Mapping macrostructural and microstructural brain alterations in patients with neuronal intranuclear inclusion disease.
Cognitive decline
Multi-shell diffiusion MR
Neurite orientation dispersion and density imaging
Neuronal intranuclear inclusion disease
Journal
Neuroradiology
ISSN: 1432-1920
Titre abrégé: Neuroradiology
Pays: Germany
ID NLM: 1302751
Informations de publication
Date de publication:
13 Jun 2024
13 Jun 2024
Historique:
received:
14
03
2024
accepted:
09
06
2024
medline:
13
6
2024
pubmed:
13
6
2024
entrez:
12
6
2024
Statut:
aheadofprint
Résumé
Neuronal intranuclear inclusion disease (NIID) is a rare complex neurodegenerative disorder presents with various radiological features. The study aimed to investigate the structural abnormalities in NIID using multi-shell diffusion MR. Twenty-eight patients with adult-onset NIID and 32 healthy controls were included. Volumetric and diffusion MRI measures, including volume, fractional anisotropy (FA), mean diffusivity (MD), intracellular volume fraction (ICVF), orientation dispersion index (ODI), and isotropic volume fraction (ISOVF) of six brain structures, including cortex, subcortical GM, cerebral WM, cerebellar GM and WM, and brainstem, were obtained and compared between NIID and healthy controls. Associations between MRI measures and clinical variables were investigated. Brain lesions of NIID included corticomedullary junction lesions on DWI, confluent leukoencephalopathy, lesions on callosum, cerebellar middle peduncle, cerebellar paravermal area and brainstem, and brain atrophy. Compared to healthy controls, NIID showed extensive volume loss of all the six brain regions (all p < 0.001); lower FA in cerebral WM (p < 0.001); higher MD in all WM regions; lower ODI in cortex (p < 0.001); higher ODI in subcortical GM (p < 0.001) and brainstem (p = 0.016); lower ICVF in brainstem (p = 0.001), and cerebral WM (p < 0.001); higher ISOVF in all the brain regions (p < 0.001). Higher MD of cerebellar WM was associated with worse cognitive level as evaluated by MoCA scores (p = 0.011). NIID patients demonstrated widespread brain atrophy but heterogeneous diffusion alterations. Cerebellar WM integrity impairment was correlated with the cognitive decline. The findings of the current study offer a sophisticated picture of brain structural alterations in NIID.
Sections du résumé
BACKGROUND AND PURPOSE
OBJECTIVE
Neuronal intranuclear inclusion disease (NIID) is a rare complex neurodegenerative disorder presents with various radiological features. The study aimed to investigate the structural abnormalities in NIID using multi-shell diffusion MR.
MATERIALS AND METHODS
METHODS
Twenty-eight patients with adult-onset NIID and 32 healthy controls were included. Volumetric and diffusion MRI measures, including volume, fractional anisotropy (FA), mean diffusivity (MD), intracellular volume fraction (ICVF), orientation dispersion index (ODI), and isotropic volume fraction (ISOVF) of six brain structures, including cortex, subcortical GM, cerebral WM, cerebellar GM and WM, and brainstem, were obtained and compared between NIID and healthy controls. Associations between MRI measures and clinical variables were investigated.
RESULTS
RESULTS
Brain lesions of NIID included corticomedullary junction lesions on DWI, confluent leukoencephalopathy, lesions on callosum, cerebellar middle peduncle, cerebellar paravermal area and brainstem, and brain atrophy. Compared to healthy controls, NIID showed extensive volume loss of all the six brain regions (all p < 0.001); lower FA in cerebral WM (p < 0.001); higher MD in all WM regions; lower ODI in cortex (p < 0.001); higher ODI in subcortical GM (p < 0.001) and brainstem (p = 0.016); lower ICVF in brainstem (p = 0.001), and cerebral WM (p < 0.001); higher ISOVF in all the brain regions (p < 0.001). Higher MD of cerebellar WM was associated with worse cognitive level as evaluated by MoCA scores (p = 0.011).
CONCLUSIONS
CONCLUSIONS
NIID patients demonstrated widespread brain atrophy but heterogeneous diffusion alterations. Cerebellar WM integrity impairment was correlated with the cognitive decline. The findings of the current study offer a sophisticated picture of brain structural alterations in NIID.
Identifiants
pubmed: 38866958
doi: 10.1007/s00234-024-03406-y
pii: 10.1007/s00234-024-03406-y
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : the National Science Foundation of China
ID : 82330057
Organisme : Capital Medical Science Innovation Center Scientific Research Pioneering Projec
ID : CX23YZ01
Organisme : Beijing Municipal Hospital Administration Dengfeng
ID : DFL2022050
Organisme : the Cross-Research Project of Beijing Science and Technology Star Program
ID : 20230484428
Organisme : Beijing E-Town Cooperation & Development Foundation
ID : YJXJ-JZ-2021-0014
Organisme : Scientific Research Cultivation Fund of Capital Medical University
ID : PYZ23120
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Martin JB, Banker BQ (1969) Subacute multifocal leukoencephalopathy with widespread intranuclear inclusions. Arch Neurol 21(6):590–602
doi: 10.1001/archneur.1969.00480180046003
pubmed: 4901419
Munoz-Garcia D, Ludwin SK (1986) Adult-onset neuronal intranuclear hyaline inclusion disease. Neurology 36(6):785–790
doi: 10.1212/WNL.36.6.785
pubmed: 3010181
Sone J, Mori K, Inagaki T et al (2016) Clinicopathological features of adult-onset neuronal intranuclear inclusion disease. Brain 139(Pt 12):3170–3186
doi: 10.1093/brain/aww249
pubmed: 27797808
pmcid: 5382941
Funata N, Maeda Y, Koike M et al (1990) Neuronal intranuclear hyaline inclusion disease: report of a case and review of the literature. Clin Neuropathol 9(2):89–96
Takahashi-Fujigasaki J (2003) Neuronal intranuclear hyaline inclusion disease. Neuropathology 23(4):351–359
doi: 10.1046/j.1440-1789.2003.00524.x
pubmed: 14719553
Sone J, Tanaka F, Koike H et al (2011) Skin biopsy is useful for the antemortem diagnosis of neuronal intranuclear inclusion disease. Neurology 76(16):1372–1376
doi: 10.1212/WNL.0b013e3182166e13
pubmed: 21411744
Sone J, Kitagawa N, Sugawara E et al (2014) Neuronal intranuclear inclusion disease cases with leukoencephalopathy diagnosed via skin biopsy. J Neurol Neurosurg Psychiatry 85(3):354–356
doi: 10.1136/jnnp-2013-306084
pubmed: 24039026
Westenberger A, Klein C (2020) Essential phenotypes of NOTCH2NLC-related repeat expansion disorder. Brain 143(1):5–8
doi: 10.1093/brain/awz404
pubmed: 31886491
Sugiyama A, Sato N, Kimura Y et al (2017) MR Imaging features of the Cerebellum in adult-onset neuronal intranuclear inclusion disease: 8 cases. AJNR Am J Neuroradiol 38(11):2100–2104
doi: 10.3174/ajnr.A5336
pubmed: 28818825
pmcid: 7963582
Cupidi C, Dijkstra AA, Melhem S et al (2019) Refining the spectrum of neuronal intranuclear inclusion disease: a Case Report. J Neuropathol Exp Neurol 78(7):665–670
doi: 10.1093/jnen/nlz043
pubmed: 31150092
Xiao F, Tian X, Wang XF (2018) Cerebral atrophy and Leukoencephalopathy in a Young Man presenting with encephalitic episodes. JAMA Neurol 75(12):1563–1564
doi: 10.1001/jamaneurol.2018.2333
pubmed: 30167633
Nucifora PG, Verma R, Lee SK, Melhem ER (2007) Diffusion-tensor MR imaging and tractography: exploring brain microstructure and connectivity. Radiology 245(2):367–384
doi: 10.1148/radiol.2452060445
pubmed: 17940300
Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G (1996) Diffusion tensor MR imaging of the human brain. Radiology 201(3):637–648
doi: 10.1148/radiology.201.3.8939209
pubmed: 8939209
Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC (2012) NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage 61(4):1000–1016
doi: 10.1016/j.neuroimage.2012.03.072
pubmed: 22484410
Fukutomi H, Glasser MF, Zhang H et al (2018) Neurite imaging reveals microstructural variations in human cerebral cortical gray matter. NeuroImage 182:488–499
doi: 10.1016/j.neuroimage.2018.02.017
pubmed: 29448073
Giachetti I, Padelli F, Aquino D et al (2022) Role of NODDI in the MRI characterization of hippocampal abnormalities in temporal lobe Epilepsy: Clinico-histopathologic correlations. Neurology 98(17):e1771–e82
doi: 10.1212/WNL.0000000000200140
pubmed: 35256485
pmcid: 9071371
Andica C, Kamagata K, Hatano T et al (2020) MR biomarkers of degenerative brain disorders Derived from Diffusion Imaging. J Magn Reson Imaging 52(6):1620–1636
doi: 10.1002/jmri.27019
pubmed: 31837086
Konieczny MJ, Dewenter A, Ter Telgte A et al (2021) Multi-shell Diffusion MRI models for White Matter characterization in Cerebral Small Vessel Disease. Neurology 96(5):e698–e708
doi: 10.1212/WNL.0000000000011213
pubmed: 33199431
Tian Y, Wang JL, Huang W et al (2019) Expansion of human-specific GGC repeat in neuronal intranuclear inclusion Disease-Related disorders. Am J Hum Genet 105(1):166–176
doi: 10.1016/j.ajhg.2019.05.013
pubmed: 31178126
pmcid: 6612530
Schmidt P, Gaser C, Arsic M et al (2012) An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis. NeuroImage 59(4):3774–3783
doi: 10.1016/j.neuroimage.2011.11.032
pubmed: 22119648
Nazeri A, Chakravarty MM, Rotenberg DJ et al (2015) Functional consequences of neurite orientation dispersion and density in humans across the adult lifespan. J Neurosci 35(4):1753–1762
doi: 10.1523/JNEUROSCI.3979-14.2015
pubmed: 25632148
pmcid: 4308611
Eaton-Rosen Z, Melbourne A, Orasanu E et al (2015) Longitudinal measurement of the developing grey matter in preterm subjects using multi-modal MRI. NeuroImage 111:580–589
doi: 10.1016/j.neuroimage.2015.02.010
pubmed: 25681570
Fukutomi H, Glasser MF, Murata K et al (2019) Diffusion Tensor Model links to Neurite Orientation Dispersion and Density Imaging at high b-value in cerebral cortical Gray Matter. Sci Rep 9(1):12246
doi: 10.1038/s41598-019-48671-7
pubmed: 31439874
pmcid: 6706419
Liu YH, Chou YT, Chang FP et al (2022) Neuronal intranuclear inclusion disease in patients with adult-onset non-vascular leukoencephalopathy. Brain. Apr 12
Tachi K, Takata T, Kume K et al (2021) Long-term MRI findings of adult-onset neuronal intranuclear inclusion disease. Clin Neurol Neurosurg 201:106456
doi: 10.1016/j.clineuro.2020.106456
pubmed: 33388663
Chen L, Wu L, Li S et al (2018) A long time radiological follow-up of neuronal intranuclear inclusion disease: two case reports. Med (Baltim) 97(49):e13544
doi: 10.1097/MD.0000000000013544
Kawarabayashi T, Nakamura T, Seino Y et al (2018) Disappearance of MRI imaging signals in a patient with neuronal intranuclear inclusion disease. J Neurol Sci 388:1–3
doi: 10.1016/j.jns.2018.02.038
pubmed: 29626999
Tokimura R, Hashimoto M, Mitsutake A et al (2022) Isolated paravermal hyperintensities in neuronal intranuclear inclusion disease. Neurology.
Tian Y, Zhou L, Gao J et al (2022) Clinical features of NOTCH2NLC-related neuronal intranuclear inclusion disease. J Neurol Neurosurg Psychiatry 93(12):1289–1298
doi: 10.1136/jnnp-2022-329772
pubmed: 36150844
Zannolli R, Gilman S, Rossi S et al (2002) Hereditary neuronal intranuclear inclusion disease with autonomic failure and cerebellar degeneration. Arch Neurol 59(8):1319–1326
doi: 10.1001/archneur.59.8.1319
pubmed: 12164731
Yokoi S, Yasui K, Hasegawa Y et al. (2016) Pathological background of subcortical hyperintensities on diffusion-weighted images in a case of neuronal intranuclear inclusion disease. Clin Neuropathol 35(6):375–380
Kamiya K, Hori M, Aoki S (2020) NODDI in clinical research. J Neurosci Methods 346:108908
doi: 10.1016/j.jneumeth.2020.108908
pubmed: 32814118
Chklovskii DB, Schikorski T, Stevens CF (2002) Wiring optimization in cortical circuits. Neuron 34(3):341–347
doi: 10.1016/S0896-6273(02)00679-7
pubmed: 11988166
Genc E, Fraenz C, Schluter C et al (2018) Diffusion markers of dendritic density and arborization in gray matter predict differences in intelligence. Nat Commun 9(1):1905
doi: 10.1038/s41467-018-04268-8
pubmed: 29765024
pmcid: 5954098
Garde E, Lykke Mortensen E, Rostrup E, Paulson OB (2005) Decline in intelligence is associated with progression in white matter hyperintensity volume. J Neurol Neurosurg Psychiatry 76(9):1289–1291
doi: 10.1136/jnnp.2004.055905
pubmed: 16107370
pmcid: 1739790
Debette S, Markus HS (2010) The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ 341:c3666
doi: 10.1136/bmj.c3666
pubmed: 20660506
pmcid: 2910261
Elliott ML (2020) MRI-based biomarkers of accelerated aging and dementia risk in midlife: how close are we? Ageing Res Rev 61:101075
doi: 10.1016/j.arr.2020.101075
pubmed: 32325150
Pettemeridou E, Kallousia E, Constantinidou F (2021) Regional Brain volume, Brain Reserve and MMSE Performance in Healthy Aging from the NEUROAGE Cohort: contributions of sex, Education, and Depression symptoms. Front Aging Neurosci 13:711301
doi: 10.3389/fnagi.2021.711301
pubmed: 34867265
pmcid: 8633314
Koziol LF, Budding D, Andreasen N et al (2014) Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum 13(1):151–177
doi: 10.1007/s12311-013-0511-x
pubmed: 23996631
pmcid: 4089997
Adamaszek M, D’Agata F, Ferrucci R et al (2017) Consensus Paper: Cerebellum Emot Cerebellum 16(2):552–576
Jacobi H, Faber J, Timmann D, Klockgether T (2021) Update cerebellum and cognition. J Neurol 268(10):3921–3925
doi: 10.1007/s00415-021-10486-w
pubmed: 33656586
pmcid: 8463403