A two-site Kitaev chain in a two-dimensional electron gas.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
Jun 2024
Historique:
received: 18 11 2023
accepted: 17 04 2024
medline: 13 6 2024
pubmed: 13 6 2024
entrez: 12 6 2024
Statut: ppublish

Résumé

Artificial Kitaev chains can be used to engineer Majorana bound states (MBSs) in superconductor-semiconductor hybrids

Identifiants

pubmed: 38867129
doi: 10.1038/s41586-024-07434-9
pii: 10.1038/s41586-024-07434-9
doi:

Substances chimiques

Gases 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

329-334

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Sau, J. D. & Sarma, S. D. Realizing a robust practical Majorana chain in a quantum-dot-superconductor linear array. Nat. Commun. 3, 964 (2012).
doi: 10.1038/ncomms1966 pubmed: 22805571
Leijnse, M. & Flensberg, K. Parity qubits and poor man’s Majorana bound states in double quantum dots. Phys. Rev. B 86, 134528 (2012).
doi: 10.1103/PhysRevB.86.134528
Fulga, I. C., Haim, A., Akhmerov, A. R. & Oreg, Y. Adaptive tuning of Majorana fermions in a quantum dot chain. New J. Phys. 15, 045020 (2013).
doi: 10.1088/1367-2630/15/4/045020
Dvir, T. et al. Realization of a minimal Kitaev chain in coupled quantum dots. Nature 614, 445 (2023).
doi: 10.1038/s41586-022-05585-1 pubmed: 36792741
Tsintzis, A., Souto, R. S. & Leijnse, M. Creating and detecting poor man’s Majorana bound states in interacting quantum dots. Phys. Rev. B 106, L201404 (2022).
doi: 10.1103/PhysRevB.106.L201404
Tsintzis, A., Souto, R. S., Flensberg, K., Danon, J. & Leijnse, M. Majorana qubits and non-abelian physics in quantum dot–based minimal Kitaev chains. PRX Quantum 5, 010323 (2024).
Lutchyn, R. M., Sau, J. D. & Das Sarma, S. Majorana fermions and a topological phase transition in semiconductor–superconductor heterostructures. Phys. Rev. Lett. 105, 077001 (2010).
doi: 10.1103/PhysRevLett.105.077001 pubmed: 20868069
Oreg, Y., Refael, G. & von Oppen, F. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002 (2010).
doi: 10.1103/PhysRevLett.105.177002 pubmed: 21231073
Prada, E. et al. From Andreev to Majorana bound states in hybrid superconductor–semiconductor nanowires. Nat. Rev. Phys. 2, 575 (2020).
doi: 10.1038/s42254-020-0228-y
Liu, C.-X., Sau, J. D., Stanescu, T. D. & Das Sarma, S. Andreev bound states versus Majorana bound states in quantum dot-nanowire-superconductor hybrid structures: trivial versus topological zero-bias conductance peaks. Phys. Rev. B 96, 075161 (2017).
doi: 10.1103/PhysRevB.96.075161
Vuik, A., Nijholt, B., Akhmerov, A. R. & Wimmer, M. Reproducing topological properties with quasi-Majorana states. SciPost Phys. 7, 061 (2019).
doi: 10.21468/SciPostPhys.7.5.061
Pan, H. & Das Sarma, S. Physical mechanisms for zero-bias conductance peaks in Majorana nanowires. Phys. Rev. Res. 2, 013377 (2020).
doi: 10.1103/PhysRevResearch.2.013377
Kitaev, A. Y. Unpaired Majorana fermions in quantum wires. Physics-Usphekhi 44, 131 (2001).
doi: 10.1070/1063-7869/44/10S/S29
Széchenyi, G. & Pályi, A. Parity-to-charge conversion for readout of topological Majorana qubits. Phys. Rev. B 101, 235441 (2020).
doi: 10.1103/PhysRevB.101.235441
Boross, P. & Pályi, A. Braiding-based quantum control of a Majorana qubit built from quantum dots. Phys. Rev. B 109, 125410 (2024).
Liu, C.-X., Pan, H., Setiawan, F., Wimmer, M. & Sau, J. D. Fusion protocol for Majorana modes in coupled quantum dots. Phys. Rev. B 108, 085437 (2023).
doi: 10.1103/PhysRevB.108.085437
Sedlmayr, N. & Bena, C. Visualizing Majorana bound states in one and two dimensions using the generalized Majorana polarization. Phys. Rev. B 92, 115115 (2015).
doi: 10.1103/PhysRevB.92.115115
Liu, C.-X., Wang, G., Dvir, T. & Wimmer, M. Tunable superconducting coupling of quantum dots via Andreev bound states in semiconductor–superconductor nanowires. Phys. Rev. Lett. 129, 267701 (2022).
doi: 10.1103/PhysRevLett.129.267701 pubmed: 36608192
Bordin, A. et al. Tunable crossed Andreev reflection and elastic cotunneling in hybrid nanowires. Phys. Rev. X 13, 031031 (2023).
Wang, G. et al. Singlet and triplet Cooper pair splitting in hybrid superconducting nanowires. Nature 612, 448 (2022).
doi: 10.1038/s41586-022-05352-2 pubmed: 36418399
Liu, C.-X. et al. Enhancing the excitation gap of a quantum-dot-based Kitaev chain. Preprint at https://arxiv.org/abs/2310.09106 (2023).
Zatelli, F. et al. Robust poor man’s Majorana zero modes using Yu-Shiba-Rusinov states. Preprint at https://arxiv.org/abs/2311.03193 (2023).
Meng, T., Florens, S. & Simon, P. Self-consistent description of Andreev bound states in Josephson quantum dot devices. Phys. Rev. B 79, 224521 (2009).
doi: 10.1103/PhysRevB.79.224521
Grove-Rasmussen, K. et al. Superconductivity-enhanced bias spectroscopy in carbon nanotube quantum dots. Phys. Rev. B 79, 134518 (2009).
doi: 10.1103/PhysRevB.79.134518
Deacon, R. S. et al. Tunneling spectroscopy of Andreev energy levels in a quantum dot coupled to a superconductor. Phys. Rev. Lett. 104, 076805 (2010).
doi: 10.1103/PhysRevLett.104.076805 pubmed: 20366905
Lee, E. J. et al. Spin-resolved Andreev levels and parity crossings in hybrid superconductor–semiconductor nanostructures. Nat. Nanotechnol. 9, 79 (2014).
doi: 10.1038/nnano.2013.267 pubmed: 24336403
Jellinggaard, A., Grove-Rasmussen, K., Madsen, M. H. & Nygård, J. Tuning Yu-Shiba-Rusinov states in a quantum dot. Phys. Rev. B 94, 064520 (2016).
doi: 10.1103/PhysRevB.94.064520
Grove-Rasmussen, K. et al. Yu-Shiba-Rusinov screening of spins in double quantum dots. Nat. Commun. 9, 2376 (2018).
doi: 10.1038/s41467-018-04683-x pubmed: 29915280 pmcid: 6006160
Wang, Q. et al. Triplet correlations in Cooper pair splitters realized in a two-dimensional electron gas. Nat. Commun. 14, 4876 (2023).
doi: 10.1038/s41467-023-40551-z pubmed: 37573341 pmcid: 10423214
Dai, L., Kuo, W. & Chung, M.-C. Extracting entangled qubits from Majorana fermions in quantum dot chains through the measurement of parity. Sci. Rep. 5, 11188 (2015).
doi: 10.1038/srep11188 pubmed: 26062033 pmcid: 5395956
Pino, D. M., Souto, R. S. & Aguado, R. Minimal Kitaev-transmon qubit based on double quantum dots. Phys. Rev. B 109, 075101 (2024).
Clarke, D. J. Experimentally accessible topological quality factor for wires with zero energy modes. Phys. Rev. B 96, 201109 (2017).
doi: 10.1103/PhysRevB.96.201109
Prada, E., Aguado, R. & San-Jose, P. Measuring Majorana nonlocality and spin structure with a quantum dot. Phys. Rev. B 96, 085418 (2017).
doi: 10.1103/PhysRevB.96.085418
Souto, R. S., Tsintzis, A., Leijnse, M. & Danon, J. Probing Majorana localization in minimal Kitaev chains through a quantum dot. Phys. Rev. Res. 5, 043182 (2023).
Möhle, C. M. et al. Controlling Andreev bound states with the magnetic vector potential. Nano Lett. 22, 8601 (2022).
doi: 10.1021/acs.nanolett.2c03130
Martinez, E. A. et al. Measurement circuit effects in three-terminal electrical transport measurements. Preprint at https://arxiv.org/abs/2104.02671 (2021).
ten Haaf, S. L. D. Data and code for “A two-site Kitaev chain in a two-dimensional electron gas”. Zenodo https://doi.org/10.5281/zenodo.10801215 (2024).

Auteurs

Sebastiaan L D Ten Haaf (SLD)

QuTech and Kavli Institute of NanoScience, Delft University of Technology, Delft, The Netherlands.

Qingzhen Wang (Q)

QuTech and Kavli Institute of NanoScience, Delft University of Technology, Delft, The Netherlands.

A Mert Bozkurt (AM)

QuTech and Kavli Institute of NanoScience, Delft University of Technology, Delft, The Netherlands.

Chun-Xiao Liu (CX)

QuTech and Kavli Institute of NanoScience, Delft University of Technology, Delft, The Netherlands.

Ivan Kulesh (I)

QuTech and Kavli Institute of NanoScience, Delft University of Technology, Delft, The Netherlands.

Philip Kim (P)

QuTech and Kavli Institute of NanoScience, Delft University of Technology, Delft, The Netherlands.

Di Xiao (D)

Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA.

Candice Thomas (C)

Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA.

Michael J Manfra (MJ)

Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA.
Elmore School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA.
School of Materials Engineering, Purdue University, West Lafayette, IN, USA.

Tom Dvir (T)

QuTech and Kavli Institute of NanoScience, Delft University of Technology, Delft, The Netherlands.

Michael Wimmer (M)

QuTech and Kavli Institute of NanoScience, Delft University of Technology, Delft, The Netherlands.

Srijit Goswami (S)

QuTech and Kavli Institute of NanoScience, Delft University of Technology, Delft, The Netherlands. s.goswami@tudelft.nl.

Articles similaires

Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Aluminum Carbon Quantum Dots Spectrometry, Fluorescence Limit of Detection

Fluorescent and colorimetric dual-mode recognition of Al

Liping Lin, Meng Fang, Yaojia Lin et al.
1.00
Colorimetry Hydrogen-Ion Concentration Tablets Aluminum Nitrogen

Comparative assessment of physics-based in silico methods to calculate relative solubilities.

Adiran Garaizar Suarez, Andreas H Göller, Michael E Beck et al.
1.00
Solvents Solubility Quantum Theory Molecular Dynamics Simulation Thermodynamics

Classifications MeSH