GABAergic disinhibition from the BNST to PNOC

CP: Metabolism CP: Neuroscience

Journal

Cell reports
ISSN: 2211-1247
Titre abrégé: Cell Rep
Pays: United States
ID NLM: 101573691

Informations de publication

Date de publication:
11 Jun 2024
Historique:
received: 10 10 2023
revised: 01 03 2024
accepted: 23 05 2024
medline: 12 6 2024
pubmed: 12 6 2024
entrez: 12 6 2024
Statut: aheadofprint

Résumé

Activation of prepronociceptin (PNOC)-expressing neurons in the arcuate nucleus (ARC) promotes high-fat-diet (HFD)-induced hyperphagia. In turn, PNOC

Identifiants

pubmed: 38865247
pii: S2211-1247(24)00671-5
doi: 10.1016/j.celrep.2024.114343
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

114343

Informations de copyright

Copyright © 2024. Published by Elsevier Inc.

Déclaration de conflit d'intérêts

Declaration of interests J.C.B. is a cofounder of Cerapeutix and has received research funding through collaborations with Sanofi Aventis and Novo Nordisk, Inc. He also consulted for Eli Lilly and Company and Novo Nordisk, all of which did not affect the content of this article.

Auteurs

Tamara Sotelo-Hitschfeld (T)

Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany.

Marielle Minère (M)

Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Synaptic Transmission in Energy Homeostasis Research Group, Max Planck Institute for Metabolism Research, Cologne, Germany.

Paul Klemm (P)

Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany.

Diba Borgmann (D)

Synaptic Transmission in Energy Homeostasis Research Group, Max Planck Institute for Metabolism Research, Cologne, Germany; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Daria Wnuk-Lipinski (D)

Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany.

Alexander Jais (A)

Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany.

Xianglian Jia (X)

Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany.

Svenja Corneliussen (S)

Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; Institute of Zoology, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany.

Peter Kloppenburg (P)

Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; Institute of Zoology, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany.

Henning Fenselau (H)

Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; Synaptic Transmission in Energy Homeostasis Research Group, Max Planck Institute for Metabolism Research, Cologne, Germany. Electronic address: henning.fenselau@sf.mpg.de.

Jens Claus Brüning (JC)

Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany; National Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany. Electronic address: bruening@sf.mpg.de.

Classifications MeSH