An unbiased ranking of murine dietary models based on their proximity to human metabolic dysfunction-associated steatotic liver disease (MASLD).


Journal

Nature metabolism
ISSN: 2522-5812
Titre abrégé: Nat Metab
Pays: Germany
ID NLM: 101736592

Informations de publication

Date de publication:
12 Jun 2024
Historique:
received: 06 04 2023
accepted: 08 04 2024
medline: 13 6 2024
pubmed: 13 6 2024
entrez: 12 6 2024
Statut: aheadofprint

Résumé

Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease, encompasses steatosis and metabolic dysfunction-associated steatohepatitis (MASH), leading to cirrhosis and hepatocellular carcinoma. Preclinical MASLD research is mainly performed in rodents; however, the model that best recapitulates human disease is yet to be defined. We conducted a wide-ranging retrospective review (metabolic phenotype, liver histopathology, transcriptome benchmarked against humans) of murine models (mostly male) and ranked them using an unbiased MASLD 'human proximity score' to define their metabolic relevance and ability to induce MASH-fibrosis. Here, we show that Western diets align closely with human MASH; high cholesterol content, extended study duration and/or genetic manipulation of disease-promoting pathways are required to intensify liver damage and accelerate significant (F2+) fibrosis development. Choline-deficient models rapidly induce MASH-fibrosis while showing relatively poor translatability. Our ranking of commonly used MASLD models, based on their proximity to human MASLD, helps with the selection of appropriate in vivo models to accelerate preclinical research.

Identifiants

pubmed: 38867022
doi: 10.1038/s42255-024-01043-6
pii: 10.1038/s42255-024-01043-6
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Innovative Medicines Initiative (IMI)
ID : 777377
Organisme : Innovative Medicines Initiative (IMI)
ID : 777377
Organisme : Innovative Medicines Initiative (IMI)
ID : 777377
Organisme : Innovative Medicines Initiative (IMI)
ID : 777377
Organisme : Innovative Medicines Initiative (IMI)
ID : 777377
Organisme : Innovative Medicines Initiative (IMI)
ID : 777377
Organisme : Innovative Medicines Initiative (IMI)
ID : 777377
Organisme : Innovative Medicines Initiative (IMI)
ID : 777377
Organisme : Innovative Medicines Initiative (IMI)
ID : 777377
Organisme : Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
ID : IG27521
Organisme : Universita degli Studi di Bari Aldo Moro (University of Bari Aldo Moro)
ID : S06-miRNASH
Organisme : Ministero dellapos;Istruzione, dellapos;Universit e della Ricerca (Ministry of Education, University and Research)
ID : P202222FCC
Organisme : Ministero dellapos;Istruzione, dellapos;Universit e della Ricerca (Ministry of Education, University and Research)
ID : PE00000003
Organisme : Ministero dellapos;Istruzione, dellapos;Universit e della Ricerca (Ministry of Education, University and Research)
ID : CN00000041
Organisme : Ministero dellapos;Istruzione, dellapos;Universit e della Ricerca (Ministry of Education, University and Research)
ID : CN00000013
Organisme : Foundation for Liver Research
ID : Intramural
Organisme : RCUK | Medical Research Council (MRC)
ID : 1948243
Organisme : RCUK | Medical Research Council (MRC)
ID : MR/R023026/1
Organisme : RCUK | Medical Research Council (MRC)
ID : MR/K0019494/1
Organisme : Fundacin Espaola para la Ciencia y la Tecnologa (Spanish Foundation for Science and Technology)
ID : PTDC/MED-FAR/3492/2021
Organisme : la Caixa Foundation (Caixa Foundation)
ID : LCF/PR/HR21/52410028
Organisme : U.S. Department of Health Human Services | NIH | NIH Clinical Center (Clinical Center)
ID : NIH R01 DK128289
Organisme : U.S. Department of Health Human Services | NIH | NIH Clinical Center (Clinical Center)
ID : NCI 5P30CA196521-08
Organisme : U.S. Department of Health Human Services | NIH | NIH Clinical Center (Clinical Center)
ID : NIH R01 DK136016

Investigateurs

Quentin M Anstee (QM)
Ann K Daly (AK)
Simon Cockell (S)
Dina Tiniakos (D)
Pierre Bedossa (P)
Alastair Burt (A)
Fiona Oakley (F)
Heather J Cordell (HJ)
Christopher P Day (CP)
Kristy Wonders (K)
Paolo Missier (P)
Matthew McTeer (M)
Luke Vale (L)
Yemi Oluboyede (Y)
Matt Breckons (M)
Jo Boyle (J)
Patrick M Bossuyt (PM)
Hadi Zafarmand (H)
Yasaman Vali (Y)
Jenny Lee (J)
Max Nieuwdorp (M)
Adriaan G Holleboom (AG)
Athanasios Angelakis (A)
Joanne Verheij (J)
Vlad Ratziu (V)
Karine Clément (K)
Rafael Patino-Navarrete (R)
Raluca Pais (R)
Valerie Paradis (V)
Detlef Schuppan (D)
Jörn M Schattenberg (JM)
Rambabu Surabattula (R)
Sudha Myneni (S)
Yong Ook Kim (YO)
Beate K Straub (BK)
Antonio Vidal-Puig (A)
Michele Vacca (M)
Sergio Rodrigues-Cuenca (S)
Mike Allison (M)
Ioannis Kamzolas (I)
Evangelia Petsalaki (E)
Mark Campbell (M)
Chris J Lelliott (CJ)
Susan Davies (S)
Matej Orešič (M)
Tuulia Hyötyläinen (T)
Aidan McGlinchey (A)
Jose M Mato (JM)
Óscar Millet (Ó)
Jean-François Dufour (JF)
Annalisa Berzigotti (A)
Mojgan Masoodi (M)
Naomi F Lange (NF)
Michael Pavlides (M)
Stephen Harrison (S)
Stefan Neubauer (S)
Jeremy Cobbold (J)
Ferenc Mozes (F)
Salma Akhtar (S)
Seliat Olodo-Atitebi (S)
Rajarshi Banerjee (R)
Elizabeth Shumbayawonda (E)
Andrea Dennis (A)
Anneli Andersson (A)
Ioan Wigley (I)
Manuel Romero-Gómez (M)
Emilio Gómez-González (E)
Javier Ampuero (J)
Javier Castell (J)
Rocío Gallego-Durán (R)
Isabel Fernández-Lizaranzu (I)
Rocío Montero-Vallejo (R)
Morten Karsdal (M)
Daniel Guldager Kring Rasmussen (DGK)
Diana Julie Leeming (DJ)
Antonia Sinisi (A)
Kishwar Musa (K)
Estelle Sandt (E)
Maria Manuela Tonini (MM)
Elisabetta Bugianesi (E)
Chiara Rosso (C)
Angelo Armandi (A)
Fabio Marra (F)
Amalia Gastaldelli (A)
Gianluca Svegliati (G)
Jérôme Boursier (J)
Sven Francque (S)
Luisa Vonghia (L)
An Verrijken (A)
Eveline Dirinck (E)
Ann Driessen (A)
Mattias Ekstedt (M)
Stergios Kechagias (S)
Hannele Yki-Järvinen (H)
Kimmo Porthan (K)
Johanna Arola (J)
Saskia van Mil (S)
George Papatheodoridis (G)
Helena Cortez-Pinto (H)
Ana Paula Silva (AP)
Cecilia M P Rodrigues (CMP)
Luca Valenti (L)
Serena Pelusi (S)
Salvatore Petta (S)
Grazia Pennisi (G)
Luca Miele (L)
Antonio Liguori (A)
Andreas Geier (A)
Monika Rau (M)
Christian Trautwein (C)
Johanna Reißing (J)
Guruprasad P Aithal (GP)
Susan Francis (S)
Naaventhan Palaniyappan (N)
Christopher Bradley (C)
Paul Hockings (P)
Moritz Schneider (M)
Philip N Newsome (PN)
Stefan Hübscher (S)
David Wenn (D)
Jeremy Magnanensi (J)
Aldo Trylesinski (A)
Rebeca Mayo (R)
Cristina Alonso (C)
Kevin Duffin (K)
James W Perfield (JW)
Yu Chen (Y)
Mark L Hartman (ML)
Carla Yunis (C)
Melissa Miller (M)
Yan Chen (Y)
Euan James McLeod (EJ)
Trenton Ross (T)
Barbara Bernardo (B)
Corinna Schölch (C)
Judith Ertle (J)
Ramy Younes (R)
Harvey Coxson (H)
Eric Simon (E)
Joseph Gogain (J)
Rachel Ostroff (R)
Leigh Alexander (L)
Hannah Biegel (H)
Mette Skalshøi Kjær (MS)
Lea Mørch Harder (LM)
Naba Al-Sari (N)
Sanne Skovgård Veidal (SS)
Anouk Oldenburger (A)
Jens Ellegaard (J)
Maria-Magdalena Balp (MM)
Lori Jennings (L)
Miljen Martic (M)
Jürgen Löffler (J)
Douglas Applegate (D)
Richard Torstenson (R)
Daniel Lindén (D)
Céline Fournier-Poizat (C)
Anne Llorca (A)
Michael Kalutkiewicz (M)
Kay Pepin (K)
Richard Ehman (R)
Gerald Horan (G)
Gideon Ho (G)
Dean Tai (D)
Elaine Chng (E)
Teng Xiao (T)
Scott D Patterson (SD)
Andrew Billin (A)
Lynda Doward (L)
James Twiss (J)
Paresh Thakker (P)
Zoltan Derdak (Z)
Hiroaki Yashiro (H)
Henrik Landgren (H)
Carolin Lackner (C)
Annette Gouw (A)
Prodromos Hytiroglou (P)
Olivier Govaere (O)
Clifford Brass (C)

Informations de copyright

© 2024. The Author(s).

Références

Younossi, Z. et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 15, 11–20 (2018).
pubmed: 28930295 doi: 10.1038/nrgastro.2017.109
Poirier, P. et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation 113, 898–918 (2006).
pubmed: 16380542 doi: 10.1161/CIRCULATIONAHA.106.171016
Flegal, K. M., Kit, B. K., Orpana, H. & Graubard, B. I. Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA 309, 71–82 (2013).
pubmed: 23280227 pmcid: 4855514 doi: 10.1001/jama.2012.113905
Rinella, M. E. et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 78, 1966–1986 (2023).
pubmed: 37363821 doi: 10.1097/HEP.0000000000000520
Tiniakos, D. G., Vos, M. B. & Brunt, E. M. Nonalcoholic fatty liver disease: pathology and pathogenesis. Annu. Rev. Pathol. 5, 145–171 (2010).
pubmed: 20078219 doi: 10.1146/annurev-pathol-121808-102132
Bedossa, P. & Consortium, F. P. Utility and appropriateness of the fatty liver inhibition of progression (FLIP) algorithm and steatosis, activity, and fibrosis (SAF) score in the evaluation of biopsies of nonalcoholic fatty liver disease. Hepatology 60, 565–575 (2014).
pubmed: 24753132 doi: 10.1002/hep.27173
Azzu, V., Vacca, M., Virtue, S., Allison, M. & Vidal-Puig, A. Adipose tissue–liver cross talk in the control of whole-body metabolism: implications in nonalcoholic fatty liver disease. Gastroenterology 158, 1899–1912 (2020).
pubmed: 32061598 doi: 10.1053/j.gastro.2019.12.054
Hardy, T., Oakley, F., Anstee, Q. M. & Day, C. P. Nonalcoholic fatty liver disease: pathogenesis and disease spectrum. Annu. Rev. Pathol. 11, 451–496 (2016).
pubmed: 26980160 doi: 10.1146/annurev-pathol-012615-044224
Anstee, Q. M., Reeves, H. L., Kotsiliti, E., Govaere, O. & Heikenwalder, M. From NASH to HCC: current concepts and future challenges. Nat. Rev. Gastroenterol. Hepatol. 16, 411–428 (2019).
pubmed: 31028350 doi: 10.1038/s41575-019-0145-7
Asgharpour, A. et al. A diet-induced animal model of non-alcoholic fatty liver disease and hepatocellular cancer. J. Hepatol. 65, 579–588 (2016).
pubmed: 27261415 pmcid: 5012902 doi: 10.1016/j.jhep.2016.05.005
Bachmann, A. M. et al. Genetic background and sex control the outcome of high-fat diet feeding in mice. iScience 25, 104468 (2022).
pubmed: 35677645 pmcid: 9167980 doi: 10.1016/j.isci.2022.104468
Farrell, G. et al. Mouse models of nonalcoholic steatohepatitis: toward optimization of their relevance to human nonalcoholic steatohepatitis. Hepatology 69, 2241–2257 (2019).
pubmed: 30372785 doi: 10.1002/hep.30333
Anstee, Q. M. Animal models in nonalcoholic steatohepatitis research: utility and clinical translation. Liver Int. 31, 440–442 (2011).
pubmed: 21382155 doi: 10.1111/j.1478-3231.2011.02463.x
Santhekadur, P. K., Kumar, D. P. & Sanyal, A. J. Preclinical models of non-alcoholic fatty liver disease. J. Hepatol. 68, 230–237 (2018).
pubmed: 29128391 doi: 10.1016/j.jhep.2017.10.031
Im, Y. R. et al. A systematic review of animal models of NAFLD finds high-fat, high-fructose diets most closely resemble human NAFLD. Hepatology 74, 1884–1901 (2021).
pubmed: 33973269 doi: 10.1002/hep.31897
Gallage, S. et al. A researcher’s guide to preclinical mouse NASH models. Nat. Metab. 4, 1632–1649 (2022).
pubmed: 36539621 doi: 10.1038/s42255-022-00700-y
Boland, M. L. et al. Towards a standard diet-induced and biopsy-confirmed mouse model of non-alcoholic steatohepatitis: impact of dietary fat source. World J. Gastroenterol. 25, 4904–4920 (2019).
pubmed: 31543682 pmcid: 6737317 doi: 10.3748/wjg.v25.i33.4904
Kampschulte, M. et al. Western diet in ApoE-LDLR double-deficient mouse model of atherosclerosis leads to hepatic steatosis, fibrosis, and tumorigenesis. Lab. Invest. 94, 1273–1282 (2014).
pubmed: 25199052 doi: 10.1038/labinvest.2014.112
Li, L. et al. A Western diet induced NAFLD in LDLR
pubmed: 27036364 pmcid: 5297627 doi: 10.1016/j.freeradbiomed.2016.03.032
Saito, K. et al. Characterization of hepatic lipid profiles in a mouse model with nonalcoholic steatohepatitis and subsequent fibrosis. Sci. Rep. 5, 12466 (2015).
pubmed: 26289793 pmcid: 4542161 doi: 10.1038/srep12466
Tsuchida, T. et al. A simple diet- and chemical-induced murine NASH model with rapid progression of steatohepatitis, fibrosis and liver cancer. J. Hepatol. 69, 385–395 (2018).
pubmed: 29572095 pmcid: 6054570 doi: 10.1016/j.jhep.2018.03.011
Cubero, F. J. et al. TNFR1 determines progression of chronic liver injury in the IKKɣ/Nemo genetic model. Cell Death Differ. 20, 1580–1592 (2013).
pubmed: 23933814 pmcid: 3792433 doi: 10.1038/cdd.2013.112
Anstee, Q. M. & Goldin, R. D. Mouse models in non-alcoholic fatty liver disease and steatohepatitis research. Int. J. Exp. Pathol. 87, 1–16 (2006).
pubmed: 16436109 pmcid: 2517349 doi: 10.1111/j.0959-9673.2006.00465.x
Han, M. A. T. et al. Rates of and factors associated with placebo response in trials of pharmacotherapies for nonalcoholic steatohepatitis: systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 17, 616–629.e26 (2019).
pubmed: 29913275 doi: 10.1016/j.cgh.2018.06.011
Kleiner, D. E. et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41, 1313–1321 (2005).
pubmed: 15915461 doi: 10.1002/hep.20701
Bedossa, P. et al. Histopathological algorithm and scoring system for evaluation of liver lesions in morbidly obese patients. Hepatology 56, 1751–1759 (2012).
pubmed: 22707395 doi: 10.1002/hep.25889
Azzu, V. et al. Suppression of insulin-induced gene 1 (INSIG1) function promotes hepatic lipid remodelling and restrains NASH progression. Mol. Metabol. 48, 101210 (2021).
doi: 10.1016/j.molmet.2021.101210
Govaere, O. et al. Transcriptomic profiling across the nonalcoholic fatty liver disease spectrum reveals gene signatures for steatohepatitis and fibrosis. Sci. Transl. Med. 12, eaba4448 (2020).
pubmed: 33268509 doi: 10.1126/scitranslmed.aba4448
Hoang, S. A. et al. Gene expression predicts histological severity and reveals distinct molecular profiles of nonalcoholic fatty liver disease. Sci. Rep. 9, 12541 (2019).
pubmed: 31467298 pmcid: 6715650 doi: 10.1038/s41598-019-48746-5
Vacca, M., Allison, M., Griffin, J. L. & Vidal-Puig, A. Fatty acid and glucose sensors in hepatic lipid metabolism: implications in NAFLD. Semin. Liver Dis. 35, 250–261 (2015).
pubmed: 26378642 doi: 10.1055/s-0035-1562945
Houttu, V., Csader, S., Nieuwdorp, M., Holleboom, A. G. & Schwab, U. Dietary interventions in patients with non-alcoholic fatty liver disease: a systematic review and meta-analysis. Front. Nutr. 8, 716783 (2021).
pubmed: 34368214 pmcid: 8339374 doi: 10.3389/fnut.2021.716783
Promrat, K. et al. Randomized controlled trial testing the effects of weight loss on nonalcoholic steatohepatitis. Hepatology 51, 121–129 (2010).
pubmed: 19827166 doi: 10.1002/hep.23276
Wilding, J. P. H. et al. Once-weekly semaglutide in adults with overweight or obesity. New Engl. J. Med. 384, 989–1002 (2021).
pubmed: 33567185 doi: 10.1056/NEJMoa2032183
Mollerhoj, M. B. et al. Hepatoprotective effects of semaglutide, lanifibranor and dietary intervention in the GAN diet-induced obese and biopsy-confirmed mouse model of NASH. Clin. Transl. Sci. 15, 1167–1186 (2022).
pubmed: 35143711 pmcid: 9099137 doi: 10.1111/cts.13235
Seeley, R. J. & MacDougald, O. A. Mice as experimental models for human physiology: when several degrees in housing temperature matter. Nat. Metab. 3, 443–445 (2021).
pubmed: 33767444 pmcid: 8987294 doi: 10.1038/s42255-021-00372-0
Azzu, V. & Valencak, T. G. Energy metabolism and ageing in the mouse: a mini-review. Gerontology 63, 327–336 (2017).
pubmed: 28118636 doi: 10.1159/000454924
Hunter, H. et al. Weight loss, insulin resistance, and study design confound results in a meta-analysis of animal models of fatty liver. eLife 9, e56573 (2020).
pubmed: 33063664 pmcid: 7647398 doi: 10.7554/eLife.56573
Liang, W. et al. Establishment of a general NAFLD scoring system for rodent models and comparison to human liver pathology. PLoS One 9, e115922 (2014).
pubmed: 25535951 pmcid: 4275274 doi: 10.1371/journal.pone.0115922
Newsome, P. N. et al. A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. New Engl. J. Med. 384, 1113–1124 (2021).
pubmed: 33185364 doi: 10.1056/NEJMoa2028395
Hu, S. et al. Dietary fat, but not protein or carbohydrate, regulates energy intake and causes adiposity in mice. Cell Metab. 28, 415–431.e4 (2018).
pubmed: 30017356 doi: 10.1016/j.cmet.2018.06.010
Giles, D. A. et al. Thermoneutral housing exacerbates nonalcoholic fatty liver disease in mice and allows for sex-independent disease modeling. Nat. Med. 23, 829–838 (2017).
pubmed: 28604704 pmcid: 5596511 doi: 10.1038/nm.4346
Lee, E., Korf, H. & Vidal-Puig, A. An adipocentric perspective on the development and progression of non-alcoholic fatty liver disease. J. Hepatol. 78, 1048–1062 (2023).
pubmed: 36740049 doi: 10.1016/j.jhep.2023.01.024
Castillo, M. et al. Disruption of thyroid hormone activation in type 2 deiodinase knockout mice causes obesity with glucose intolerance and liver steatosis only at thermoneutrality. Diabetes 60, 1082–1089 (2011).
pubmed: 21335378 pmcid: 3064082 doi: 10.2337/db10-0758
Nunes, J. R. C. et al. Thermoneutral housing does not accelerate metabolic dysfunction-associated fatty liver disease in male or female C57Bl/6J mice fed a Western diet. Am. J. Physiol. Endocrinol. Metab. 325, E10–E20 (2023).
pubmed: 37196059 doi: 10.1152/ajpendo.00124.2023
Oates, J. R. et al. Thermoneutral housing shapes hepatic inflammation and damage in mouse models of non-alcoholic fatty liver disease. Front. Immunol. 14, 1095132 (2023).
pubmed: 36875069 pmcid: 9982161 doi: 10.3389/fimmu.2023.1095132
Forcheron, F. et al. Nonalcoholic hepatic steatosis in Zucker diabetic rats: spontaneous evolution and effects of metformin and fenofibrate. Obesity (Silver Spring) 17, 1381–1389 (2009).
pubmed: 19553925 doi: 10.1038/oby.2008.661
Bilan, V. P. et al. Diabetic nephropathy and long-term treatment effects of rosiglitazone and enalapril in obese ZSF1 rats. J. Endocrinol. 210, 293–308 (2011).
pubmed: 21680617 doi: 10.1530/JOE-11-0122
Minniti, M. E. et al. Insights from liver-humanized mice on cholesterol lipoprotein metabolism and LXR-agonist pharmacodynamics in humans. Hepatology 72, 656–670 (2020).
pubmed: 31785104 doi: 10.1002/hep.31052
Carvalho, B. S. & Irizarry, R. A. A framework for oligonucleotide microarray preprocessing. Bioinformatics 26, 2363–2367 (2010).
pubmed: 20688976 pmcid: 2944196 doi: 10.1093/bioinformatics/btq431
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
pubmed: 25605792 pmcid: 4402510 doi: 10.1093/nar/gkv007
Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).
pubmed: 25751142 pmcid: 4655817 doi: 10.1038/nmeth.3317
Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).
pubmed: 25260700 doi: 10.1093/bioinformatics/btu638
Zhang, Y., Jenkins, D. F., Manimaran, S. & Johnson, W. E. Alternative empirical Bayes models for adjusting for batch effects in genomic studies. BMC Bioinf. 19, 262 (2018).
doi: 10.1186/s12859-018-2263-6
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8
Benjamini, Y., Drai, D., Elmer, G., Kafkafi, N. & Golani, I. Controlling the false discovery rate in behavior genetics research. Behav. Brain Res. 125, 279–284 (2001).
pubmed: 11682119 doi: 10.1016/S0166-4328(01)00297-2
Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M. & Tanabe, M. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 49, D545–D551 (2021).
pubmed: 33125081 doi: 10.1093/nar/gkaa970
Napolitano, F., Sirci, F., Carrella, D. & di Bernardo, D. Drug-set enrichment analysis: a novel tool to investigate drug mode of action. Bioinformatics 32, 235–241 (2016).
pubmed: 26415724 doi: 10.1093/bioinformatics/btv536
Napolitano, F. et al. gene2drug: a computational tool for pathway-based rational drug repositioning. Bioinformatics 34, 1498–1505 (2018).
pubmed: 29236977 doi: 10.1093/bioinformatics/btx800
Vacca, M. et al. Bone morphogenetic protein 8B promotes the progression of non-alcoholic steatohepatitis. Nat. Metab. 2, 514–531 (2020).
pubmed: 32694734 doi: 10.1038/s42255-020-0214-9
Veyel, D. et al. Biomarker discovery for chronic liver diseases by multi-omics—a preclinical case study. Sci. Rep. 10, 1314 (2020).
pubmed: 31992752 pmcid: 6987209 doi: 10.1038/s41598-020-58030-6

Auteurs

Michele Vacca (M)

TVP Lab, WT/MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK. michele.vacca@uniba.it.
Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy. michele.vacca@uniba.it.
Laboratory of Liver Metabolism and MASLD, Roger Williams Institute of Hepatology, London, UK. michele.vacca@uniba.it.

Ioannis Kamzolas (I)

TVP Lab, WT/MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK.

Lea Mørch Harder (LM)

Research and Early Development, Novo Nordisk A/S, Måløv, Copenhagen, Denmark.

Fiona Oakley (F)

Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.

Christian Trautwein (C)

Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany.

Maximilian Hatting (M)

Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany.

Trenton Ross (T)

Internal Medicine research Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA.

Barbara Bernardo (B)

Internal Medicine research Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA.

Anouk Oldenburger (A)

CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany.

Sara Toftegaard Hjuler (ST)

Research and Early Development, Novo Nordisk A/S, Måløv, Copenhagen, Denmark.

Iwona Ksiazek (I)

Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland.

Daniel Lindén (D)

Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism (CVRM), AstraZeneca BioPharmaceuticals R&D, Gothenburg, Sweden.
Division of Endocrinology, Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

Detlef Schuppan (D)

Institute of Translational Immunology and Research Center for Immunotherapy, Johannes Gutenberg University Medical Center, Mainz, Germany.

Sergio Rodriguez-Cuenca (S)

TVP Lab, WT/MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.

Maria Manuela Tonini (MM)

Luxembourg Institute of Health, Translational Medicine Operations Hub, Dudelange, Luxembourg.

Tamara R Castañeda (TR)

R&D Diabetes & Portfolio Innovation and Excellence, Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, Frankfurt, Germany.

Aimo Kannt (A)

R&D Diabetes, Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, Frankfurt, Germany.
Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Fraunhofer Innovation Center TheraNova and Goethe University, Frankfurt, Germany.

Cecília M P Rodrigues (CMP)

Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.

Simon Cockell (S)

Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.

Olivier Govaere (O)

Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.

Ann K Daly (AK)

Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.

Michael Allison (M)

Liver Unit, Cambridge University Hospitals NHS Foundation Trust & Cambridge NIHR Biomedical Research Centre, Cambridge, UK.

Kristian Honnens de Lichtenberg (K)

Research and Early Development, Novo Nordisk A/S, Måløv, Copenhagen, Denmark.

Yong Ook Kim (YO)

Institute of Translational Immunology and Research Center for Immunotherapy, Johannes Gutenberg University Medical Center, Mainz, Germany.

Anna Lindblom (A)

Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism (CVRM), AstraZeneca BioPharmaceuticals R&D, Gothenburg, Sweden.

Stephanie Oldham (S)

Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism (CVRM), AstraZeneca BioPharmaceuticals R&D, Gaithersburg, MD, USA.

Anne-Christine Andréasson (AC)

Bioscience Cardiovascular, Research and Early Development Cardiovascular, Renal and Metabolism (CVRM), AstraZeneca BioPharmaceuticals R&D, Gothenburg, Sweden.

Franklin Schlerman (F)

Inflammation and Immunology Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA.

Jonathon Marioneaux (J)

Fleur De Lis Holdings 10201 Dakins Dr. Richmond, Richmond, VA, USA.

Arun Sanyal (A)

Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA.

Marta B Afonso (MB)

Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.

Ramy Younes (R)

Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany.

Yuichiro Amano (Y)

Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan.

Scott L Friedman (SL)

Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Shuang Wang (S)

Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Dipankar Bhattacharya (D)

Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Eric Simon (E)

Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany.

Valérie Paradis (V)

Department of Imaging and Pathology, Université Paris Diderot and Hôpital Beaujon, Paris, France.

Alastair Burt (A)

Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK.

Ioanna Maria Grypari (IM)

Department of Pathology, Aretaeion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.

Susan Davies (S)

Department of Cellular Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.

Ann Driessen (A)

Department of Pathology, Antwerp University Hospital, Edegem, Belgium.
Department of Molecular Imaging, Pathology, Radiotherapy, Oncology. Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.

Hiroaki Yashiro (H)

Research, Takeda Pharmaceuticals Company Limited, Cambridge, MA, USA.

Susanne Pors (S)

Gubra, Hoersholm, Denmark.

Carla Yunis (C)

Pfizer, Inc.; Internal Medicine and Hospital, Pfizer Research and Development, Lake Mary, FL, USA.

Pierre Bedossa (P)

Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
LiverPat, Paris, France.

Michelle Stewart (M)

Mary Lyon Centre, MRC Harwell, Harwell Campus, Oxford, UK.

Heather L Cater (HL)

Mary Lyon Centre, MRC Harwell, Harwell Campus, Oxford, UK.

Sara Wells (S)

Mary Lyon Centre, MRC Harwell, Harwell Campus, Oxford, UK.

Jörn M Schattenberg (JM)

Department of Internal Medicine II, Saarland University Medical Centre, Homburg, Germany.

Quentin M Anstee (QM)

Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK.

Dina Tiniakos (D)

Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK. Dina.Tiniakos@newcastle.ac.uk.
Department of Pathology, Aretaeion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece. Dina.Tiniakos@newcastle.ac.uk.

James W Perfield (JW)

Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA. Perfield_james_w@lilly.com.

Evangelia Petsalaki (E)

European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK. petsalaki@ebi.ac.uk.

Peter Davidsen (P)

Research and Early Development, Novo Nordisk A/S, Måløv, Copenhagen, Denmark. pkdavidsen@gmail.com.
Ferring Pharmaceuticals A/S, International PharmaScience Center, Copenhagen, Denmark. pkdavidsen@gmail.com.

Antonio Vidal-Puig (A)

TVP Lab, WT/MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK. ajv22@medschl.cam.ac.uk.
Centro de Investigacion Principe Felipe, Valencia, Spain. ajv22@medschl.cam.ac.uk.

Classifications MeSH