Genomic insights into the conservation status of the Idle Crayfish Austropotamobius bihariensis Pârvulescu, 2019: low genetic diversity in the endemic crayfish species of the Apuseni Mountains.


Journal

BMC ecology and evolution
ISSN: 2730-7182
Titre abrégé: BMC Ecol Evol
Pays: England
ID NLM: 101775613

Informations de publication

Date de publication:
11 Jun 2024
Historique:
received: 30 10 2023
accepted: 05 06 2024
medline: 12 6 2024
pubmed: 12 6 2024
entrez: 11 6 2024
Statut: epublish

Résumé

Biodiversity in freshwater ecosystems is declining due to an increased anthropogenic footprint. Freshwater crayfish are keystone species in freshwater ecosystems and play a crucial role in shaping the structure and function of their habitats. The Idle Crayfish Austropotamobius bihariensis is a native European species with a narrow distribution range, endemic to the Apuseni Mountains (Romania). Although its area is small, the populations are anthropogenically fragmented. In this context, the assessment of its conservation status is timely. Using a reduced representation sequencing approach, we identified 4875 genomic SNPs from individuals belonging to 13 populations across the species distribution range. Subsequent population genomic analyses highlighted low heterozygosity levels, low number of private alleles and small effective population size. Our structuring analyses revealed that the genomic similarity of the populations is conserved within the river basins. Genomic SNPs represented excellent tools to gain insights into intraspecific genomic diversity and population structure of the Idle Crayfish. Our study highlighted that the analysed populations are at risk due to their limited genetic diversity, which makes them extremely vulnerable to environmental alterations. Thus, our results emphasize the need for conservation measures and can be used as a baseline to establish species management programs.

Sections du résumé

BACKGROUND BACKGROUND
Biodiversity in freshwater ecosystems is declining due to an increased anthropogenic footprint. Freshwater crayfish are keystone species in freshwater ecosystems and play a crucial role in shaping the structure and function of their habitats. The Idle Crayfish Austropotamobius bihariensis is a native European species with a narrow distribution range, endemic to the Apuseni Mountains (Romania). Although its area is small, the populations are anthropogenically fragmented. In this context, the assessment of its conservation status is timely.
RESULTS RESULTS
Using a reduced representation sequencing approach, we identified 4875 genomic SNPs from individuals belonging to 13 populations across the species distribution range. Subsequent population genomic analyses highlighted low heterozygosity levels, low number of private alleles and small effective population size. Our structuring analyses revealed that the genomic similarity of the populations is conserved within the river basins.
CONCLUSION CONCLUSIONS
Genomic SNPs represented excellent tools to gain insights into intraspecific genomic diversity and population structure of the Idle Crayfish. Our study highlighted that the analysed populations are at risk due to their limited genetic diversity, which makes them extremely vulnerable to environmental alterations. Thus, our results emphasize the need for conservation measures and can be used as a baseline to establish species management programs.

Identifiants

pubmed: 38862896
doi: 10.1186/s12862-024-02268-5
pii: 10.1186/s12862-024-02268-5
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

78

Subventions

Organisme : Agence Nationale de la Recherche
ID : GEODE: ANR-21-CE02-0028
Organisme : Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
ID : PN-III-P4-ID-PCE-2020-1187
Organisme : Deutsche Forschungsgemeinschaft
ID : GEODE: DFG TH 1807/7-1

Informations de copyright

© 2024. The Author(s).

Références

Williams-Subiza EA, Epele LB. Drivers of biodiversity loss in freshwater environments: a bibliometric analysis of the recent literature. Aquat Conserv Mar Freshw Ecosyst. 2021;31:2469–80.
doi: 10.1002/aqc.3627
Tickner D, Opperman JJ, Abell R, Acreman M, Arthington AH, Bunn SE, et al. Bending the curve of Global Freshwater Biodiversity loss: an Emergency Recovery Plan. Bioscience. 2020;70:330–42.
pubmed: 32284631 pmcid: 7138689 doi: 10.1093/biosci/biaa002
Reynolds J, Souty-Grosset C, Richardson A. Ecological roles of crayfish in freshwater and terrestrial habitats. Freshw Crayfish. 2013;19:197–218.
Swahn J-Ö. The cultural history of crayfish. Bull Français La Pêche La Piscic. 2004;372–73:243–51.
Jussila J, Edsman L, Maguire I, Diéguez-Uribeondo J, Theissinger K. Money kills native ecosystems: European crayfish as an Example. Front Ecol Evol. 2021;9.
Kouba A, Petrusek A, Kozák P. Continental-wide distribution of crayfish species in Europe: update and maps. Knowl Manag Aquat Ecosyst. 2014;:05.
Jelić M, Klobučar GIV, Grandjean F, Puillandre N, Franjević D, Futo M, et al. Insights into the molecular phylogeny and historical biogeography of the white-clawed crayfish (Decapoda, Astacidae). Mol Phylogenet Evol. 2016;103:26–40.
pubmed: 27404041 doi: 10.1016/j.ympev.2016.07.009
Lovrenčić L, Bonassin L, Boštjančić LL, Podnar M, Jelić M, Klobučar G, et al. New insights into the genetic diversity of the stone crayfish: taxonomic and conservation implications. BMC Evol Biol. 2020;20:146.
pubmed: 33158414 pmcid: 7648294 doi: 10.1186/s12862-020-01709-1
Pârvulescu L, Pérez-Moreno JL, Panaiotu C, Drăguț L, Schrimpf A, Popovici ID, et al. A journey on plate tectonics sheds light on European crayfish phylogeography. Ecol Evol. 2019;9:1957–71.
pubmed: 30847085 pmcid: 6392496 doi: 10.1002/ece3.4888
Pârvulescu L. Introducing a new Austropotamobius crayfish species (Crustacea, Decapoda, Astacidae): a miocene endemism of the Apuseni Mountains, Romania. Zool Anz. 2019;279:94–102.
doi: 10.1016/j.jcz.2019.01.006
Ion MC, Ács A-R, Laza AV, Lorincz I, Livadariu D, Lamoly AM, et al. Conservation status of the idle crayfish Austropotamobius bihariensis Pârvulescu, 2019. Glob Ecol Conserv. 2024;50:e02847.
Pârvulescu L, Iorgu EI, Zaharia C, Ion MC, Satmari A, Krapal AM, et al. The future of endangered crayfish in light of protected areas and habitat fragmentation. Sci Rep. 2020;10:1–12.
doi: 10.1038/s41598-020-71915-w
Tarandek A, Lovrenčić L, Židak L, Topić M, Grbin D, Gregov M, et al. Characteristics of the Stone Crayfish Population along a disturbance Gradient—A case study of the Kustošak Stream, Croatia. Diversity. 2023;15:591.
doi: 10.3390/d15050591
Pârvulescu L, Pacioglu O, Hamchevici C. The assessment of the habitat and water quality requirements of the stone crayfish (Austropotamobius torrentium) and noble crayfish (Astacus astacus) species in the rivers from the Anina Mountains (SW Romania). Knowl Manag Aquat Ecosyst. 2011;401:03.
doi: 10.1051/kmae/2010036
Kozák P, Ďuriš Z, Petrusek A, Buřič M, Horká I, Kouba A, et al. Crayfish Biology and Culture. České Budějovice. Czechia: University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters; 2015.
Pârvulescu L, Schrimpf A, Kozubíková E, Cabanillas Resino S, Vrålstad T, Petrusek A, et al. Invasive crayfish and crayfish plague on the move: first detection of the plague agent Aphanomyces astaci in the Romanian Danube. Dis Aquat Organ. 2012;98:85–94.
pubmed: 22422132 doi: 10.3354/dao02432
Groza MI, Cupea D, Lovrenčić L, Maguire I. First record of the stone crayfish in the Romanian lowlands. Knowl Manag Aquat Ecosyst. 2021;2020-Janua:27.
Pacioglu O, Theissinger K, Alexa A, Samoilă C, Sîrbu O-I, Schrimpf A, et al. Multifaceted implications of the competition between native and invasive crayfish: a glimmer of hope for the native’s long-term survival. Biol Invasions. 2020;22:827–42.
doi: 10.1007/s10530-019-02136-0
Ungureanu E, Mojžišová M, Tangerman M, Ion MC, Parvulescu L, Petrusek A. The spatial distribution of Aphanomyces astaci genotypes across Europe: introducing the first data from Ukraine. Freshw Crayfish. 2020;25:77–87.
doi: 10.5869/fc.2020.v25-1.077
Theissinger K, Edsman L, Maguire I, Diéguez-Uribeondo J, Jussila J. Nothing can go wrong–introduction of alien crayfish to Europe. PLOS Water. 2022;1:e0000062.
doi: 10.1371/journal.pwat.0000062
Satmari A, Miok K, Ion MC, Zaharia C, Schrimpf A, Pârvulescu L. Headwater refuges: Flow protects Austropotamobius crayfish from Faxonius limosus invasion. NeoBiota. 2023;89:71–94.
doi: 10.3897/neobiota.89.110085
Allendorf FW, Lundquist LL, Introduction. Population biology, evolution, and control of Invasive species. Conserv Biol. 2003;17:24–30.
doi: 10.1046/j.1523-1739.2003.02365.x
Jamieson IG. Has the debate over genetics and extinction of island endemics truly been resolved? Anim Conserv. 2007;10:139–44.
doi: 10.1111/j.1469-1795.2006.00095.x
Willi Y, Kristensen TN, Sgrò CM, Weeks AR, Ørsted M, Hoffmann AA. Conservation genetics as a management tool: the five best-supported paradigms to assist the management of threatened species. Proc Natl Acad Sci. 2022;119.
Reed DH, Frankham R. Correlation between fitness and genetic diversity. Conserv Biol. 2003;17:230–7.
doi: 10.1046/j.1523-1739.2003.01236.x
Çilingir FG, Hansen D, Bunbury N, Postma E, Baxter R, Turnbull L, et al. Low-coverage reduced representation sequencing reveals subtle within-island genetic structure in Aldabra giant tortoises. Ecol Evol. 2022;12:1–13.
doi: 10.1002/ece3.8739
Woodruff DS. Populations, species, and Conservation Genetics. Encyclopedia of Biodiversity. Elsevier; 2001. pp. 811–29.
Zimmerman SJ, Aldridge CL, Oyler-Mccance SJ. An empirical comparison of population genetic analyses using microsatellite and SNP data for a species of conservation concern. BMC Genomics. 2020;21:1–16.
doi: 10.1186/s12864-020-06783-9
Theissinger K, Fernandes C, Formenti G, Bista I, Berg PR, Bleidorn C, et al. How genomics can help biodiversity conservation. Trends Genet. 2023;39:545–59.
pubmed: 36801111 doi: 10.1016/j.tig.2023.01.005
Jenkins TL, Ellis CD, Stevens JR. SNP discovery in European lobster (Homarus gammarus) using RAD sequencing. Conserv Genet Resour. 2019;11:253–7.
doi: 10.1007/s12686-018-1001-8
Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE. 2012;7.
Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA. Stacks: an analysis tool set for population genomics. Mol Ecol. 2013;22:3124–40.
pubmed: 23701397 pmcid: 3936987 doi: 10.1111/mec.12354
Andrews S, FastQC:. A Quality Control Tool for High Throughput Sequence Data. 2010.
Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32:3047–8.
pubmed: 27312411 pmcid: 5039924 doi: 10.1093/bioinformatics/btw354
Paris JR, Stevens JR, Catchen JM. Lost in parameter space: a road map for stacks. Methods Ecol Evol. 2017;8:1360–73.
doi: 10.1111/2041-210X.12775
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.
pubmed: 17701901 pmcid: 1950838 doi: 10.1086/519795
Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR. NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (ne) from genetic data. Mol Ecol Resour. 2014;14:209–14.
pubmed: 23992227 doi: 10.1111/1755-0998.12157
Raj A, Stephens M, Pritchard JK, FastSTRUCTURE. Variational inference of population structure in large SNP data sets. Genetics. 2014;197:573–89.
pubmed: 24700103 pmcid: 4063916 doi: 10.1534/genetics.114.164350
Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-; 2016.
doi: 10.1007/978-3-319-24277-4
Francis RM. Pophelper: an R package and web app to analyse and visualize population structure. Mol Ecol Resour. 2017;17:27–32.
pubmed: 26850166 doi: 10.1111/1755-0998.12509
Malinsky M, Trucchi E, Lawson DJ, Falush D. RADpainter and fineRADstructure: Population Inference from RADseq Data. Mol Biol Evol. 2018;35:1284–90.
pubmed: 29474601 pmcid: 5913677 doi: 10.1093/molbev/msy023
Inkscape. Inkscape project. 2020.
Frankham R, Ballou JD, Jonathan D, Briscoe DA, David A. Introduction to conservation genetics. Cambridge University Press; 2010.
Meffe GK, Carroll C. Principles of Conservation Biology. 2nd edition. Sunderland, Massachusetts: Sinauer Associates Inc.; 1997.
Bassitta M, Brown RP, Pérez-Cembranos A, Pérez-Mellado V, Castro JA, Picornell A, et al. Genomic signatures of drift and selection driven by predation and human pressure in an insular lizard. Sci Rep. 2021;11:1–13.
doi: 10.1038/s41598-021-85591-x
Frankham R, Bradshaw CJA, Brook BW. Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol Conserv. 2014;170:56–63.
doi: 10.1016/j.biocon.2013.12.036
Pérez-Pereira N, Wang J, Quesada H, Caballero A. Prediction of the minimum effective size of a population viable in the long term. Biodivers Conserv. 2022;31:2763–80.
doi: 10.1007/s10531-022-02456-z
Nichols HJ. The causes and consequences of inbreeding avoidance and tolerance in cooperatively breeding vertebrates. J Zool. 2017;303:1–14.
doi: 10.1111/jzo.12466
Haasl RJ, Payseur BA. Multi-locus inference of population structure: a comparison between single nucleotide polymorphisms and microsatellites. Heredity (Edinb). 2011;106:158–71.
pubmed: 20332809 doi: 10.1038/hdy.2010.21
Gross R, Lovrenčić L, Jelić M, Grandjean F, Ðuretanović S, Simić V, et al. Genetic diversity and structure of the noble crayfish populations in the Balkan Peninsula revealed by mitochondrial and microsatellite DNA markers. PeerJ. 2021;9:e11838.
pubmed: 34430076 pmcid: 8349172 doi: 10.7717/peerj.11838
Lovrenčić L, Temunović M, Bonassin L, Grandjean F, Austin CM, Maguire I. Climate change threatens unique genetic diversity within the Balkan biodiversity hotspot – the case of the endangered stone crayfish. Glob Ecol Conserv. 2022;39 July.
Schrimpf A, Theissinger K, Dahlem J, Maguire I, Pârvulescu L, Schulz HK, et al. Phylogeography of noble crayfish (a stacus astacus) reveals multiple refugia. Freshw Biol. 2014;59:761–76.
doi: 10.1111/fwb.12302
Schrimpf A, Piscione M, Cammaerts R, Collas M, Herman D, Jung A, et al. Genetic characterization of western European noble crayfish populations (Astacus astacus) for advanced conservation management strategies. Conserv Genet. 2017;18:1299–315.
doi: 10.1007/s10592-017-0981-3
Yi S, Li Y, Shi L, Zhang L, Li Q, Chen J. Characterization of Population Genetic structure of red swamp crayfish, Procambarus clarkii, in China. Sci Rep. 2018;8:1–11.
doi: 10.1038/s41598-018-23986-z
Farhadi A, Jeffs AG, Lavery SD. Genome-wide SNPs in the spiny lobster Panulirus homarus reveal a hybrid origin for its subspecies. BMC Genomics. 2022;23:1–16.
doi: 10.1186/s12864-022-08984-w
Farhadi A, Pichlmueller F, Yellapu B, Lavery S, Jeffs A. Genome-wide SNPs reveal fine-scale genetic structure in ornate spiny lobster Panulirus ornatus throughout Indo-West Pacific Ocean. ICES J Mar Sci. 2022;79:1931–41.
doi: 10.1093/icesjms/fsac130
Lynch M, Conery IJ, Burger R. Mutation Accumulation and the Extinction of Small Populations Author (s): Michael Lynch, John Conery and Reinhard Burger Source : The American Naturalist, Vol. 146, No. 4 (Oct., 1995), pp. 489–518 Published by : The University of Chicago Press. 2016;146:489–518.
Razgour O, Forester B, Taggart JB, Bekaert M, Juste J, Ibáñez C, et al. Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proc Natl Acad Sci U S A. 2019;116:10418–23.
pubmed: 31061126 pmcid: 6535011 doi: 10.1073/pnas.1820663116
Kardos M, Armstrong EE, Fitzpatrick SW, Hauser S, Hedrick PW, Miller JM et al. The crucial role of genome-wide genetic variation in conservation. Proc Natl Acad Sci U S A. 2021;118.
Frankham R. Genetics and conservation biology. Comptes Rendus - Biol. 2003;326(SUPPL 1):22–9.
doi: 10.1016/S1631-0691(03)00023-4
Lovrenčić L, Temunović M, Gross R, Grgurev M, Maguire I. Integrating population genetics and species distribution modelling to guide conservation of the noble crayfish, Astacus astacus, in Croatia. Sci Rep. 2022;12:2040.
pubmed: 35132091 pmcid: 8821615 doi: 10.1038/s41598-022-06027-8
Miller AD, Sweeney OF, Whiterod NS, Van Rooyen AR, Hammer M, Weeks AR. Critically low levels of genetic diversity in fragmented populations of the endangered Glenelg spiny freshwater crayfish Euastacus bispinosus. Endanger Species Res. 2014;25:43–55.
doi: 10.3354/esr00609
Whiterod NS, Zukowski S, Asmus M, Gilligan D, Miller AD. Genetic analyses reveal limited dispersal and recovery potential in the large freshwater crayfish Euastacus armatus from the southern Murray-Darling Basin. Mar Freshw Res. 2017;68:213–25.
doi: 10.1071/MF16006
Clay M, Brannock PM, Barbour M, Feminella JW, Santos SR, Helms BS. Strong Population structure and differentiation within and among burrowing Bog Crayfish species of Southern Alabama wetlands. Wetlands. 2020;40:1595–606.
doi: 10.1007/s13157-020-01273-w
Lawson DJ, Hellenthal G, Myers S, Falush D. Inference of Population structure using dense Haplotype Data. PLoS Genet. 2012;8:e1002453.
pubmed: 22291602 pmcid: 3266881 doi: 10.1371/journal.pgen.1002453
Matočec SG, Bakran-Petricioli T, Bedek J, Bukovec D, Buzjak S, Franičević M, et al. An overview of the cave and interstitial biota of Croatia. Nat Croat. 2002;11 SUPP:1–102.
West KM, Richards ZT, Harvey ES, Susac R, Grealy A, Bunce M. Under the karst: detecting hidden subterranean assemblages using eDNA metabarcoding in the caves of Christmas Island, Australia. Sci Rep. 2020;10:21479.
pubmed: 33293686 pmcid: 7722930 doi: 10.1038/s41598-020-78525-6
Barrett RDH, Schluter D. Adaptation from standing genetic variation. Trends Ecol Evol. 2008;23:38–44.
pubmed: 18006185 doi: 10.1016/j.tree.2007.09.008
Barnett ZC, Adams SB, Ochs CA, Garrick RC. Crayfish populations genetically fragmented in streams impounded for 36–104 years. Freshw Biol. 2020;65:768–85.
doi: 10.1111/fwb.13466
Bálint M, Ujvárosi L, Theissinger K, Lehrian S, Mészáros N, Pauls SU. The carpathians as a major diversity hotspot in Europe. Biodiversity hotspots. Berlin, Heidelberg: Springer Berlin Heidelberg; 2011. pp. 189–205.
doi: 10.1007/978-3-642-20992-5_11
Holderegger R, Kamm U, Gugerli F. Adaptive vs. neutral genetic diversity: implications for landscape genetics. Landsc Ecol. 2006;21:797–807.
doi: 10.1007/s10980-005-5245-9
Weeks AR, Sgro CM, Young AG, Frankham R, Mitchell NJ, Miller KA, et al. Assessing the benefits and risks of translocations in changing environments: a genetic perspective. Evol Appl. 2011;4:709–25.
pubmed: 22287981 pmcid: 3265713 doi: 10.1111/j.1752-4571.2011.00192.x
Schulz R, Stucki T, Souty-Grosset C. Roundtable Session 4a: Management: Reintroductions and Restocking. Bull Français la Pêche la Piscic. 2002;:917–22.
Manenti R, Barzaghi B, Nessi A, Cioccarelli S, Villa M, Ficetola GF. Not only environmental conditions but also human awareness matters: a successful Post-crayfish Plague reintroduction of the White-clawed crayfish (Austropotamobius pallipes) in Northern Italy. Front Ecol Evol. 2021;9.
Formenti G, Theissinger K, Fernandes C, Bista I, Bombarely A, Bleidorn C, et al. The era of reference genomes in conservation genomics. Trends Ecol Evol. 2022;37:197–202.
pubmed: 35086739 doi: 10.1016/j.tree.2021.11.008
Rutz C, Bonassin L, Kress A, Francesconi C, Boštjančić LL, Merlat D et al. Abundance and diversification of repetitive elements in Decapoda genomes. Genes (Basel). 2023;14.

Auteurs

Lena Bonassin (L)

Department of Computer Science, Centre de Recherche en Biomédecine de Strasbourg, UMR 7357, University of Strasbourg, CNRS, Rue Eugène Boeckel 1, 67000, ICube, Strasbourg, France.
LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt am Main, Germany.
Institute for Environmental Sciences, Department of Molecular Ecology, Rhineland-Palatinate Technical University Kaiserslautern Landau, Fortstr. 7, 76829, Landau, Germany.

Lucian Pârvulescu (L)

Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, Str. Pestalozzi 16A, 300115, Timisoara, Romania. lucian.parvulescu@e-uvt.ro.
Crayfish Research Centre, Institute for Advanced Environmental Research, West University of Timisoara, Oituz 4, 300086, Timisoara, Romania. lucian.parvulescu@e-uvt.ro.

Ljudevit Luka Boštjančić (LL)

Department of Computer Science, Centre de Recherche en Biomédecine de Strasbourg, UMR 7357, University of Strasbourg, CNRS, Rue Eugène Boeckel 1, 67000, ICube, Strasbourg, France.
LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt am Main, Germany.
Institute for Environmental Sciences, Department of Molecular Ecology, Rhineland-Palatinate Technical University Kaiserslautern Landau, Fortstr. 7, 76829, Landau, Germany.

Caterina Francesconi (C)

LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt am Main, Germany.
Institute for Environmental Sciences, Department of Molecular Ecology, Rhineland-Palatinate Technical University Kaiserslautern Landau, Fortstr. 7, 76829, Landau, Germany.

Judith Paetsch (J)

Department of Biogeography, University of Trier, Behringstraße 21, D-54296, Geozentrum, Trier, Germany.

Christelle Rutz (C)

Department of Computer Science, Centre de Recherche en Biomédecine de Strasbourg, UMR 7357, University of Strasbourg, CNRS, Rue Eugène Boeckel 1, 67000, ICube, Strasbourg, France.

Odile Lecompte (O)

Department of Computer Science, Centre de Recherche en Biomédecine de Strasbourg, UMR 7357, University of Strasbourg, CNRS, Rue Eugène Boeckel 1, 67000, ICube, Strasbourg, France.

Kathrin Theissinger (K)

Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, D-35392, Giessen, Germany.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH