Conserved epigenetic hallmarks of T cell aging during immunity and malignancy.


Journal

Nature aging
ISSN: 2662-8465
Titre abrégé: Nat Aging
Pays: United States
ID NLM: 101773306

Informations de publication

Date de publication:
12 Jun 2024
Historique:
received: 03 04 2024
accepted: 13 05 2024
medline: 13 6 2024
pubmed: 13 6 2024
entrez: 12 6 2024
Statut: aheadofprint

Résumé

Chronological aging correlates with epigenetic modifications at specific loci, calibrated to species lifespan. Such 'epigenetic clocks' appear conserved among mammals, but whether they are cell autonomous and restricted by maximal organismal lifespan remains unknown. We used a multilifetime murine model of repeat vaccination and memory T cell transplantation to test whether epigenetic aging tracks with cellular replication and if such clocks continue 'counting' beyond species lifespan. Here we found that memory T cell epigenetic clocks tick independently of host age and continue through four lifetimes. Instead of recording chronological time, T cells recorded proliferative experience through modification of cell cycle regulatory genes. Applying this epigenetic profile across a range of human T cell contexts, we found that naive T cells appeared 'young' regardless of organism age, while in pediatric patients, T cell acute lymphoblastic leukemia appeared to have epigenetically aged for up to 200 years. Thus, T cell epigenetic clocks measure replicative history and can continue to accumulate well-beyond organismal lifespan.

Identifiants

pubmed: 38867059
doi: 10.1038/s43587-024-00649-5
pii: 10.1038/s43587-024-00649-5
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : R01CA237311
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : U01AI144616
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : R01AI172607
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : R01AI145024
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : K08CA279926
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : AI146032
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : CA238439

Informations de copyright

© 2024. The Author(s).

Références

Bodnar, A. G. et al. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352 (1998).
pubmed: 9454332 doi: 10.1126/science.279.5349.349
Cagan, A. et al. Somatic mutation rates scale with lifespan across mammals. Nature 604, 517–524 (2022).
pubmed: 35418684 pmcid: 9021023 doi: 10.1038/s41586-022-04618-z
Jaskelioff, M. et al. Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature 469, 102–106 (2011).
pubmed: 21113150 doi: 10.1038/nature09603
Zindy, F., Quelle, D. E., Roussel, M. F. & Sherr, C. J. Expression of the p16INK4a tumor suppressor versus other INK4 family members during mouse development and aging. Oncogene 15, 203–211 (1997).
pubmed: 9244355 doi: 10.1038/sj.onc.1201178
Krishnamurthy, J. et al. p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 443, 453–457 (2006).
pubmed: 16957737 doi: 10.1038/nature05092
Janzen, V. et al. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 443, 421–426 (2006).
pubmed: 16957735 doi: 10.1038/nature05159
Sato, S. et al. Ablation of the p16(INK4a) tumour suppressor reverses ageing phenotypes of klotho mice. Nat. Commun. 6, 7035 (2015).
pubmed: 25923845 doi: 10.1038/ncomms8035
Baker, D. J. et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530, 184–189 (2016).
pubmed: 26840489 pmcid: 4845101 doi: 10.1038/nature16932
Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011).
pubmed: 22048312 pmcid: 3468323 doi: 10.1038/nature10600
Liu, Y. et al. Expression of p16(INK4a) prevents cancer and promotes aging in lymphocytes. Blood 117, 3257–3267 (2011).
pubmed: 21245485 pmcid: 3069667 doi: 10.1182/blood-2010-09-304402
Hathcock, K. S., Kaech, S. M., Ahmed, R. & Hodes, R. J. Induction of telomerase activity and maintenance of telomere length in virus-specific effector and memory CD8
pubmed: 12496394 doi: 10.4049/jimmunol.170.1.147
Riddell, N. E. et al. Multifunctional cytomegalovirus (CMV)-specific CD8
pubmed: 25314332 pmcid: 4368162 doi: 10.1111/imm.12409
Soerens, A. G. et al. Functional T cells are capable of supernumerary cell division and longevity. Nature 614, 762–766 (2023).
pubmed: 36653453 doi: 10.1038/s41586-022-05626-9
Fraser, K. A., Schenkel, J. M., Jameson, S. C., Vezys, V. & Masopust, D. Preexisting high frequencies of memory CD8
pubmed: 23890070 pmcid: 3979587 doi: 10.1016/j.immuni.2013.07.003
Bocklandt, S. et al. Epigenetic predictor of age. PLoS One 6, e14821 (2011).
pubmed: 21731603 pmcid: 3120753 doi: 10.1371/journal.pone.0014821
Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 49, 359–367 (2013).
pubmed: 23177740 doi: 10.1016/j.molcel.2012.10.016
Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).
pubmed: 29643443 doi: 10.1038/s41576-018-0004-3
Beerman, I. et al. Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging. Cell Stem Cell 12, 413–425 (2013).
pubmed: 23415915 doi: 10.1016/j.stem.2013.01.017
Wilson, V. L. & Jones, P. A. DNA methylation decreases in aging but not in immortal cells. Science 220, 1055–1057 (1983).
pubmed: 6844925 doi: 10.1126/science.6844925
Issa, J. P. et al. Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nat. Genet. 7, 536–540 (1994).
pubmed: 7951326 doi: 10.1038/ng0894-536
Bell, C. G. et al. DNA methylation aging clocks: challenges and recommendations. Genome Biol. 20, 249 (2019).
pubmed: 31767039 pmcid: 6876109 doi: 10.1186/s13059-019-1824-y
Cairns, P. et al. Frequency of homozygous deletion at p16/CDKN2 in primary human tumours. Nat. Genet. 11, 210–212 (1995).
pubmed: 7550353 doi: 10.1038/ng1095-210
Robertson, K. D. & Jones, P. A. The human ARF cell cycle regulatory gene promoter is a CpG island which can be silenced by DNA methylation and down-regulated by wild-type p53. Mol. Cell. Biol. 18, 6457–6473 (1998).
pubmed: 9774662 pmcid: 109232 doi: 10.1128/MCB.18.11.6457
Gonzalgo, M. L. et al. The role of DNA methylation in expression of the p19/p16 locus in human bladder cancer cell lines. Cancer Res. 58, 1245–1252 (1998).
pubmed: 9515812
Quelle, D. E., Zindy, F., Ashmun, R. A. & Sherr, C. J. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83, 993–1000 (1995).
pubmed: 8521522 doi: 10.1016/0092-8674(95)90214-7
Gonzalez-Zulueta, M. et al. Methylation of the 5′ CpG island of the p16/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing. Cancer Res. 55, 4531–4535 (1995).
pubmed: 7553622
Ghoneim, H. E. et al. De novo epigenetic programs inhibit PD-1 blockade-mediated T cell rejuvenation. Cell 170, 142–157 e119 (2017).
pubmed: 28648661 pmcid: 5568784 doi: 10.1016/j.cell.2017.06.007
Tasdemir, N. et al. BRD4 connects enhancer remodeling to senescence immune surveillance. Cancer Discov. 6, 612–629 (2016).
pubmed: 27099234 pmcid: 4893996 doi: 10.1158/2159-8290.CD-16-0217
Arneson, A. et al. A mammalian methylation array for profiling methylation levels at conserved sequences. Nat. Commun. 13, 783 (2022).
pubmed: 35145108 pmcid: 8831611 doi: 10.1038/s41467-022-28355-z
Yang, Z. et al. Correlation of an epigenetic mitotic clock with cancer risk. Genome Biol. 17, 205 (2016).
pubmed: 27716309 pmcid: 5046977 doi: 10.1186/s13059-016-1064-3
Gray, S. M., Amezquita, R. A., Guan, T., Kleinstein, S. H. & Kaech, S. M. Polycomb repressive complex 2-mediated chromatin repression guides effector CD8(+) T cell terminal differentiation and loss of multipotency. Immunity 46, 596–608 (2017).
pubmed: 28410989 pmcid: 5457165 doi: 10.1016/j.immuni.2017.03.012
Dong, Q. et al. Genome-wide association studies identify novel genetic loci for epigenetic age acceleration among survivors of childhood cancer. Genome Med. 14, 32 (2022).
pubmed: 35313970 pmcid: 8939156 doi: 10.1186/s13073-022-01038-6
Levine, M. E. et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging 10, 573–591 (2018).
pubmed: 29676998 pmcid: 5940111 doi: 10.18632/aging.101414
Tserel, L. et al. Age-related profiling of DNA methylation in CD8
pubmed: 26286994 pmcid: 4541364 doi: 10.1038/srep13107
Abdelsamed, H. A. et al. Beta cell-specific CD8(+) T cells maintain stem cell memory-associated epigenetic programs during type 1 diabetes. Nat. Immunol. 21, 578–587 (2020).
pubmed: 32231298 pmcid: 7183435 doi: 10.1038/s41590-020-0633-5
Zebley, C. C. et al. CD19-CAR T cells undergo exhaustion DNA methylation programming in patients with acute lymphoblastic leukemia. Cell Rep. 37, 110079 (2021).
pubmed: 34852226 pmcid: 8800370 doi: 10.1016/j.celrep.2021.110079
Touzart, A. et al. Epigenetic analysis of patients with T-ALL identifies poor outcomes and a hypomethylating agent-responsive subgroup. Sci. Transl. Med. 13, eabc4834 (2021).
pubmed: 34039737 doi: 10.1126/scitranslmed.abc4834
Kimura, S. et al. DNA methylation-based classification reveals difference between pediatric T-cell acute lymphoblastic leukemia and normal thymocytes. Leukemia 34, 1163–1168 (2020).
pubmed: 31732719 doi: 10.1038/s41375-019-0626-2
Nordlund, J. et al. Genome-wide signatures of differential DNA methylation in pediatric acute lymphoblastic leukemia. Genome Biol. 14, r105 (2013).
pubmed: 24063430 pmcid: 4014804 doi: 10.1186/gb-2013-14-9-r105
Cancer Genome Atlas Research Network, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368, 2059–2074 (2013).
Conway, K. et al. Identification of a robust methylation classifier for cutaneous melanoma diagnosis. J. Invest. Dermatol. 139, 1349–1361 (2019).
pubmed: 30529013 doi: 10.1016/j.jid.2018.11.024
Goronzy, J. J., Hu, B., Kim, C., Jadhav, R. R. & Weyand, C. M. Epigenetics of T cell aging. J. Leukoc. Biol. 104, 691–699 (2018).
pubmed: 29947427 doi: 10.1002/JLB.1RI0418-160R
Coppe, J. P., Desprez, P. Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).
pubmed: 20078217 pmcid: 4166495 doi: 10.1146/annurev-pathol-121808-102144
Cameron, E. E., Baylin, S. B. & Herman, J. G. p15(INK4B) CpG island methylation in primary acute leukemia is heterogeneous and suggests density as a critical factor for transcriptional silencing. Blood 94, 2445–2451 (1999).
pubmed: 10498617 doi: 10.1182/blood.V94.7.2445.419k19_2445_2451
Herman, J. G. & Baylin, S. B. Gene silencing in cancer in association with promoter hypermethylation. N. Engl. J. Med. 349, 2042–2054 (2003).
pubmed: 14627790 doi: 10.1056/NEJMra023075
Li, M. et al. T cell receptor-targeted immunotherapeutics drive selective in vivo HIV- and CMV-specific T cell expansion in humanized mice. J. Clin. Invest. 131, e141051 (2021).
pubmed: 34673568 pmcid: 8631598 doi: 10.1172/JCI141051
Xi, Y. & Li, W. BSMAP: whole genome bisulfite sequence MAPping program. BMC Bioinf. 10, 232 (2009).
doi: 10.1186/1471-2105-10-232
Wu, H. et al. Detection of differentially methylated regions from whole-genome bisulfite sequencing data without replicates. Nucleic Acids Res. 43, e141 (2015).
pubmed: 26184873 pmcid: 4666378
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
pubmed: 16199517 pmcid: 1239896 doi: 10.1073/pnas.0506580102
Aryee, M. J. et al. Minfi: a flexible and comprehensive bioconductor package for the analysis of infinium DNA methylation microarrays. Bioinformatics 30, 1363–1369 (2014).
pubmed: 24478339 pmcid: 4016708 doi: 10.1093/bioinformatics/btu049
Lu, A. T. et al. Universal DNA methylation age across mammalian tissues. Nat. Aging https://doi.org/10.1038/s43587-023-00462-6 (2023).
Gomez, S. et al. DNA methylation fingerprint of neuroblastoma reveals new biological and clinical insights. Epigenomics 7, 1137–1153 (2015).
pubmed: 26067621 doi: 10.2217/epi.15.49

Auteurs

Tian Mi (T)

Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.

Andrew G Soerens (AG)

Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA.

Shanta Alli (S)

Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.

Tae Gun Kang (TG)

Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.

Anoop Babu Vasandan (AB)

Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.

Zhaoming Wang (Z)

Department of Computational Biology and Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA.

Vaiva Vezys (V)

Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA.

Shunsuke Kimura (S)

Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.

Ilaria Iacobucci (I)

Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.

Stephen B Baylin (SB)

The Sidney Kimmel Comprehensive Cancer Institute, The Johns Hopkins Hospital, Baltimore, MD, USA.

Peter A Jones (PA)

Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.

Christopher Hiner (C)

Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA.

April Mueller (A)

Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA.

Harris Goldstein (H)

Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA.

Charles G Mullighan (CG)

Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.

Caitlin C Zebley (CC)

Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA. caitlin.zebley@stjude.org.
Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA. caitlin.zebley@stjude.org.

David Masopust (D)

Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA. masopust@umn.edu.

Ben Youngblood (B)

Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA. benjamin.youngblood@stjude.org.

Classifications MeSH