Cardioprotection with Intralipid During Coronary Artery Bypass Grafting Surgery on Cardiopulmonary Bypass: A Randomized Clinical Trial.
Cardioprotection
Coronary artery bypass grafting
Intralipid
Ischemia–reperfusion injury
Journal
Cardiovascular drugs and therapy
ISSN: 1573-7241
Titre abrégé: Cardiovasc Drugs Ther
Pays: United States
ID NLM: 8712220
Informations de publication
Date de publication:
12 Jun 2024
12 Jun 2024
Historique:
accepted:
30
05
2024
medline:
12
6
2024
pubmed:
12
6
2024
entrez:
12
6
2024
Statut:
aheadofprint
Résumé
Coronary artery bypass grafting (CABG) on cardiopulmonary bypass (CPB) is associated with myocardial ischemia-reperfusion injury (IRI), which may limit the benefit of the surgery. Both experimental and clinical studies suggest that Intralipid, a lipid emulsion commonly used for parenteral nutrition, can limit myocardial IRI. We therefore aimed to investigate whether Intralipid administered at reperfusion can reduce myocardial IRI in patients undergoing CABG on CPB. We conducted a randomized, double-blind, pilot trial in which 29 adult patients scheduled for CABG were randomly assigned (on a 1:1 basis) to receive either 1.5 ml/kg Intralipid 20% or Ringer's Lactate 3 min before aortic cross unclamping. The primary endpoint was the 72-h area under the curve (AUC) for troponin I. Of the 29 patients randomized, 26 were included in the study (two withdrew consent and one was excluded before surgery). The 72-h AUC for troponin I did not significantly differ between the control and Intralipid group (546437 ± 205518 versus 487561 ± 115724 arbitrary units, respectively; P = 0.804). Other outcomes (including 72-h AUC for CK-MB, C-reactive protein, need for defibrillation, time to extubation, length of ICU and hospital stay, and serious adverse events) were similar between the two groups. In patients undergoing CABG on CPB, Intralipid did not limit myocardial IRI compared to placebo. ClinicalTrials.gov Identifier: NCT02807727 (registration date: 16 June 2016).
Identifiants
pubmed: 38864969
doi: 10.1007/s10557-024-07594-w
pii: 10.1007/s10557-024-07594-w
doi:
Banques de données
ClinicalTrials.gov
['NCT02807727']
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s).
Références
Khan MA, Hashim MJ, Mustafa H, et al. Global epidemiology of ischemic heart disease: results from the global burden of disease study. Cureus. 2020;12:e9349. https://doi.org/10.7759/cureus.9349 .
doi: 10.7759/cureus.9349
pubmed: 32742886
pmcid: 7384703
Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007;357:1121–35. https://doi.org/10.1056/NEJMra071667 .
doi: 10.1056/NEJMra071667
pubmed: 17855673
Calder PC, Waitzberg DL, Klek S, Martindale RG. Lipids in parenteral nutrition: biological aspects. JPEN J Parenter Enteral Nutr. 2020;44(Suppl1):21–7. https://doi.org/10.1002/jpen.1756 .
doi: 10.1002/jpen.1756
Rahman S, Li J, Bopassa JC, Umar S, Iorga A, Partownavid P, Eghbali M. Phosphorylation of GSK-3β mediates intralipid-induced cardioprotection against ischemia/reperfusion injury. Anesthesiology. 2011;115:242–53. https://doi.org/10.1097/ALN.0b013e318223b8b9 .
doi: 10.1097/ALN.0b013e318223b8b9
pubmed: 21691195
Li J, Iorga A, Sharma S, Youn JY, et al. Intralipid, a clinically safe compound, protects the heart against ischemia-reperfusion injury more efficiently than cyclosporine-A. Anesthesiology. 2012;117:836–46. https://doi.org/10.1097/ALN.0b013e3182655e73 .
doi: 10.1097/ALN.0b013e3182655e73
pubmed: 22814384
Lou PH, Lucchinetti E, Zhang L, et al. The mechanism of Intralipid®-mediated cardioprotection complex IV inhibition by the active metabolite, palmitoylcarnitine, generates reactive oxygen species and activates reperfusion injury salvage kinases. PLoS ONE. 2014;9:e87205. https://doi.org/10.1371/journal.pone.0087205 .
doi: 10.1371/journal.pone.0087205
pubmed: 24498043
pmcid: 3907505
Zaugg M, Lou PH, Lucchinetti E, Gandhi M, Clanachan AS. Postconditioning with Intralipid emulsion protects against reperfusion injury in post-infarct remodeled rat hearts by activation of ROS-Akt/Erk signaling. Transl Res J Lab Clin Med. 2017;186:36–51. https://doi.org/10.1016/j.trsl.2017.05.007 .
doi: 10.1016/j.trsl.2017.05.007
Zhou RH, Yu H, Yin XR, et al. Effect of intralipid postconditioning on myocardial injury in patients undergoing valve replacement surgery: a randomised controlled trial. Heart. 2017;103:1122–7. https://doi.org/10.1136/heartjnl-2016-310758 .
doi: 10.1136/heartjnl-2016-310758
pubmed: 28246176
Yu H, Li Q, Chen C, Li T, et al. Effect of intralipid on myocardial injury during valve replacement surgery with concomitant radiofrequency ablation: a randomized controlled trial. Medicine. 2018;97:e9603. https://doi.org/10.1097/MD.0000000000009603 .
doi: 10.1097/MD.0000000000009603
pubmed: 29505549
pmcid: 5943091
Pruthi G, Singh NG, Nagaraja PS, et al. Pharmacological preconditioning with intralipid in patients undergoing off-pump coronary artery bypass surgery. Ann Card Anaesth. 2020;23:327–31. https://doi.org/10.4103/aca.ACA_251_18 .
doi: 10.4103/aca.ACA_251_18
pubmed: 32687091
pmcid: 7559965
El Derh MS, Twab SMA, Elgouhary M. The cardioprotective effect of intralipid in decreasing the ischemic insults during off-pump coronary artery revascularization. Ain-Shams J Anesthesiol. 2021;13:61. https://doi.org/10.1186/s42077-021-00174-2 .
doi: 10.1186/s42077-021-00174-2
Lucchinetti E, Lou PH, Hatami S, et al. Enhanced myocardial protection in cardiac donation after circulatory death using Intralipid® postconditioning in a porcine model. Can J Anesth. 2019;66:672–85. https://doi.org/10.1007/s12630-019-01322-x .
doi: 10.1007/s12630-019-01322-x
pubmed: 30790198
Hadebe N, Cour M, Lecour S. The SAFE pathway for cardioprotection: is this a promising target? Basic Res Cardiol. 2018;113:9. https://doi.org/10.1007/s00395-018-0670-5 .
doi: 10.1007/s00395-018-0670-5
pubmed: 29335904
Li J, Ruffenach G, Kararigas G, et al. Intralipid protects the heart in late pregnancy against ischemia/reperfusion injury via Caveolin2/STAT3/GSK-3β pathway. J Mol Cell Cardiol. 2017;102:108–16. https://doi.org/10.1016/j.yjmcc.2016.11.006 .
doi: 10.1016/j.yjmcc.2016.11.006
pubmed: 27847332
Ferdinandy P, Andreadou I, Baxter GF, et al. Interaction of cardiovascular nonmodifiable risk factors, comorbidities and comedications with ischemia/reperfusion injury and cardioprotection by pharmacological treatments and ischemic conditioning. Pharmacol Rev. 2023;75:159–216. https://doi.org/10.1124/pharmrev.121.000348 .
doi: 10.1124/pharmrev.121.000348
pubmed: 36753049
pmcid: 9832381
Heusch G, Musiolik J, Kottenberg E, Peters J, Jakob H, Thielmann M. STAT5 activation and cardioprotection by remote ischemic preconditioning in humans. Circ Res. 2012;110:111–5. https://doi.org/10.1161/CIRCRESAHA.111.259556 .
doi: 10.1161/CIRCRESAHA.111.259556
pubmed: 22116817
Shaefi S, Mittel A, Loberman D, Ramakrishna H. Off-Pump versus on-pump coronary artery bypass grafting-a systematic review and analysis of clinical outcomes. J Cardiothorac Vasc Anesth. 2019;33:232–44. https://doi.org/10.1053/j.jvca.2018.04.012 .
doi: 10.1053/j.jvca.2018.04.012
pubmed: 29753665
Yuan Y, Xiong H, Zhang Y, Yu H, Zhou RH. Intralipid postconditioning in patients of cardiac surgery undergoing cardiopulmonary bypass (iCPB): study protocol for a randomized controlled trial. Trials. 2020;21:953. https://doi.org/10.1186/s13063-020-04854-6 .
doi: 10.1186/s13063-020-04854-6
pubmed: 33228739
pmcid: 7686691
Mensah GA, Fuster V. Race, Ethnicity, and cardiovascular disease: JACC Focus Seminar Series. J Am Coll Cardiol. 2021;78:2457–9. https://doi.org/10.1016/j.jacc.2021.11.001 .
doi: 10.1016/j.jacc.2021.11.001
pubmed: 34886967
Steyn K, Sliwa K, Hawken S, et al. Risk factors associated with myocardial infarction in Africa: the INTERHEART Africa study. Circulation. 2005;112:3554–61. https://doi.org/10.1161/CIRCULATIONAHA.105.563452 .
doi: 10.1161/CIRCULATIONAHA.105.563452
pubmed: 16330696
Zaugg M, Clanachan AS, Lou PH, Lucchinetti E. Metabolite palmitoylcarnitine mediates intralipid cardioprotection rather than membrane receptors. Anesthesiology. 2019;130:518–9. https://doi.org/10.1097/ALN.0000000000002565 .
doi: 10.1097/ALN.0000000000002565
pubmed: 30762647
Kleinbongard P, Bøtker HE, Ovize M, Hausenloy DJ, Heusch G. Co-morbidities and co-medications as confounders of cardioprotection-does it matter in the clinical setting? Br J Pharmacol. 2020;177:5252–69. https://doi.org/10.1111/bph.14839 .
doi: 10.1111/bph.14839
pubmed: 31430831
pmcid: 7680006
Kottenberg E, Musiolik J, Thielmann M, Jakob H, Peters J, Heusch G. Interference of propofol with signal transducer and activator of transcription 5 activation and cardioprotection by remote ischemic preconditioning during coronary artery bypass grafting. J Thorac Cardiovasc Surg. 2014;147:376–82. https://doi.org/10.1016/j.jtcvs.2013.01.005 .
doi: 10.1016/j.jtcvs.2013.01.005
pubmed: 23465551
Hausenloy DJ, Barrabes JA, Bøtker HE, et al. Ischaemic conditioning and targeting reperfusion injury: a 30 year voyage of discovery. Basic Res Cardiol. 2016;111:70. https://doi.org/10.1007/s00395-016-0588-8 .
doi: 10.1007/s00395-016-0588-8
pubmed: 27766474
pmcid: 5073120
Wang M, Wang Y, Abarbanell A, et al. Both endogenous and exogenous testosterone decrease myocardial STAT3 activation and SOCS3 expression after acute ischemia and reperfusion. Surgery. 2009;146:138–44. https://doi.org/10.1016/j.surg.2009.03.035 .
doi: 10.1016/j.surg.2009.03.035
pubmed: 19628067
Teng CB, Diao HL, Ma H, et al. Signal transducer and activator of transcription 3 (Stat3) expression and activation in rat uterus during early pregnancy. Reproduction. 2004;128:197–205. https://doi.org/10.1530/rep.1.00053 .
doi: 10.1530/rep.1.00053
pubmed: 15280559