Targeting mTOR signaling pathways in multiple myeloma: biology and implication for therapy.
Multiple myeloma
Protein synthesis
Targeted therapy
mTOR
Journal
Cell communication and signaling : CCS
ISSN: 1478-811X
Titre abrégé: Cell Commun Signal
Pays: England
ID NLM: 101170464
Informations de publication
Date de publication:
11 Jun 2024
11 Jun 2024
Historique:
received:
13
02
2024
accepted:
03
06
2024
medline:
12
6
2024
pubmed:
12
6
2024
entrez:
11
6
2024
Statut:
epublish
Résumé
Multiple Myeloma (MM), a cancer of terminally differentiated plasma cells, is the second most prevalent hematological malignancy and is incurable due to the inevitable development of drug resistance. Intense protein synthesis is a distinctive trait of MM cells, supporting the massive production of clonal immunoglobulins or free light chains. The mammalian target of rapamycin (mTOR) kinase is appreciated as a master regulator of vital cellular processes, including regulation of metabolism and protein synthesis, and can be found in two multiprotein complexes, mTORC1 and mTORC2. Dysregulation of these complexes is implicated in several types of cancer, including MM. Since mTOR has been shown to be aberrantly activated in a large portion of MM patients and to play a role in stimulating MM cell survival and resistance to several existing therapies, understanding the regulation and functions of the mTOR complexes is vital for the development of more effective therapeutic strategies. This review provides a general overview of the mTOR pathway, discussing key discoveries and recent insights related to the structure and regulation of mTOR complexes. Additionally, we highlight findings on the mechanisms by which mTOR is involved in protein synthesis and delve into mTOR-mediated processes occurring in MM. Finally, we summarize the progress and current challenges of drugs targeting mTOR complexes in MM.
Identifiants
pubmed: 38862983
doi: 10.1186/s12964-024-01699-3
pii: 10.1186/s12964-024-01699-3
doi:
Substances chimiques
TOR Serine-Threonine Kinases
EC 2.7.11.1
MTOR Inhibitors
0
Mechanistic Target of Rapamycin Complex 2
EC 2.7.11.1
MTOR protein, human
EC 2.7.1.1
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
320Subventions
Organisme : China Scholarship Council
ID : No.201906280057
Organisme : Vrije Universiteit Brussel
ID : SRP84
Organisme : Vrije Universiteit Brussel
ID : SRP84
Organisme : Vrije Universiteit Brussel
ID : SRP84
Organisme : Kom op tegen Kanker
ID : ANI365
Informations de copyright
© 2024. The Author(s).
Références
Rajkumar SV, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15(12):e538–48.
pubmed: 25439696
doi: 10.1016/S1470-2045(14)70442-5
Rajkumar SV, Kumar S. Multiple myeloma current treatment algorithms. Blood Cancer J. 2020;10(9):94.
pubmed: 32989217
pmcid: 7523011
doi: 10.1038/s41408-020-00359-2
Ludwig H, et al. Multiple myeloma incidence and mortality around the globe; interrelations between health access and quality, economic resources, and patient empowerment. Oncologist. 2020;25(9):e1406–13.
pubmed: 32335971
pmcid: 7485361
doi: 10.1634/theoncologist.2020-0141
Schurch CM, et al. A review on tumor heterogeneity and evolution in multiple myeloma: pathological, radiological, molecular genetics, and clinical integration. Virchows Arch. 2020;476(3):337–51.
pubmed: 31848687
doi: 10.1007/s00428-019-02725-3
Rajkumar SV. Multiple myeloma: 2022 update on diagnosis, risk stratification, and management. Am J Hematol. 2022;97(8):1086–107.
pubmed: 35560063
pmcid: 9387011
doi: 10.1002/ajh.26590
Martino M, et al. CART-cell therapy: recent advances and new evidence in multiple myeloma. Cancers (Basel). 2021;13(11):2639.
pubmed: 34072068
doi: 10.3390/cancers13112639
Boussi LS, et al. Immunotherapy for the treatment of multiple myeloma. Front Immunol. 2022;13:1027385.
pubmed: 36389674
pmcid: 9649817
doi: 10.3389/fimmu.2022.1027385
McCaughan GJ, et al. Lenalidomide, bortezomib and dexamethasone induction therapy for the treatment of newly diagnosed multiple myeloma: a practical review. Br J Haematol. 2022;199(2):190–204.
pubmed: 35796524
pmcid: 9796722
doi: 10.1111/bjh.18295
Cowan AJ, et al. Diagnosis and management of multiple myeloma: a review. JAMA. 2022;327(5):464–77.
pubmed: 35103762
doi: 10.1001/jama.2022.0003
Solimando AG, et al. Breaking through multiple myeloma: a paradigm for a comprehensive tumor ecosystem targeting. Biomedicines. 2023;11(7):2087.
pubmed: 37509726
pmcid: 10377041
doi: 10.3390/biomedicines11072087
Jayaraj GG, et al. Functional modules of the proteostasis network. Cold Spring Harb Perspect Biol. 2020;12(1):a033951.
pubmed: 30833457
pmcid: 6942124
doi: 10.1101/cshperspect.a033951
Holz MK, et al. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell. 2005;123(4):569–80.
pubmed: 16286006
doi: 10.1016/j.cell.2005.10.024
Browne GJ, Proud CG. A novel mTOR-regulated phosphorylation site in elongation factor 2 kinase modulates the activity of the kinase and its binding to calmodulin. Mol Cell Biol. 2004;24(7):2986–97.
pubmed: 15024086
pmcid: 371112
doi: 10.1128/MCB.24.7.2986-2997.2004
Iadevaia V, et al. Roles of the mammalian target of rapamycin, mTOR, in controlling ribosome biogenesis and protein synthesis. Biochem Soc Trans. 2012;40(1):168–72.
pubmed: 22260684
doi: 10.1042/BST20110682
Torrence ME, et al. The mTORC1-mediated activation of ATF4 promotes protein and glutathione synthesis downstream of growth signals. Elife. 2021;10:e63326.
pubmed: 33646118
pmcid: 7997658
doi: 10.7554/eLife.63326
Son SM, et al. Leucine regulates autophagy via acetylation of the mTORC1 component raptor. Nat Commun. 2020;11(1):3148.
pubmed: 32561715
pmcid: 7305105
doi: 10.1038/s41467-020-16886-2
He A, et al. Acetyl-CoA derived from hepatic peroxisomal beta-oxidation inhibits autophagy and promotes steatosis via mTORC1 activation. Mol Cell. 2020;79(1):30-42 e4.
pubmed: 32473093
pmcid: 7335356
doi: 10.1016/j.molcel.2020.05.007
Wang T, et al. RAPTOR promotes colorectal cancer proliferation by inducing mTORC1 and upregulating ribosome assembly factor URB1. Cancer Med. 2020;9(4):1529–43.
pubmed: 31886628
doi: 10.1002/cam4.2810
Aylett CH, et al. Architecture of human mTOR complex 1. Science. 2016;351(6268):48–52.
pubmed: 26678875
doi: 10.1126/science.aaa3870
Yang H, et al. 4.4 A Resolution Cryo-EM structure of human mTOR Complex 1. Protein Cell. 2016;7(12):878–87.
pubmed: 27909983
pmcid: 5205667
doi: 10.1007/s13238-016-0346-6
Zhang KS, et al. PRAS40 suppresses atherogenesis through inhibition of mTORC1-dependent pro-inflammatory signaling in endothelial cells. Sci Rep. 2019;9(1):16787.
pubmed: 31728028
pmcid: 6856095
doi: 10.1038/s41598-019-53098-1
Maity S, et al. TGFbeta acts through PDGFRbeta to activate mTORC1 via the Akt/PRAS40 axis and causes glomerular mesangial cell hypertrophy and matrix protein expression. J Biol Chem. 2020;295(42):14262–78.
pubmed: 32732288
pmcid: 7573257
doi: 10.1074/jbc.RA120.014994
Li JY, et al. Oncolytic avian reovirus p17-modulated inhibition of mTORC1 by enhancement of endogenous mTORC1 inhibitors binding to mTORC1 To disrupt its assembly and accumulation on lysosomes. J Virol. 2022;96(17):e0083622.
pubmed: 35946936
doi: 10.1128/jvi.00836-22
Lone MU, et al. Direct physical interaction of active Ras with mSIN1 regulates mTORC2 signaling. BMC Cancer. 2019;19(1):1236.
pubmed: 31856761
pmcid: 6921532
doi: 10.1186/s12885-019-6422-6
Zheng Y, et al. Structural insights into Ras regulation by SIN1. Proc Natl Acad Sci U S A. 2022;119(19):e2119990119.
pubmed: 35522713
pmcid: 9171633
doi: 10.1073/pnas.2119990119
Pudewell S, et al. New mechanistic insights into the RAS-SIN1 interaction at the membrane. Front Cell Dev Biol. 2022;10:987754.
pubmed: 36274845
pmcid: 9583166
doi: 10.3389/fcell.2022.987754
Berchtold D, Walther TC. TORC2 plasma membrane localization is essential for cell viability and restricted to a distinct domain. Mol Biol Cell. 2009;20(5):1565–75.
pubmed: 19144819
pmcid: 2649262
doi: 10.1091/mbc.e08-10-1001
Scaiola A, et al. The 3.2-A resolution structure of human mTORC2. Sci Adv. 2020;6(45):eabc1251.
pubmed: 33158864
pmcid: 7673708
doi: 10.1126/sciadv.abc1251
Oh WJ, Jacinto E. mTOR complex 2 signaling and functions. Cell Cycle. 2011;10(14):2305–16.
pubmed: 21670596
pmcid: 3322468
doi: 10.4161/cc.10.14.16586
Pergolizzi B, et al. Two conserved glycine residues in mammalian and Dictyostelium Rictor are required for mTORC2 activity and integrity. J Cell Sci. 2019;132(22):jcs236505.
pubmed: 31653780
doi: 10.1242/jcs.236505
Pearce LR, et al. Identification of Protor as a novel Rictor-binding component of mTOR complex-2. Biochem J. 2007;405(3):513–22.
pubmed: 17461779
pmcid: 2267312
doi: 10.1042/BJ20070540
Woo SY, et al. PRR5, a novel component of mTOR complex 2, regulates platelet-derived growth factor receptor beta expression and signaling. J Biol Chem. 2007;282(35):25604–12.
pubmed: 17599906
doi: 10.1074/jbc.M704343200
Guertin DA, et al. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell. 2006;11(6):859–71.
pubmed: 17141160
doi: 10.1016/j.devcel.2006.10.007
Hwang Y, et al. Disruption of the scaffolding function of mLST8 selectively inhibits mTORC2 assembly and function and suppresses mTORC2-dependent tumor growth in vivo. Cancer Res. 2019;79(13):3178–84.
pubmed: 31085701
pmcid: 6606357
doi: 10.1158/0008-5472.CAN-18-3658
Kaizuka T, et al. Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly. J Biol Chem. 2010;285(26):20109–16.
pubmed: 20427287
pmcid: 2888423
doi: 10.1074/jbc.M110.121699
Catena V, Fanciulli M. Deptor: not only a mTOR inhibitor. J Exp Clin Cancer Res. 2017;36(1):12.
pubmed: 28086984
pmcid: 5237168
doi: 10.1186/s13046-016-0484-y
Manning BD, et al. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell. 2002;10(1):151–62.
pubmed: 12150915
doi: 10.1016/S1097-2765(02)00568-3
Ma L, et al. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell. 2005;121(2):179–93.
pubmed: 15851026
doi: 10.1016/j.cell.2005.02.031
Kovacina KS, et al. Identification of a proline-rich Akt substrate as a 14-3-3 binding partner. J Biol Chem. 2003;278(12):10189–94.
pubmed: 12524439
doi: 10.1074/jbc.M210837200
Inoki K, et al. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol. 2002;4(9):648–57.
pubmed: 12172553
doi: 10.1038/ncb839
Kaur H, Moreau R. mTORC1 silencing during intestinal epithelial Caco-2 cell differentiation is mediated by the activation of the AMPK/TSC2 pathway. Biochem Biophys Res Commun. 2021;545:183–8.
pubmed: 33561653
doi: 10.1016/j.bbrc.2021.01.070
Yang H, et al. Structural insights into TSC complex assembly and GAP activity on Rheb. Nat Commun. 2021;12(1):339.
pubmed: 33436626
pmcid: 7804450
doi: 10.1038/s41467-020-20522-4
Long X, et al. Rheb binds and regulates the mTOR kinase. Curr Biol. 2005;15(8):702–13.
pubmed: 15854902
doi: 10.1016/j.cub.2005.02.053
Deng L, et al. Ubiquitination of Rheb governs growth factor-induced mTORC1 activation. Cell Res. 2019;29(2):136–50.
pubmed: 30514904
doi: 10.1038/s41422-018-0120-9
Wiza C, et al. Role of PRAS40 in Akt and mTOR signaling in health and disease. Am J Physiol Endocrinol Metab. 2012;302(12):E1453–60.
pubmed: 22354785
doi: 10.1152/ajpendo.00660.2011
Fonseca BD, et al. PRAS40 is a target for mammalian target of rapamycin complex 1 and is required for signaling downstream of this complex. J Biol Chem. 2007;282(34):24514–24.
pubmed: 17604271
doi: 10.1074/jbc.M704406200
Wang L, et al. Regulation of proline-rich Akt substrate of 40 kDa (PRAS40) function by mammalian target of rapamycin complex 1 (mTORC1)-mediated phosphorylation. J Biol Chem. 2008;283(23):15619–27.
pubmed: 18372248
pmcid: 2414301
doi: 10.1074/jbc.M800723200
Sancak Y, et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science. 2008;320(5882):1496–501.
pubmed: 18497260
pmcid: 2475333
doi: 10.1126/science.1157535
Kim E, et al. Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol. 2008;10(8):935–45.
pubmed: 18604198
pmcid: 2711503
doi: 10.1038/ncb1753
Hesketh GG, et al. The GATOR-Rag GTPase pathway inhibits mTORC1 activation by lysosome-derived amino acids. Science. 2020;370(6514):351–6.
pubmed: 33060361
doi: 10.1126/science.aaz0863
Bar-Peled L, et al. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science. 2013;340(6136):1100–6.
pubmed: 23723238
pmcid: 3728654
doi: 10.1126/science.1232044
Meng D, et al. Glutamine and asparagine activate mTORC1 independently of Rag GTPases. J Biol Chem. 2020;295(10):2890–9.
pubmed: 32019866
pmcid: 7062167
doi: 10.1074/jbc.AC119.011578
Garcia D, Shaw RJ. AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell. 2017;66(6):789–800.
pubmed: 28622524
pmcid: 5553560
doi: 10.1016/j.molcel.2017.05.032
Lacher MD, et al. Consequences of interrupted Rheb-to-AMPK feedback signaling in tuberous sclerosis complex and cancer. Small GTPases. 2011;2(4):211–6.
pubmed: 22145093
pmcid: 3225910
doi: 10.4161/sgtp.2.4.16703
Inoki K, et al. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115(5):577–90.
pubmed: 14651849
doi: 10.1016/S0092-8674(03)00929-2
Van Nostrand JL, et al. AMPK regulation of Raptor and TSC2 mediate metformin effects on transcriptional control of anabolism and inflammation. Genes Dev. 2020;34(19–20):1330–44.
pubmed: 32912901
pmcid: 7528705
doi: 10.1101/gad.339895.120
Gwinn DM, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008;30(2):214–26.
pubmed: 18439900
pmcid: 2674027
doi: 10.1016/j.molcel.2008.03.003
Cheng SW, et al. Thr2446 is a novel mammalian target of rapamycin (mTOR) phosphorylation site regulated by nutrient status. J Biol Chem. 2004;279(16):15719–22.
pubmed: 14970221
doi: 10.1074/jbc.C300534200
Li Y, et al. Bnip3 mediates the hypoxia-induced inhibition on mammalian target of rapamycin by interacting with Rheb. J Biol Chem. 2007;282(49):35803–13.
pubmed: 17928295
doi: 10.1074/jbc.M705231200
Lin A, et al. The FoxO-BNIP3 axis exerts a unique regulation of mTORC1 and cell survival under energy stress. Oncogene. 2014;33(24):3183–94.
pubmed: 23851496
doi: 10.1038/onc.2013.273
Shang C, et al. Iron chelation inhibits mTORC1 signaling involving activation of AMPK and REDD1/Bnip3 pathways. Oncogene. 2020;39(29):5201–13.
pubmed: 32541839
pmcid: 7366895
doi: 10.1038/s41388-020-1366-5
Brugarolas J, et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev. 2004;18(23):2893–904.
pubmed: 15545625
pmcid: 534650
doi: 10.1101/gad.1256804
Liu P, et al. PtdIns(3,4,5)P3-dependent activation of the mTORC2 kinase complex. Cancer Discov. 2015;5(11):1194–209.
pubmed: 26293922
pmcid: 4631654
doi: 10.1158/2159-8290.CD-15-0460
Yang G, et al. A positive feedback loop between Akt and mTORC2 via SIN1 phosphorylation. Cell Rep. 2015;12(6):937–43.
pubmed: 26235620
doi: 10.1016/j.celrep.2015.07.016
Sato M, et al. Improving type 2 diabetes through a distinct adrenergic signaling pathway involving mTORC2 that mediates glucose uptake in skeletal muscle. Diabetes. 2014;63(12):4115–29.
pubmed: 25008179
doi: 10.2337/db13-1860
Kazyken D, et al. AMPK directly activates mTORC2 to promote cell survival during acute energetic stress. Sci Signal. 2019;12(585):eaav3249.
pubmed: 31186373
pmcid: 6935248
doi: 10.1126/scisignal.aav3249
Harrington LS, et al. Restraining PI3K: mTOR signalling goes back to the membrane. Trends Biochem Sci. 2005;30(1):35–42.
pubmed: 15653324
doi: 10.1016/j.tibs.2004.11.003
Dibble CC, Manning BD. Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat Cell Biol. 2013;15(6):555–64.
pubmed: 23728461
pmcid: 3743096
doi: 10.1038/ncb2763
Roux PP, Topisirovic I. Regulation of mRNA translation by signaling pathways. Cold Spring Harb Perspect Biol. 2012;4(11):a012252.
pubmed: 22888049
pmcid: 3536343
doi: 10.1101/cshperspect.a012252
Gingras AC, et al. Hierarchical phosphorylation of the translation inhibitor 4E-BP1. Genes Dev. 2001;15(21):2852–64.
pubmed: 11691836
pmcid: 312813
doi: 10.1101/gad.912401
Gingras AC, et al. Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev. 1999;13(11):1422–37.
pubmed: 10364159
pmcid: 316780
doi: 10.1101/gad.13.11.1422
Nozawa H, et al. Phosphorylation of ribosomal p70 S6 kinase and rapamycin sensitivity in human colorectal cancer. Cancer Lett. 2007;251(1):105–13.
pubmed: 17175097
doi: 10.1016/j.canlet.2006.11.008
Choo AY, et al. Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. Proc Natl Acad Sci U S A. 2008;105(45):17414–9.
pubmed: 18955708
pmcid: 2582304
doi: 10.1073/pnas.0809136105
Dennis MD, et al. Role of p70S6K1-mediated phosphorylation of eIF4B and PDCD4 proteins in the regulation of protein synthesis. J Biol Chem. 2012;287(51):42890–9.
pubmed: 23105104
pmcid: 3522285
doi: 10.1074/jbc.M112.404822
Martineau Y, et al. Control of Paip1-eukayrotic translation initiation factor 3 interaction by amino acids through S6 kinase. Mol Cell Biol. 2014;34(6):1046–53.
pubmed: 24396066
pmcid: 3958023
doi: 10.1128/MCB.01079-13
Martineau Y, et al. Poly(A)-binding protein-interacting protein 1 binds to eukaryotic translation initiation factor 3 to stimulate translation. Mol Cell Biol. 2008;28(21):6658–67.
pubmed: 18725400
pmcid: 2573229
doi: 10.1128/MCB.00738-08
Wang X, et al. Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase. EMBO J. 2001;20(16):4370–9.
pubmed: 11500364
pmcid: 125559
doi: 10.1093/emboj/20.16.4370
Ruvinsky I, et al. Ribosomal protein S6 phosphorylation is a determinant of cell size and glucose homeostasis. Genes Dev. 2005;19(18):2199–211.
pubmed: 16166381
pmcid: 1221890
doi: 10.1101/gad.351605
Ma XM, et al. SKAR links pre-mRNA splicing to mTOR/S6K1-mediated enhanced translation efficiency of spliced mRNAs. Cell. 2008;133(2):303–13.
pubmed: 18423201
doi: 10.1016/j.cell.2008.02.031
Watt KE, et al. RNA polymerases I and III in development and disease. Semin Cell Dev Biol. 2023;136:49–63.
pubmed: 35422389
doi: 10.1016/j.semcdb.2022.03.027
Hannan KM, et al. mTOR-dependent regulation of ribosomal gene transcription requires S6K1 and is mediated by phosphorylation of the carboxy-terminal activation domain of the nucleolar transcription factor UBF. Mol Cell Biol. 2003;23(23):8862–77.
pubmed: 14612424
pmcid: 262650
doi: 10.1128/MCB.23.23.8862-8877.2003
Mayer C, et al. mTOR-dependent activation of the transcription factor TIF-IA links rRNA synthesis to nutrient availability. Genes Dev. 2004;18(4):423–34.
pubmed: 15004009
pmcid: 359396
doi: 10.1101/gad.285504
Michels AA, et al. mTORC1 directly phosphorylates and regulates human MAF1. Mol Cell Biol. 2010;30(15):3749–57.
pubmed: 20516213
pmcid: 2916396
doi: 10.1128/MCB.00319-10
Fonseca BD, et al. La-related protein 1 (LARP1) represses terminal oligopyrimidine (TOP) mRNA translation downstream of mTOR complex 1 (mTORC1). J Biol Chem. 2015;290(26):15996–6020.
pubmed: 25940091
pmcid: 4481205
doi: 10.1074/jbc.M114.621730
Jia JJ, et al. mTORC1 promotes TOP mRNA translation through site-specific phosphorylation of LARP1. Nucleic Acids Res. 2021;49(6):3461–89.
pubmed: 33398329
pmcid: 8034618
doi: 10.1093/nar/gkaa1239
Ogami K, et al. mTOR- and LARP1-dependent regulation of TOP mRNA poly(A) tail and ribosome loading. Cell Rep. 2022;41(4):111548.
pubmed: 36288708
doi: 10.1016/j.celrep.2022.111548
Prakash V, et al. Ribosome biogenesis during cell cycle arrest fuels EMT in development and disease. Nat Commun. 2019;10(1):2110.
pubmed: 31068593
pmcid: 6506521
doi: 10.1038/s41467-019-10100-8
Eichner R, et al. Cross talk networks of mammalian target of rapamycin signaling with the ubiquitin proteasome system and their clinical implications in multiple myeloma. Int Rev Cell Mol Biol. 2019;343:219–97.
pubmed: 30712673
doi: 10.1016/bs.ircmb.2018.06.001
Shi Y, et al. Signal pathways involved in activation of p70S6K and phosphorylation of 4E-BP1 following exposure of multiple myeloma tumor cells to interleukin-6. J Biol Chem. 2002;277(18):15712–20.
pubmed: 11872747
doi: 10.1074/jbc.M200043200
Pene F, et al. Role of the phosphatidylinositol 3-kinase/Akt and mTOR/P70S6-kinase pathways in the proliferation and apoptosis in multiple myeloma. Oncogene. 2002;21(43):6587–97.
pubmed: 12242656
doi: 10.1038/sj.onc.1205923
Baumann P, et al. Myeloma cell growth inhibition is augmented by synchronous inhibition of the insulin-like growth factor-1 receptor by NVP-AEW541 and inhibition of mammalian target of rapamycin by Rad001. Anticancer Drugs. 2009;20(4):259–66.
pubmed: 19240643
doi: 10.1097/CAD.0b013e328328d18b
Du W, et al. Rapamycin inhibits IGF-1-mediated up-regulation of MDM2 and sensitizes cancer cells to chemotherapy. PLoS ONE. 2013;8(4):e63179.
pubmed: 23638184
pmcid: 3640086
doi: 10.1371/journal.pone.0063179
Baumann P, et al. Activation of adenosine monophosphate activated protein kinase inhibits growth of multiple myeloma cells. Exp Cell Res. 2007;313(16):3592–603.
pubmed: 17669398
doi: 10.1016/j.yexcr.2007.06.020
Jang KY, et al. Activation of reactive oxygen species/AMP activated protein kinase signaling mediates fisetin-induced apoptosis in multiple myeloma U266 cells. Cancer Lett. 2012;319(2):197–202.
pubmed: 22261340
doi: 10.1016/j.canlet.2012.01.008
Wang Y, et al. Metformin induces autophagy and G0/G1 phase cell cycle arrest in myeloma by targeting the AMPK/mTORC1 and mTORC2 pathways. J Exp Clin Cancer Res. 2018;37(1):63.
pubmed: 29554968
pmcid: 5859411
doi: 10.1186/s13046-018-0731-5
Attar-Schneider O, et al. Bevacizumab attenuates major signaling cascades and eIF4E translation initiation factor in multiple myeloma cells. Lab Invest. 2012;92(2):178–90.
pubmed: 22083671
doi: 10.1038/labinvest.2011.162
Mashimo K, et al. RANKL-induced c-Src activation contributes to conventional anti-cancer drug resistance and dasatinib overcomes this resistance in RANK-expressing multiple myeloma cells. Clin Exp Med. 2019;19(1):133–41.
pubmed: 30291461
doi: 10.1007/s10238-018-0531-4
Garcia-Sanchez D, et al. Communication between bone marrow mesenchymal stem cells and multiple myeloma cells: impact on disease progression. World J Stem Cells. 2023;15(5):421–37.
pubmed: 37342223
pmcid: 10277973
doi: 10.4252/wjsc.v15.i5.421
Lu J, et al. Pim2 is required for maintaining multiple myeloma cell growth through modulating TSC2 phosphorylation. Blood. 2013;122(9):1610–20.
pubmed: 23818547
pmcid: 3953014
doi: 10.1182/blood-2013-01-481457
Asano J, et al. The serine/threonine kinase Pim-2 is a novel anti-apoptotic mediator in myeloma cells. Leukemia. 2011;25(7):1182–8.
pubmed: 21475253
doi: 10.1038/leu.2011.60
Van der Vreken A, et al. Metformin confers sensitisation to syrosingopine in multiple myeloma cells by metabolic blockage and inhibition of protein synthesis. J Pathol. 2023;260(2):112–23.
pubmed: 36807305
doi: 10.1002/path.6066
Oudaert I, et al. Pyrroline-5-Carboxylate Reductase 1: a novel target for sensitizing multiple myeloma cells to bortezomib by inhibition of PRAS40-mediated protein synthesis. J Exp Clin Cancer Res. 2022;41(1):45.
pubmed: 35105345
pmcid: 8805317
doi: 10.1186/s13046-022-02250-3
Janker L, et al. Metabolic, anti-apoptotic and immune evasion strategies of primary human myeloma cells indicate adaptations to hypoxia. Mol Cell Proteomics. 2019;18(5):936–53.
pubmed: 30792264
pmcid: 6495257
doi: 10.1074/mcp.RA119.001390
Wang Y, et al. S-adenosylmethionine biosynthesis is a targetable metabolic vulnerability in multiple myeloma. Haematologica. 2024;109(1):256–71.
pubmed: 37470139
Maryanovich M, et al. Neural regulation of bone and bone marrow. Cold Spring Harb Perspect Med. 2018;8(9):a031344.
pubmed: 29500307
pmcid: 6119651
doi: 10.1101/cshperspect.a031344
Satilmis H, et al. Targeting the beta(2) -adrenergic receptor increases chemosensitivity in multiple myeloma by induction of apoptosis and modulating cancer cell metabolism. J Pathol. 2023;259(1):69–80.
pubmed: 36245401
doi: 10.1002/path.6020
Zhang HR, et al. Knockdown of DEPTOR inhibits cell proliferation and increases chemosensitivity to melphalan in human multiple myeloma RPMI-8226 cells via inhibiting PI3K/AKT activity. J Int Med Res. 2013;41(3):584–95.
pubmed: 23613505
doi: 10.1177/0300060513480920
Peterson TR, et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell. 2009;137(5):873–86.
Vega M, et al. Turnover of the mTOR inhibitor, DEPTOR, and downstream AKT phosphorylation in multiple myeloma cells, is dependent on ERK1-mediated phosphorylation. J Biol Chem. 2022;298(4):101750.
pubmed: 35216969
pmcid: 8933699
doi: 10.1016/j.jbc.2022.101750
Catena V, et al. Deptor transcriptionally regulates endoplasmic reticulum homeostasis in multiple myeloma cells. Oncotarget. 2016;7(43):70546–58.
pubmed: 27655709
pmcid: 5342573
doi: 10.18632/oncotarget.12060
Vega MI, et al. A novel therapeutic induces DEPTOR degradation in multiple myeloma cells with resulting tumor cytotoxicity. Mol Cancer Ther. 2019;18(10):1822–31.
pubmed: 31395691
pmcid: 6774835
doi: 10.1158/1535-7163.MCT-19-0115
Hu L, et al. Downstream effectors of oncogenic ras in multiple myeloma cells. Blood. 2003;101(8):3126–35.
pubmed: 12515720
doi: 10.1182/blood-2002-08-2640
Yang Y, et al. Oncogenic RAS commandeers amino acid sensing machinery to aberrantly activate mTORC1 in multiple myeloma. Nat Commun. 2022;13(1):5469.
pubmed: 36115844
pmcid: 9482638
doi: 10.1038/s41467-022-33142-x
Shi Y, et al. Enhanced sensitivity of multiple myeloma cells containing PTEN mutations to CCI-779. Cancer Res. 2002;62(17):5027–34.
pubmed: 12208757
De Smedt E, et al. The epigenome in multiple myeloma: impact on tumor cell plasticity and drug response. Front Oncol. 2018;8:566.
pubmed: 30619733
pmcid: 6297718
doi: 10.3389/fonc.2018.00566
De Smedt E, et al. G9a/GLP targeting in MM promotes autophagy-associated apoptosis and boosts proteasome inhibitor-mediated cell death. Blood Adv. 2021;5(9):2325–38.
pubmed: 33938943
pmcid: 8114552
doi: 10.1182/bloodadvances.2020003217
van der Weyden L, Adams DJ. The Ras-association domain family (RASSF) members and their role in human tumourigenesis. Biochim Biophys Acta. 2007;1776(1):58–85.
pubmed: 17692468
pmcid: 2586335
De Smedt E, et al. Loss of RASSF4 expression in multiple myeloma promotes RAS-driven malignant progression. Cancer Res. 2018;78(5):1155–68.
pubmed: 29259009
doi: 10.1158/0008-5472.CAN-17-1544
Hussain S, et al. A cysteine near the C-terminus of UCH-L1 is dispensable for catalytic activity but is required to promote AKT phosphorylation, eIF4F assembly, and malignant B-cell survival. Cell Death Discov. 2019;5:152.
pubmed: 31839994
pmcid: 6904616
doi: 10.1038/s41420-019-0231-1
Fernandez-Saiz V, et al. SCFFbxo9 and CK2 direct the cellular response to growth factor withdrawal via Tel2/Tti1 degradation and promote survival in multiple myeloma. Nat Cell Biol. 2013;15(1):72–81.
pubmed: 23263282
doi: 10.1038/ncb2651
Li S, et al. Elevated translation initiation factor eIF4E is an attractive therapeutic target in multiple myeloma. Mol Cancer Ther. 2016;15(4):711–9.
pubmed: 26939700
doi: 10.1158/1535-7163.MCT-15-0798
Zismanov V, et al. Multiple myeloma proteostasis can be targeted via translation initiation factor eIF4E. Int J Oncol. 2015;46(2):860–70.
pubmed: 25422161
doi: 10.3892/ijo.2014.2774
Robert F, et al. Translation initiation factor eIF4F modifies the dexamethasone response in multiple myeloma. Proc Natl Acad Sci U S A. 2014;111(37):13421–6.
pubmed: 25197055
pmcid: 4169926
doi: 10.1073/pnas.1402650111
Pourdehnad M, et al. Myc and mTOR converge on a common node in protein synthesis control that confers synthetic lethality in Myc-driven cancers. Proc Natl Acad Sci U S A. 2013;110(29):11988–93.
pubmed: 23803853
pmcid: 3718086
doi: 10.1073/pnas.1310230110
Chng WJ, et al. Clinical and biological implications of MYC activation: a common difference between MGUS and newly diagnosed multiple myeloma. Leukemia. 2011;25(6):1026–35.
pubmed: 21468039
pmcid: 3432644
doi: 10.1038/leu.2011.53
Shi Y, et al. MNK kinases facilitate c-myc IRES activity in rapamycin-treated multiple myeloma cells. Oncogene. 2013;32(2):190–7.
pubmed: 22370634
doi: 10.1038/onc.2012.43
Davuluri G, et al. Impaired ribosomal biogenesis by noncanonical degradation of beta-catenin during hyperammonemia. Mol Cell Biol. 2019;39(16):e00451-18.
pubmed: 31138664
pmcid: 6664607
doi: 10.1128/MCB.00451-18
Grandori C, et al. c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nat Cell Biol. 2005;7(3):311–8.
pubmed: 15723054
doi: 10.1038/ncb1224
Ni C, Buszczak M. The homeostatic regulation of ribosome biogenesis. Semin Cell Dev Biol. 2023;136:13–26.
pubmed: 35440410
doi: 10.1016/j.semcdb.2022.03.043
Schlosser I, et al. A role for c-Myc in the regulation of ribosomal RNA processing. Nucleic Acids Res. 2003;31(21):6148–56.
pubmed: 14576301
pmcid: 275450
doi: 10.1093/nar/gkg794
Brown IN, et al. Regulation of nucleolar activity by MYC. Cells. 2022;11(3):574.
pubmed: 35159381
pmcid: 8834138
doi: 10.3390/cells11030574
Todd DJ, et al. The endoplasmic reticulum stress response in immunity and autoimmunity. Nat Rev Immunol. 2008;8(9):663–74.
pubmed: 18670423
doi: 10.1038/nri2359
Yun Z, et al. Targeting autophagy in multiple myeloma. Leuk Res. 2017;59:97–104.
pubmed: 28599191
doi: 10.1016/j.leukres.2017.06.002
Fu YF, et al. Endoplasmic reticulum stress induces autophagy and apoptosis while inhibiting proliferation and drug resistance in multiple myeloma through the PI3K/Akt/mTOR signaling pathway. Oncotarget. 2017;8(37):61093–106.
pubmed: 28977849
pmcid: 5617409
doi: 10.18632/oncotarget.17862
Zeng C, et al. Knockdown of NUPR1 inhibits the growth of U266 and RPMI8226 multiple myeloma cell lines via activating PTEN and caspase activation-dependent apoptosis. Oncol Rep. 2018;40(3):1487–94.
pubmed: 30015974
Li A, et al. NUPR1 silencing induces autophagy-mediated apoptosis in multiple myeloma cells through the PI3K/AKT/mTOR Pathway. DNA Cell Biol. 2020;39(3):368–78.
pubmed: 31971825
doi: 10.1089/dna.2019.5196
Frost P, et al. In vivo antitumor effects of the mTOR inhibitor CCI-779 against human multiple myeloma cells in a xenograft model. Blood. 2004;104(13):4181–7.
pubmed: 15304393
doi: 10.1182/blood-2004-03-1153
Shi Y, et al. Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor substrate-1/phosphatidylinositol 3-kinase cascade. Mol Cancer Ther. 2005;4(10):1533–40.
pubmed: 16227402
doi: 10.1158/1535-7163.MCT-05-0068
Cirstea D, et al. Dual inhibition of akt/mammalian target of rapamycin pathway by nanoparticle albumin-bound-rapamycin and perifosine induces antitumor activity in multiple myeloma. Mol Cancer Ther. 2010;9(4):963–75.
pubmed: 20371718
pmcid: 3096071
doi: 10.1158/1535-7163.MCT-09-0763
Jin HG, et al. Combining the mammalian target of rapamycin inhibitor, rapamycin, with resveratrol has a synergistic effect in multiple myeloma. Oncol Lett. 2018;15(5):6257–64.
pubmed: 29731844
pmcid: 5920858
Lu B, et al. Everolimus enhances the cytotoxicity of bendamustine in multiple myeloma cells through a network of pro-apoptotic and cell-cycle-progression regulatory proteins. Acta Biochim Biophys Sin (Shanghai). 2013;45(8):683–91.
pubmed: 23688587
doi: 10.1093/abbs/gmt054
Li J, et al. Everolimus shows synergistic antimyeloma effects with bortezomib via the AKT/mTOR pathway. J Investig Med. 2019;67(1):39–47.
pubmed: 29997148
doi: 10.1136/jim-2018-000780
Beider K, et al. The mTOR inhibitor everolimus overcomes CXCR4-mediated resistance to histone deacetylase inhibitor panobinostat through inhibition of p21 and mitotic regulators. Biochem Pharmacol. 2019;168:412–28.
pubmed: 31325448
doi: 10.1016/j.bcp.2019.07.016
Zhang S, et al. Mouse tumor susceptibility genes identify drug combinations for multiple myeloma. J Cancer Metastasis Treat. 2020;6:21.
pubmed: 32923678
pmcid: 7486007
Francis LK, et al. Combination mammalian target of rapamycin inhibitor rapamycin and HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin has synergistic activity in multiple myeloma. Clin Cancer Res. 2006;12(22):6826–35.
pubmed: 17121904
doi: 10.1158/1078-0432.CCR-06-1331
Nazim UM, et al. mTORC1-Inhibition Potentiating Metabolic Block by Tyrosine Kinase Inhibitor Ponatinib in Multiple Myeloma. Cancers (Basel). 2022;14(11):2766.
pubmed: 35681744
doi: 10.3390/cancers14112766
Maiso P, et al. Defining the role of TORC1/2 in multiple myeloma. Blood. 2011;118(26):6860–70.
pubmed: 22045983
pmcid: 3245208
doi: 10.1182/blood-2011-03-342394
Hoang B, et al. Targeting TORC2 in multiple myeloma with a new mTOR kinase inhibitor. Blood. 2010;116(22):4560–8.
pubmed: 20686120
pmcid: 2996116
doi: 10.1182/blood-2010-05-285726
Lamanuzzi A, et al. Inhibition of mTOR complex 2 restrains tumor angiogenesis in multiple myeloma. Oncotarget. 2018;9(29):20563–77.
pubmed: 29755672
pmcid: 5945497
doi: 10.18632/oncotarget.25003
Cirstea D, et al. Delineating the mTOR kinase pathway using a dual TORC1/2 inhibitor, AZD8055, in multiple myeloma. Mol Cancer Ther. 2014;13(11):2489–500.
pubmed: 25172964
doi: 10.1158/1535-7163.MCT-14-0147
Gao L, et al. Dual inhibition of mTORC1/2 by DCZ0358 induces cytotoxicity in multiple myeloma and overcomes the protective effect of the bone marrow microenvironment. Cancer Lett. 2018;421:135–44.
pubmed: 29428642
doi: 10.1016/j.canlet.2018.02.009
McMillin DW, et al. Antimyeloma activity of the orally bioavailable dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235. Cancer Res. 2009;69(14):5835–42.
pubmed: 19584292
doi: 10.1158/0008-5472.CAN-08-4285
Hoang B, et al. The PP242 mammalian target of rapamycin (mTOR) inhibitor activates extracellular signal-regulated kinase (ERK) in multiple myeloma cells via a target of rapamycin complex 1 (TORC1)/eukaryotic translation initiation factor 4E (eIF-4E)/RAF pathway and activation is a mechanism of resistance. J Biol Chem. 2012;287(26):21796–805.
pubmed: 22556409
pmcid: 3381142
doi: 10.1074/jbc.M111.304626
Bhardwaj A, et al. Resveratrol inhibits proliferation, induces apoptosis, and overcomes chemoresistance through down-regulation of STAT3 and nuclear factor-kappaB-regulated antiapoptotic and cell survival gene products in human multiple myeloma cells. Blood. 2007;109(6):2293–302.
pubmed: 17164350
doi: 10.1182/blood-2006-02-003988
Hong SH, et al. A combination regimen of low-dose bortezomib and rapamycin prolonged the graft survival in a murine allogeneic islet transplantation model. Immunol Lett. 2019;216:21–7.
pubmed: 31593743
doi: 10.1016/j.imlet.2019.10.005
Feldman ME, et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol. 2009;7(2):e38.
pubmed: 19209957
doi: 10.1371/journal.pbio.1000038
Hideshima T, et al. Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood. 2006;107(10):4053–62.
pubmed: 16418332
pmcid: 1895278
doi: 10.1182/blood-2005-08-3434
Ma Y, et al. NVP-BEZ235-induced autophagy as a potential therapeutic approach for multiple myeloma. Am J Transl Res. 2019;11(1):87–105.
pubmed: 30787971
pmcid: 6357299
Farag SS, et al. Phase II trial of temsirolimus in patients with relapsed or refractory multiple myeloma. Leuk Res. 2009;33(11):1475–80.
pubmed: 19261329
pmcid: 3771631
doi: 10.1016/j.leukres.2009.01.039
Hasskarl J. Everolimus. Recent Results Cancer Res. 2018;211:101–23.
pubmed: 30069763
doi: 10.1007/978-3-319-91442-8_8
Ghobrial IM, et al. TAK-228 (formerly MLN0128), an investigational oral dual TORC1/2 inhibitor: a phase I dose escalation study in patients with relapsed or refractory multiple myeloma, non-Hodgkin lymphoma, or Waldenstrom’s macroglobulinemia. Am J Hematol. 2016;91(4):400–5.
pubmed: 26800393
doi: 10.1002/ajh.24300
Bendell JC, et al. A phase I dose-escalation study to assess safety, tolerability, pharmacokinetics, and preliminary efficacy of the dual mTORC1/mTORC2 kinase inhibitor CC-223 in patients with advanced solid tumors or multiple myeloma. Cancer. 2015;121(19):3481–90.
pubmed: 26177599
doi: 10.1002/cncr.29422
Ghobrial IM, et al. Weekly bortezomib in combination with temsirolimus in relapsed or relapsed and refractory multiple myeloma: a multicentre, phase 1/2, open-label, dose-escalation study. Lancet Oncol. 2011;12(3):263–72.
pubmed: 21345726
doi: 10.1016/S1470-2045(11)70028-6
Yee AJ, et al. Outcomes in patients with relapsed or refractory multiple myeloma in a phase I study of everolimus in combination with lenalidomide. Br J Haematol. 2014;166(3):401–9.
pubmed: 24761838
doi: 10.1111/bjh.12909
Hoeg RT, et al. A phase I study of everolimus and bendamustine in patients with relapsed/refractory lymphoid hematologic malignancies. Clin Lymphoma Myeloma Leuk. 2020;20(7):453–8.
pubmed: 32171691
pmcid: 8530379
doi: 10.1016/j.clml.2020.02.006
Gunther A, et al. Activity of everolimus (RAD001) in relapsed and/or refractory multiple myeloma: a phase I study. Haematologica. 2015;100(4):541–7.
pubmed: 25682600
pmcid: 4380728
doi: 10.3324/haematol.2014.116269
Guo Y, et al. CC-223, NSC781406, and BGT226 exerts a cytotoxic effect against pancreatic cancer cells via mTOR signaling. Front Pharmacol. 2020;11:580407.
pubmed: 33343350
pmcid: 7741184
doi: 10.3389/fphar.2020.580407
Xie Z, et al. CC-223 blocks mTORC1/C2 activation and inhibits human hepatocellular carcinoma cells in vitro and in vivo. PLoS ONE. 2017;12(3):e0173252.
pubmed: 28334043
pmcid: 5363890
doi: 10.1371/journal.pone.0173252
Mortensen DS, et al. Discovery of mammalian target of rapamycin (mTOR) kinase inhibitor CC-223. J Med Chem. 2015;58(13):5323–33.
pubmed: 26083478
doi: 10.1021/acs.jmedchem.5b00626
Tian T, et al. mTOR signaling in cancer and mTOR inhibitors in solid tumor targeting therapy. Int J Mol Sci. 2019;20(3):755.
pubmed: 30754640
pmcid: 6387042
doi: 10.3390/ijms20030755
Wei XX, et al. A phase I Study of abiraterone acetate combined with BEZ235, a dual PI3K/mTOR inhibitor, in metastatic castration resistant prostate cancer. Oncologist. 2017;22(5):503-e43.
pubmed: 28314838
pmcid: 5423513
doi: 10.1634/theoncologist.2016-0432