glucocorticoid receptor gene expression in rodents and humans. Neuropsychopharmacology. 2013;38:111–23. https://doi.org/10.1038/npp.2012.149 .
doi: 10.1038/npp.2012.149
pubmed: 22968814
Malave L, van Dijk MT, Anacker C. Early life adversity shapes neural circuit function during sensitive postnatal developmental periods. Transl Psychiatry. 2022;12:306. https://doi.org/10.1038/s41398-022-02092-9 .
doi: 10.1038/s41398-022-02092-9
pubmed: 35915071
pmcid: 9343623
Prados J, Stenz L, Courtet P, Prada P, Nicastro R, Adouan W, et al. Borderline personality disorder and childhood maltreatment: a genome-wide methylation analysis. Genes Brain Behav. 2015;14:177–88. https://doi.org/10.1111/gbb.12197 .
doi: 10.1111/gbb.12197
pubmed: 25612291
Labonté B, Suderman M, Maussion G, Navaro L, Yerko V, Mahar I, et al. Genome-wide epigenetic regulation by early-life trauma. Arch Gen Psychiatry. 2012;69:722–31. https://doi.org/10.1001/archgenpsychiatry.2011.2287 .
doi: 10.1001/archgenpsychiatry.2011.2287
pubmed: 22752237
pmcid: 4991944
Lutz PE, Gross JA, Dhir SK, Maussion G, Yang J, Bramoulle A, et al. Epigenetic regulation of the kappa opioid receptor by child abuse. Biol Psychiatry. 2018;84:751–61. https://doi.org/10.1016/j.biopsych.2017.07.012 .
doi: 10.1016/j.biopsych.2017.07.012
pubmed: 28886759
Perroud N, Salzmann A, Prada P, Nicastro R, Hoeppli ME, Furrer S, et al. Response to psychotherapy in borderline personality disorder and methylation status of the BDNF gene. Transl Psychiatry. 2013;3:e207. https://doi.org/10.1038/tp.2012.140 .
doi: 10.1038/tp.2012.140
pubmed: 23422958
pmcid: 3566720
Jamshidi E, Boström AED, Wilczek A, Nilsonne Å, Åsberg M, Jokinen J. Increased Methylation of Brain-Derived Neurotrophic Factor (BDNF) Is related to emotionally unstable personality disorder and severity of suicide attempt in women. Cells. 2023;12:350. https://doi.org/10.3390/cells12030350 .
doi: 10.3390/cells12030350
pubmed: 36766691
pmcid: 9913473
Moser DA, Müller S, Hummel EM, Limberg AS, Dieckmann L, Frach L, et al. Targeted bisulfite sequencing: a novel tool for the assessment of DNA methylation with high sensitivity and increased coverage. Psychoneuroendocrinology. 2020;120:104784. https://doi.org/10.1016/j.psyneuen.2020.104784 .
doi: 10.1016/j.psyneuen.2020.104784
pubmed: 32673938
Flasbeck V, Brüne M. Association between childhood maltreatment, psychopathology and DNA methylation of genes involved in stress regulation: evidence from a study in borderline personality disorder. PLoS One. 2021;16:e0248514. https://doi.org/10.1371/journal.pone.0248514 .
doi: 10.1371/journal.pone.0248514
pubmed: 33705478
pmcid: 7951851
Martín-Blanco A, Ferrer M, Soler J, Salazar J, Vega D, Andión O, et al. Association between methylation of the glucocorticoid receptor gene, childhood maltreatment, and clinical severity in borderline personality disorder. J Psychiatr Res. 2014;57:34–40. https://doi.org/10.1016/j.jpsychires.2014.06.011 .
doi: 10.1016/j.jpsychires.2014.06.011
pubmed: 25048180
Perroud N, Paoloni-Giacobino A, Prada P, Olié E, Salzmann A, Nicastro R, et al. Increased methylation of glucocorticoid receptor gene (NR3C1) in adults with a history of childhood maltreatment: a link with the severity and type of trauma. Transl Psychiatry. 2011;1:e59. https://doi.org/10.1038/tp.2011.60 .
doi: 10.1038/tp.2011.60
pubmed: 22832351
pmcid: 3309499
Dammann G, Teschler S, Haag T, Altmüller F, Tuczek F, Dammann RH. Increased DNA methylation of neuropsychiatric genes occurs in borderline personality disorder. Epigenetics. 2011;6:1454–62. https://doi.org/10.4161/epi.6.12.18363 .
doi: 10.4161/epi.6.12.18363
pubmed: 22139575
Groleau P, Joober R, Israel M, Zeramdini N, DeGuzman R, Steiger H. Methylation of the dopamine D2 receptor (DRD2) gene promoter in women with a bulimia-spectrum disorder: associations with borderline personality disorder and exposure to childhood abuse. J Psychiatr Res. 2014;48:121–7. https://doi.org/10.1016/j.jpsychires.2013.10.003 .
doi: 10.1016/j.jpsychires.2013.10.003
pubmed: 24157248
Perroud N, Zewdie S, Stenz L, Adouan W, Bavamian S, Prada P, et al. Methylation of serotonin receptor 3A in ADHD, Borderline Personality, and bipolar disorders: link with severity of the disorders and childhood maltreatment. Depress Anxiety. 2016;33:45–55. https://doi.org/10.1002/da.22406 .
doi: 10.1002/da.22406
pubmed: 26350166
Teschler S, Bartkuhn M, Künzel N, Schmidt C, Kiehl S, Dammann G, et al. Aberrant methylation of gene associated CpG sites occurs in borderline personality disorder. PLoS ONE. 2013;8:e84180. https://doi.org/10.1371/journal.pone.0084180 .
doi: 10.1371/journal.pone.0084180
pubmed: 24367640
pmcid: 3868545
Teschler S, Gotthardt J, Dammann G, Dammann RH. Aberrant DNA Methylation of rDNA and PRIMA1 in borderline personality Disorder. Int J Mol Sci. 2016;17:E67. https://doi.org/10.3390/ijms17010067 .
doi: 10.3390/ijms17010067
Gescher DM, Kahl KG, Hillemacher T, Frieling H, Kuhn J, Frodl T. Epigenetics in personality disorders: today’s insights. Front Psychiatry. 2018;9:579. https://doi.org/10.3389/fpsyt.2018.00579 .
doi: 10.3389/fpsyt.2018.00579
pubmed: 30510522
pmcid: 6252387
Yasuda K, Espinosa R III, Takeda J, Le Beau MM, Bell GI. Localization of the kappa opioid receptor gene to human chromosome band 8q11.2. Genomics. 1994;19:596–7. https://doi.org/10.1006/geno.1994.1117 .
doi: 10.1006/geno.1994.1117
pubmed: 8188308
Yuferov V, Fussell D, LaForge KS, Nielsen DA, Gordon D, Ho A, et al. Redefinition of the human kappa opioid receptor gene (OPRK1) structure and association of haplotypes with opiate addiction. Pharmacogenetics. 2004;14:793–804. https://doi.org/10.1097/00008571-200412000-00002 .
doi: 10.1097/00008571-200412000-00002
pubmed: 15608558
pmcid: 6141019
Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes Dev. 2011;25:1010–22. https://doi.org/10.1101/gad.2037511 .
doi: 10.1101/gad.2037511
pubmed: 21576262
pmcid: 3093116
Hu X, Bi J, Loh HH, Wei LN. An intronic Ikaros-binding element mediates retinoic acid suppression of the kappa opioid receptor gene, accompanied by histone deacetylation on the promoters. J Biol Chem. 2001;276:4597–603. https://doi.org/10.1074/jbc.M005477200 .
doi: 10.1074/jbc.M005477200
pubmed: 11092879
Loranger AW, Janca A, Sartorius N, editors. Assessment and diagnosis of personality disorders: The ICD-10 international personality disorder examination (IPDE). Cambridge: Cambridge: Cambridge University Press; 1997.
Wittchen HU, Zaudig M, Fydrich T. Structured clinical interview for DSM-IV. Göttingen: Hogrefe; 1997.
Bohus M, Kleindienst N, Limberger MF, Stieglitz RD, Domsalla M, Chapman AL, et al. The short version of the borderline symptom list (BSL-23): development and initial data on psychometric properties. Psychopathology. 2009;42:32–9. https://doi.org/10.1159/000173701 .
doi: 10.1159/000173701
pubmed: 19023232
Zanarini MC, Weingeroff JL, Frankenburg FR, Fitzmaurice GM. Development of the self-report version of the zanarini rating scale for borderline personality disorder. Personal Ment Health. 2015;9:243–9. https://doi.org/10.1002/pmh.1302 .
doi: 10.1002/pmh.1302
pubmed: 26174588
pmcid: 4609276
Spitzer C, Freyberger HJ, Stieglitz RD, Carlson EB, Kuhn G, Magdeburg N, et al. Adaptation and psychometric properties of the German version of the Dissociative Experience Scale. J Trauma Stress. 1998;11:799–809. https://doi.org/10.1023/A:1024457819547 .
doi: 10.1023/A:1024457819547
pubmed: 9870230
Barratt ES. Impulsiveness subtraits: arousal and information processing. In: Spence JT, Izard CE (eds.). Motivation, emotion and personality. (1985) Elsevier Science Publishers: New York, 1985, pp. 137–46.
Bernstein DP, Stein JA, Newcomb MD, Walker E, Pogge D, Ahluvalia T, et al. Development and validation of a brief screening version of the childhood trauma questionnaire. Child Abuse Negl. 2003;27:169–90. https://doi.org/10.1016/s0145-2134(02)00541-0 .
doi: 10.1016/s0145-2134(02)00541-0
pubmed: 12615092
Bernstein D, Fink L. Childhood Trauma Questionnaire: A retrospective self-report. 1998. San Antonio, TK: The Psychological Corporation; 1998. p. 55.
Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010 Retrieved from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ .
Krueger F, James F, Ewels P, Afyounian E, Schuster-Boeckler B. FelixKrueger/TrimGalore: v0.6.7 - DOI via Zenodo (0.6.7). Zenodo. 2021. Retrieved from: https://doi.org/10.5281/zenodo.5127899 .
Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics. 2011;27:1571–2. https://doi.org/10.1093/bioinformatics/btr167 .
doi: 10.1093/bioinformatics/btr167
pubmed: 21493656
pmcid: 3102221
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B. 1995;57:289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x .
doi: 10.1111/j.2517-6161.1995.tb02031.x
Ji H, Liu G, Xu X, Liu H, Xu L, Hu H, et al. Hypermethylation of the κ1 opioid receptor promoter in Chinese heroin and methamphetamine addicts. Exp Ther Med. 2018;16:2392–8. https://doi.org/10.3892/etm.2018.6514 .
doi: 10.3892/etm.2018.6514
pubmed: 30210591
pmcid: 6122531
Tejeda HA, Hanks AN, Scott L, Mejias-Aponte C, Hughes ZA, O’Donnell P. Prefrontal cortical kappa opioid receptors attenuate responses to amygdala inputs. Neuropsychopharmacology. 2015;40:2856–64. https://doi.org/10.1038/npp.2015.138 .
doi: 10.1038/npp.2015.138
pubmed: 25971593
pmcid: 4864622
Kyte D, Jerram M, DiBiase R. Brain opioid theory of social attachment: a review of evidence for approach motivation to harm. Motivation Science. 2020;6:12–20. https://doi.org/10.1037/mot0000135 .
doi: 10.1037/mot0000135
Krystal AD, Pizzagalli DA, Smoski M, Mathew SJ, Nurnberger J Jr, Lisanby SH, et al. A randomized proof-of-mechanism trial applying the ‘fast-fail’ approach to evaluating κ-opioid antagonism as a treatment for anhedonia. Nat Med. 2020;26:760–8. https://doi.org/10.1038/s41591-020-0806-7 .
doi: 10.1038/s41591-020-0806-7
pubmed: 32231295
pmcid: 9949770
American Psychiatric Association. Diagnostic and statistical manual of mental disorders (5th ed.). 2013. Arlington, VA, Washington, D.C.: American Psychiatric Association; 2013.
doi: 10.1176/appi.books.9780890425596
Chelnokova O, Laeng B, Eikemo M, Riegels J, Løseth G, Maurud H, et al. Rewards of beauty: the opioid system mediates social motivation in humans. Mol Psychiatry. 2014;19:746–7. https://doi.org/10.1038/mp.2014.1 .
doi: 10.1038/mp.2014.1
pubmed: 24514570
Buchel C, Miedl S, Sprenger C. Hedonic processing in humans is mediated by an opioidergic mechanism in a mesocorticolimbic system. Elife. 2018;7:e39648. https://doi.org/10.7554/eLife.39648 .
doi: 10.7554/eLife.39648
pubmed: 30444488
pmcid: 6239433
Meier IM, van Honk J, Bos PA, Terburg D. A mu-opioid feedback model of human social behavior. Neurosci Biobehav Rev. 2021;121:250–8. https://doi.org/10.1016/j.neubiorev.2020.12.013 .
doi: 10.1016/j.neubiorev.2020.12.013
pubmed: 33359094
Stanley B, Sher L, Wilson S, Ekman R, Huang YY, Mann JJ. Non-suicidal self-injurious behavior, endogenous opioids and monoamine neurotransmitters. J Affect Disord. 2010;124:134–40. https://doi.org/10.1016/j.jad.2009.10.028 .
doi: 10.1016/j.jad.2009.10.028
pubmed: 19942295
van der Venne P, Balint A, Drews E, Parzer P, Resch F, Koenig J, et al. Pain sensitivity and plasma beta-endorphin in adolescent non-suicidal self-injury. J Affect Disord. 2021;278:199–208. https://doi.org/10.1016/j.jad.2020.09.036 .
doi: 10.1016/j.jad.2020.09.036
pubmed: 32961416
Störkel LM, Karabatsiakis A, Hepp J, Kolassa IT, Schmahl C, Niedtfeld I. Salivary beta-endorphin in nonsuicidal self-injury: an ambulatory assessment study. Neuropsychopharmacology. 2021;46:1357–63. https://doi.org/10.1038/s41386-020-00914-2 .
doi: 10.1038/s41386-020-00914-2
pubmed: 33398083
pmcid: 8134499
Amad A, Ramoz N, Peyre H, Thomas P, Gorwood P. FKBP5 gene variants and borderline personality disorder. J Affect Disord. 2019;248:26–8.
doi: 10.1016/j.jad.2019.01.025
pubmed: 30711865
Thomas M, Banet N, Wallisch A, Glowacz K, Becker-Sadzio J, Gundel F, et al. Differential COMT DNA methylation in patients with borderline personality disorder: genotype matters. Eur Neuropsychopharmacol. 2019;29:1295–1300. https://doi.org/10.1016/j.euroneuro.2019.09.011 .
doi: 10.1016/j.euroneuro.2019.09.011
pubmed: 31587837
Schmahl C, Ludäscher P, Greffrath W, Kraus A, Valerius G, Schulze TG, et al. COMT val158met polymorphism and neural pain processing. PLoS ONE. 2012;7:e23658. https://doi.org/10.1371/journal.pone.0023658 .
doi: 10.1371/journal.pone.0023658
pubmed: 22247753
pmcid: 3256133
Amad A, Ramoz N, Thomas P, Jardri R, Gorwood P. Genetics of borderline personality disorder: systematic review and proposal of an integrative model. Neurosci Biobehav Rev. 2014;40:6–19. https://doi.org/10.1016/j.neubiorev.2014.01.003 .
doi: 10.1016/j.neubiorev.2014.01.003
pubmed: 24456942
Kolla NJ, Meyer J, Sanches M, Charbonneau J. Monoamine oxidase- a genetic variants and childhood abuse predict impulsiveness in borderline personality disorder. Clin Psychopharmacol Neurosci. 2017;15:343–51.
doi: 10.9758/cpn.2017.15.4.343
pubmed: 29073746
pmcid: 5678484
Zhang M, Liu N, Chen H, Zhang N. Oxytocin receptor gene, childhood maltreatment and borderline personality disorder features among male inmates in China. BMC Psychiatry. 2020;20:332.
doi: 10.1186/s12888-020-02710-0
pubmed: 32580785
pmcid: 7315490