An unbiased ranking of murine dietary models based on their proximity to human metabolic dysfunction-associated steatotic liver disease (MASLD).
Journal
Nature metabolism
ISSN: 2522-5812
Titre abrégé: Nat Metab
Pays: Germany
ID NLM: 101736592
Informations de publication
Date de publication:
12 Jun 2024
12 Jun 2024
Historique:
received:
06
04
2023
accepted:
08
04
2024
medline:
13
6
2024
pubmed:
13
6
2024
entrez:
12
6
2024
Statut:
aheadofprint
Résumé
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease, encompasses steatosis and metabolic dysfunction-associated steatohepatitis (MASH), leading to cirrhosis and hepatocellular carcinoma. Preclinical MASLD research is mainly performed in rodents; however, the model that best recapitulates human disease is yet to be defined. We conducted a wide-ranging retrospective review (metabolic phenotype, liver histopathology, transcriptome benchmarked against humans) of murine models (mostly male) and ranked them using an unbiased MASLD 'human proximity score' to define their metabolic relevance and ability to induce MASH-fibrosis. Here, we show that Western diets align closely with human MASH; high cholesterol content, extended study duration and/or genetic manipulation of disease-promoting pathways are required to intensify liver damage and accelerate significant (F2+) fibrosis development. Choline-deficient models rapidly induce MASH-fibrosis while showing relatively poor translatability. Our ranking of commonly used MASLD models, based on their proximity to human MASLD, helps with the selection of appropriate in vivo models to accelerate preclinical research.
Identifiants
pubmed: 38867022
doi: 10.1038/s42255-024-01043-6
pii: 10.1038/s42255-024-01043-6
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Innovative Medicines Initiative (IMI)
ID : 777377
Organisme : Innovative Medicines Initiative (IMI)
ID : 777377
Organisme : Innovative Medicines Initiative (IMI)
ID : 777377
Organisme : Innovative Medicines Initiative (IMI)
ID : 777377
Organisme : Innovative Medicines Initiative (IMI)
ID : 777377
Organisme : Innovative Medicines Initiative (IMI)
ID : 777377
Organisme : Innovative Medicines Initiative (IMI)
ID : 777377
Organisme : Innovative Medicines Initiative (IMI)
ID : 777377
Organisme : Innovative Medicines Initiative (IMI)
ID : 777377
Organisme : Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
ID : IG27521
Organisme : Universita degli Studi di Bari Aldo Moro (University of Bari Aldo Moro)
ID : S06-miRNASH
Organisme : Ministero dellapos;Istruzione, dellapos;Universit e della Ricerca (Ministry of Education, University and Research)
ID : P202222FCC
Organisme : Ministero dellapos;Istruzione, dellapos;Universit e della Ricerca (Ministry of Education, University and Research)
ID : PE00000003
Organisme : Ministero dellapos;Istruzione, dellapos;Universit e della Ricerca (Ministry of Education, University and Research)
ID : CN00000041
Organisme : Ministero dellapos;Istruzione, dellapos;Universit e della Ricerca (Ministry of Education, University and Research)
ID : CN00000013
Organisme : Foundation for Liver Research
ID : Intramural
Organisme : RCUK | Medical Research Council (MRC)
ID : 1948243
Organisme : RCUK | Medical Research Council (MRC)
ID : MR/R023026/1
Organisme : RCUK | Medical Research Council (MRC)
ID : MR/K0019494/1
Organisme : Fundacin Espaola para la Ciencia y la Tecnologa (Spanish Foundation for Science and Technology)
ID : PTDC/MED-FAR/3492/2021
Organisme : la Caixa Foundation (Caixa Foundation)
ID : LCF/PR/HR21/52410028
Organisme : U.S. Department of Health Human Services | NIH | NIH Clinical Center (Clinical Center)
ID : NIH R01 DK128289
Organisme : U.S. Department of Health Human Services | NIH | NIH Clinical Center (Clinical Center)
ID : NCI 5P30CA196521-08
Organisme : U.S. Department of Health Human Services | NIH | NIH Clinical Center (Clinical Center)
ID : NIH R01 DK136016
Investigateurs
Quentin M Anstee
(QM)
Ann K Daly
(AK)
Simon Cockell
(S)
Dina Tiniakos
(D)
Pierre Bedossa
(P)
Alastair Burt
(A)
Fiona Oakley
(F)
Heather J Cordell
(HJ)
Christopher P Day
(CP)
Kristy Wonders
(K)
Paolo Missier
(P)
Matthew McTeer
(M)
Luke Vale
(L)
Yemi Oluboyede
(Y)
Matt Breckons
(M)
Jo Boyle
(J)
Patrick M Bossuyt
(PM)
Hadi Zafarmand
(H)
Yasaman Vali
(Y)
Jenny Lee
(J)
Max Nieuwdorp
(M)
Adriaan G Holleboom
(AG)
Athanasios Angelakis
(A)
Joanne Verheij
(J)
Vlad Ratziu
(V)
Karine Clément
(K)
Rafael Patino-Navarrete
(R)
Raluca Pais
(R)
Valerie Paradis
(V)
Detlef Schuppan
(D)
Jörn M Schattenberg
(JM)
Rambabu Surabattula
(R)
Sudha Myneni
(S)
Yong Ook Kim
(YO)
Beate K Straub
(BK)
Antonio Vidal-Puig
(A)
Michele Vacca
(M)
Sergio Rodrigues-Cuenca
(S)
Mike Allison
(M)
Ioannis Kamzolas
(I)
Evangelia Petsalaki
(E)
Mark Campbell
(M)
Chris J Lelliott
(CJ)
Susan Davies
(S)
Matej Orešič
(M)
Tuulia Hyötyläinen
(T)
Aidan McGlinchey
(A)
Jose M Mato
(JM)
Óscar Millet
(Ó)
Jean-François Dufour
(JF)
Annalisa Berzigotti
(A)
Mojgan Masoodi
(M)
Naomi F Lange
(NF)
Michael Pavlides
(M)
Stephen Harrison
(S)
Stefan Neubauer
(S)
Jeremy Cobbold
(J)
Ferenc Mozes
(F)
Salma Akhtar
(S)
Seliat Olodo-Atitebi
(S)
Rajarshi Banerjee
(R)
Elizabeth Shumbayawonda
(E)
Andrea Dennis
(A)
Anneli Andersson
(A)
Ioan Wigley
(I)
Manuel Romero-Gómez
(M)
Emilio Gómez-González
(E)
Javier Ampuero
(J)
Javier Castell
(J)
Rocío Gallego-Durán
(R)
Isabel Fernández-Lizaranzu
(I)
Rocío Montero-Vallejo
(R)
Morten Karsdal
(M)
Daniel Guldager Kring Rasmussen
(DGK)
Diana Julie Leeming
(DJ)
Antonia Sinisi
(A)
Kishwar Musa
(K)
Estelle Sandt
(E)
Maria Manuela Tonini
(MM)
Elisabetta Bugianesi
(E)
Chiara Rosso
(C)
Angelo Armandi
(A)
Fabio Marra
(F)
Amalia Gastaldelli
(A)
Gianluca Svegliati
(G)
Jérôme Boursier
(J)
Sven Francque
(S)
Luisa Vonghia
(L)
An Verrijken
(A)
Eveline Dirinck
(E)
Ann Driessen
(A)
Mattias Ekstedt
(M)
Stergios Kechagias
(S)
Hannele Yki-Järvinen
(H)
Kimmo Porthan
(K)
Johanna Arola
(J)
Saskia van Mil
(S)
George Papatheodoridis
(G)
Helena Cortez-Pinto
(H)
Ana Paula Silva
(AP)
Cecilia M P Rodrigues
(CMP)
Luca Valenti
(L)
Serena Pelusi
(S)
Salvatore Petta
(S)
Grazia Pennisi
(G)
Luca Miele
(L)
Antonio Liguori
(A)
Andreas Geier
(A)
Monika Rau
(M)
Christian Trautwein
(C)
Johanna Reißing
(J)
Guruprasad P Aithal
(GP)
Susan Francis
(S)
Naaventhan Palaniyappan
(N)
Christopher Bradley
(C)
Paul Hockings
(P)
Moritz Schneider
(M)
Philip N Newsome
(PN)
Stefan Hübscher
(S)
David Wenn
(D)
Jeremy Magnanensi
(J)
Aldo Trylesinski
(A)
Rebeca Mayo
(R)
Cristina Alonso
(C)
Kevin Duffin
(K)
James W Perfield
(JW)
Yu Chen
(Y)
Mark L Hartman
(ML)
Carla Yunis
(C)
Melissa Miller
(M)
Yan Chen
(Y)
Euan James McLeod
(EJ)
Trenton Ross
(T)
Barbara Bernardo
(B)
Corinna Schölch
(C)
Judith Ertle
(J)
Ramy Younes
(R)
Harvey Coxson
(H)
Eric Simon
(E)
Joseph Gogain
(J)
Rachel Ostroff
(R)
Leigh Alexander
(L)
Hannah Biegel
(H)
Mette Skalshøi Kjær
(MS)
Lea Mørch Harder
(LM)
Naba Al-Sari
(N)
Sanne Skovgård Veidal
(SS)
Anouk Oldenburger
(A)
Jens Ellegaard
(J)
Maria-Magdalena Balp
(MM)
Lori Jennings
(L)
Miljen Martic
(M)
Jürgen Löffler
(J)
Douglas Applegate
(D)
Richard Torstenson
(R)
Daniel Lindén
(D)
Céline Fournier-Poizat
(C)
Anne Llorca
(A)
Michael Kalutkiewicz
(M)
Kay Pepin
(K)
Richard Ehman
(R)
Gerald Horan
(G)
Gideon Ho
(G)
Dean Tai
(D)
Elaine Chng
(E)
Teng Xiao
(T)
Scott D Patterson
(SD)
Andrew Billin
(A)
Lynda Doward
(L)
James Twiss
(J)
Paresh Thakker
(P)
Zoltan Derdak
(Z)
Hiroaki Yashiro
(H)
Henrik Landgren
(H)
Carolin Lackner
(C)
Annette Gouw
(A)
Prodromos Hytiroglou
(P)
Olivier Govaere
(O)
Clifford Brass
(C)
Informations de copyright
© 2024. The Author(s).
Références
Younossi, Z. et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 15, 11–20 (2018).
pubmed: 28930295
doi: 10.1038/nrgastro.2017.109
Poirier, P. et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation 113, 898–918 (2006).
pubmed: 16380542
doi: 10.1161/CIRCULATIONAHA.106.171016
Flegal, K. M., Kit, B. K., Orpana, H. & Graubard, B. I. Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA 309, 71–82 (2013).
pubmed: 23280227
pmcid: 4855514
doi: 10.1001/jama.2012.113905
Rinella, M. E. et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 78, 1966–1986 (2023).
pubmed: 37363821
doi: 10.1097/HEP.0000000000000520
Tiniakos, D. G., Vos, M. B. & Brunt, E. M. Nonalcoholic fatty liver disease: pathology and pathogenesis. Annu. Rev. Pathol. 5, 145–171 (2010).
pubmed: 20078219
doi: 10.1146/annurev-pathol-121808-102132
Bedossa, P. & Consortium, F. P. Utility and appropriateness of the fatty liver inhibition of progression (FLIP) algorithm and steatosis, activity, and fibrosis (SAF) score in the evaluation of biopsies of nonalcoholic fatty liver disease. Hepatology 60, 565–575 (2014).
pubmed: 24753132
doi: 10.1002/hep.27173
Azzu, V., Vacca, M., Virtue, S., Allison, M. & Vidal-Puig, A. Adipose tissue–liver cross talk in the control of whole-body metabolism: implications in nonalcoholic fatty liver disease. Gastroenterology 158, 1899–1912 (2020).
pubmed: 32061598
doi: 10.1053/j.gastro.2019.12.054
Hardy, T., Oakley, F., Anstee, Q. M. & Day, C. P. Nonalcoholic fatty liver disease: pathogenesis and disease spectrum. Annu. Rev. Pathol. 11, 451–496 (2016).
pubmed: 26980160
doi: 10.1146/annurev-pathol-012615-044224
Anstee, Q. M., Reeves, H. L., Kotsiliti, E., Govaere, O. & Heikenwalder, M. From NASH to HCC: current concepts and future challenges. Nat. Rev. Gastroenterol. Hepatol. 16, 411–428 (2019).
pubmed: 31028350
doi: 10.1038/s41575-019-0145-7
Asgharpour, A. et al. A diet-induced animal model of non-alcoholic fatty liver disease and hepatocellular cancer. J. Hepatol. 65, 579–588 (2016).
pubmed: 27261415
pmcid: 5012902
doi: 10.1016/j.jhep.2016.05.005
Bachmann, A. M. et al. Genetic background and sex control the outcome of high-fat diet feeding in mice. iScience 25, 104468 (2022).
pubmed: 35677645
pmcid: 9167980
doi: 10.1016/j.isci.2022.104468
Farrell, G. et al. Mouse models of nonalcoholic steatohepatitis: toward optimization of their relevance to human nonalcoholic steatohepatitis. Hepatology 69, 2241–2257 (2019).
pubmed: 30372785
doi: 10.1002/hep.30333
Anstee, Q. M. Animal models in nonalcoholic steatohepatitis research: utility and clinical translation. Liver Int. 31, 440–442 (2011).
pubmed: 21382155
doi: 10.1111/j.1478-3231.2011.02463.x
Santhekadur, P. K., Kumar, D. P. & Sanyal, A. J. Preclinical models of non-alcoholic fatty liver disease. J. Hepatol. 68, 230–237 (2018).
pubmed: 29128391
doi: 10.1016/j.jhep.2017.10.031
Im, Y. R. et al. A systematic review of animal models of NAFLD finds high-fat, high-fructose diets most closely resemble human NAFLD. Hepatology 74, 1884–1901 (2021).
pubmed: 33973269
doi: 10.1002/hep.31897
Gallage, S. et al. A researcher’s guide to preclinical mouse NASH models. Nat. Metab. 4, 1632–1649 (2022).
pubmed: 36539621
doi: 10.1038/s42255-022-00700-y
Boland, M. L. et al. Towards a standard diet-induced and biopsy-confirmed mouse model of non-alcoholic steatohepatitis: impact of dietary fat source. World J. Gastroenterol. 25, 4904–4920 (2019).
pubmed: 31543682
pmcid: 6737317
doi: 10.3748/wjg.v25.i33.4904
Kampschulte, M. et al. Western diet in ApoE-LDLR double-deficient mouse model of atherosclerosis leads to hepatic steatosis, fibrosis, and tumorigenesis. Lab. Invest. 94, 1273–1282 (2014).
pubmed: 25199052
doi: 10.1038/labinvest.2014.112
Li, L. et al. A Western diet induced NAFLD in LDLR
pubmed: 27036364
pmcid: 5297627
doi: 10.1016/j.freeradbiomed.2016.03.032
Saito, K. et al. Characterization of hepatic lipid profiles in a mouse model with nonalcoholic steatohepatitis and subsequent fibrosis. Sci. Rep. 5, 12466 (2015).
pubmed: 26289793
pmcid: 4542161
doi: 10.1038/srep12466
Tsuchida, T. et al. A simple diet- and chemical-induced murine NASH model with rapid progression of steatohepatitis, fibrosis and liver cancer. J. Hepatol. 69, 385–395 (2018).
pubmed: 29572095
pmcid: 6054570
doi: 10.1016/j.jhep.2018.03.011
Cubero, F. J. et al. TNFR1 determines progression of chronic liver injury in the IKKɣ/Nemo genetic model. Cell Death Differ. 20, 1580–1592 (2013).
pubmed: 23933814
pmcid: 3792433
doi: 10.1038/cdd.2013.112
Anstee, Q. M. & Goldin, R. D. Mouse models in non-alcoholic fatty liver disease and steatohepatitis research. Int. J. Exp. Pathol. 87, 1–16 (2006).
pubmed: 16436109
pmcid: 2517349
doi: 10.1111/j.0959-9673.2006.00465.x
Han, M. A. T. et al. Rates of and factors associated with placebo response in trials of pharmacotherapies for nonalcoholic steatohepatitis: systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 17, 616–629.e26 (2019).
pubmed: 29913275
doi: 10.1016/j.cgh.2018.06.011
Kleiner, D. E. et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41, 1313–1321 (2005).
pubmed: 15915461
doi: 10.1002/hep.20701
Bedossa, P. et al. Histopathological algorithm and scoring system for evaluation of liver lesions in morbidly obese patients. Hepatology 56, 1751–1759 (2012).
pubmed: 22707395
doi: 10.1002/hep.25889
Azzu, V. et al. Suppression of insulin-induced gene 1 (INSIG1) function promotes hepatic lipid remodelling and restrains NASH progression. Mol. Metabol. 48, 101210 (2021).
doi: 10.1016/j.molmet.2021.101210
Govaere, O. et al. Transcriptomic profiling across the nonalcoholic fatty liver disease spectrum reveals gene signatures for steatohepatitis and fibrosis. Sci. Transl. Med. 12, eaba4448 (2020).
pubmed: 33268509
doi: 10.1126/scitranslmed.aba4448
Hoang, S. A. et al. Gene expression predicts histological severity and reveals distinct molecular profiles of nonalcoholic fatty liver disease. Sci. Rep. 9, 12541 (2019).
pubmed: 31467298
pmcid: 6715650
doi: 10.1038/s41598-019-48746-5
Vacca, M., Allison, M., Griffin, J. L. & Vidal-Puig, A. Fatty acid and glucose sensors in hepatic lipid metabolism: implications in NAFLD. Semin. Liver Dis. 35, 250–261 (2015).
pubmed: 26378642
doi: 10.1055/s-0035-1562945
Houttu, V., Csader, S., Nieuwdorp, M., Holleboom, A. G. & Schwab, U. Dietary interventions in patients with non-alcoholic fatty liver disease: a systematic review and meta-analysis. Front. Nutr. 8, 716783 (2021).
pubmed: 34368214
pmcid: 8339374
doi: 10.3389/fnut.2021.716783
Promrat, K. et al. Randomized controlled trial testing the effects of weight loss on nonalcoholic steatohepatitis. Hepatology 51, 121–129 (2010).
pubmed: 19827166
doi: 10.1002/hep.23276
Wilding, J. P. H. et al. Once-weekly semaglutide in adults with overweight or obesity. New Engl. J. Med. 384, 989–1002 (2021).
pubmed: 33567185
doi: 10.1056/NEJMoa2032183
Mollerhoj, M. B. et al. Hepatoprotective effects of semaglutide, lanifibranor and dietary intervention in the GAN diet-induced obese and biopsy-confirmed mouse model of NASH. Clin. Transl. Sci. 15, 1167–1186 (2022).
pubmed: 35143711
pmcid: 9099137
doi: 10.1111/cts.13235
Seeley, R. J. & MacDougald, O. A. Mice as experimental models for human physiology: when several degrees in housing temperature matter. Nat. Metab. 3, 443–445 (2021).
pubmed: 33767444
pmcid: 8987294
doi: 10.1038/s42255-021-00372-0
Azzu, V. & Valencak, T. G. Energy metabolism and ageing in the mouse: a mini-review. Gerontology 63, 327–336 (2017).
pubmed: 28118636
doi: 10.1159/000454924
Hunter, H. et al. Weight loss, insulin resistance, and study design confound results in a meta-analysis of animal models of fatty liver. eLife 9, e56573 (2020).
pubmed: 33063664
pmcid: 7647398
doi: 10.7554/eLife.56573
Liang, W. et al. Establishment of a general NAFLD scoring system for rodent models and comparison to human liver pathology. PLoS One 9, e115922 (2014).
pubmed: 25535951
pmcid: 4275274
doi: 10.1371/journal.pone.0115922
Newsome, P. N. et al. A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. New Engl. J. Med. 384, 1113–1124 (2021).
pubmed: 33185364
doi: 10.1056/NEJMoa2028395
Hu, S. et al. Dietary fat, but not protein or carbohydrate, regulates energy intake and causes adiposity in mice. Cell Metab. 28, 415–431.e4 (2018).
pubmed: 30017356
doi: 10.1016/j.cmet.2018.06.010
Giles, D. A. et al. Thermoneutral housing exacerbates nonalcoholic fatty liver disease in mice and allows for sex-independent disease modeling. Nat. Med. 23, 829–838 (2017).
pubmed: 28604704
pmcid: 5596511
doi: 10.1038/nm.4346
Lee, E., Korf, H. & Vidal-Puig, A. An adipocentric perspective on the development and progression of non-alcoholic fatty liver disease. J. Hepatol. 78, 1048–1062 (2023).
pubmed: 36740049
doi: 10.1016/j.jhep.2023.01.024
Castillo, M. et al. Disruption of thyroid hormone activation in type 2 deiodinase knockout mice causes obesity with glucose intolerance and liver steatosis only at thermoneutrality. Diabetes 60, 1082–1089 (2011).
pubmed: 21335378
pmcid: 3064082
doi: 10.2337/db10-0758
Nunes, J. R. C. et al. Thermoneutral housing does not accelerate metabolic dysfunction-associated fatty liver disease in male or female C57Bl/6J mice fed a Western diet. Am. J. Physiol. Endocrinol. Metab. 325, E10–E20 (2023).
pubmed: 37196059
doi: 10.1152/ajpendo.00124.2023
Oates, J. R. et al. Thermoneutral housing shapes hepatic inflammation and damage in mouse models of non-alcoholic fatty liver disease. Front. Immunol. 14, 1095132 (2023).
pubmed: 36875069
pmcid: 9982161
doi: 10.3389/fimmu.2023.1095132
Forcheron, F. et al. Nonalcoholic hepatic steatosis in Zucker diabetic rats: spontaneous evolution and effects of metformin and fenofibrate. Obesity (Silver Spring) 17, 1381–1389 (2009).
pubmed: 19553925
doi: 10.1038/oby.2008.661
Bilan, V. P. et al. Diabetic nephropathy and long-term treatment effects of rosiglitazone and enalapril in obese ZSF1 rats. J. Endocrinol. 210, 293–308 (2011).
pubmed: 21680617
doi: 10.1530/JOE-11-0122
Minniti, M. E. et al. Insights from liver-humanized mice on cholesterol lipoprotein metabolism and LXR-agonist pharmacodynamics in humans. Hepatology 72, 656–670 (2020).
pubmed: 31785104
doi: 10.1002/hep.31052
Carvalho, B. S. & Irizarry, R. A. A framework for oligonucleotide microarray preprocessing. Bioinformatics 26, 2363–2367 (2010).
pubmed: 20688976
pmcid: 2944196
doi: 10.1093/bioinformatics/btq431
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
pubmed: 25605792
pmcid: 4402510
doi: 10.1093/nar/gkv007
Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).
pubmed: 25751142
pmcid: 4655817
doi: 10.1038/nmeth.3317
Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).
pubmed: 25260700
doi: 10.1093/bioinformatics/btu638
Zhang, Y., Jenkins, D. F., Manimaran, S. & Johnson, W. E. Alternative empirical Bayes models for adjusting for batch effects in genomic studies. BMC Bioinf. 19, 262 (2018).
doi: 10.1186/s12859-018-2263-6
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281
pmcid: 4302049
doi: 10.1186/s13059-014-0550-8
Benjamini, Y., Drai, D., Elmer, G., Kafkafi, N. & Golani, I. Controlling the false discovery rate in behavior genetics research. Behav. Brain Res. 125, 279–284 (2001).
pubmed: 11682119
doi: 10.1016/S0166-4328(01)00297-2
Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M. & Tanabe, M. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 49, D545–D551 (2021).
pubmed: 33125081
doi: 10.1093/nar/gkaa970
Napolitano, F., Sirci, F., Carrella, D. & di Bernardo, D. Drug-set enrichment analysis: a novel tool to investigate drug mode of action. Bioinformatics 32, 235–241 (2016).
pubmed: 26415724
doi: 10.1093/bioinformatics/btv536
Napolitano, F. et al. gene2drug: a computational tool for pathway-based rational drug repositioning. Bioinformatics 34, 1498–1505 (2018).
pubmed: 29236977
doi: 10.1093/bioinformatics/btx800
Vacca, M. et al. Bone morphogenetic protein 8B promotes the progression of non-alcoholic steatohepatitis. Nat. Metab. 2, 514–531 (2020).
pubmed: 32694734
doi: 10.1038/s42255-020-0214-9
Veyel, D. et al. Biomarker discovery for chronic liver diseases by multi-omics—a preclinical case study. Sci. Rep. 10, 1314 (2020).
pubmed: 31992752
pmcid: 6987209
doi: 10.1038/s41598-020-58030-6