A two-site Kitaev chain in a two-dimensional electron gas.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
Jun 2024
Jun 2024
Historique:
received:
18
11
2023
accepted:
17
04
2024
medline:
13
6
2024
pubmed:
13
6
2024
entrez:
12
6
2024
Statut:
ppublish
Résumé
Artificial Kitaev chains can be used to engineer Majorana bound states (MBSs) in superconductor-semiconductor hybrids
Identifiants
pubmed: 38867129
doi: 10.1038/s41586-024-07434-9
pii: 10.1038/s41586-024-07434-9
doi:
Substances chimiques
Gases
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
329-334Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Sau, J. D. & Sarma, S. D. Realizing a robust practical Majorana chain in a quantum-dot-superconductor linear array. Nat. Commun. 3, 964 (2012).
doi: 10.1038/ncomms1966
pubmed: 22805571
Leijnse, M. & Flensberg, K. Parity qubits and poor man’s Majorana bound states in double quantum dots. Phys. Rev. B 86, 134528 (2012).
doi: 10.1103/PhysRevB.86.134528
Fulga, I. C., Haim, A., Akhmerov, A. R. & Oreg, Y. Adaptive tuning of Majorana fermions in a quantum dot chain. New J. Phys. 15, 045020 (2013).
doi: 10.1088/1367-2630/15/4/045020
Dvir, T. et al. Realization of a minimal Kitaev chain in coupled quantum dots. Nature 614, 445 (2023).
doi: 10.1038/s41586-022-05585-1
pubmed: 36792741
Tsintzis, A., Souto, R. S. & Leijnse, M. Creating and detecting poor man’s Majorana bound states in interacting quantum dots. Phys. Rev. B 106, L201404 (2022).
doi: 10.1103/PhysRevB.106.L201404
Tsintzis, A., Souto, R. S., Flensberg, K., Danon, J. & Leijnse, M. Majorana qubits and non-abelian physics in quantum dot–based minimal Kitaev chains. PRX Quantum 5, 010323 (2024).
Lutchyn, R. M., Sau, J. D. & Das Sarma, S. Majorana fermions and a topological phase transition in semiconductor–superconductor heterostructures. Phys. Rev. Lett. 105, 077001 (2010).
doi: 10.1103/PhysRevLett.105.077001
pubmed: 20868069
Oreg, Y., Refael, G. & von Oppen, F. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002 (2010).
doi: 10.1103/PhysRevLett.105.177002
pubmed: 21231073
Prada, E. et al. From Andreev to Majorana bound states in hybrid superconductor–semiconductor nanowires. Nat. Rev. Phys. 2, 575 (2020).
doi: 10.1038/s42254-020-0228-y
Liu, C.-X., Sau, J. D., Stanescu, T. D. & Das Sarma, S. Andreev bound states versus Majorana bound states in quantum dot-nanowire-superconductor hybrid structures: trivial versus topological zero-bias conductance peaks. Phys. Rev. B 96, 075161 (2017).
doi: 10.1103/PhysRevB.96.075161
Vuik, A., Nijholt, B., Akhmerov, A. R. & Wimmer, M. Reproducing topological properties with quasi-Majorana states. SciPost Phys. 7, 061 (2019).
doi: 10.21468/SciPostPhys.7.5.061
Pan, H. & Das Sarma, S. Physical mechanisms for zero-bias conductance peaks in Majorana nanowires. Phys. Rev. Res. 2, 013377 (2020).
doi: 10.1103/PhysRevResearch.2.013377
Kitaev, A. Y. Unpaired Majorana fermions in quantum wires. Physics-Usphekhi 44, 131 (2001).
doi: 10.1070/1063-7869/44/10S/S29
Széchenyi, G. & Pályi, A. Parity-to-charge conversion for readout of topological Majorana qubits. Phys. Rev. B 101, 235441 (2020).
doi: 10.1103/PhysRevB.101.235441
Boross, P. & Pályi, A. Braiding-based quantum control of a Majorana qubit built from quantum dots. Phys. Rev. B 109, 125410 (2024).
Liu, C.-X., Pan, H., Setiawan, F., Wimmer, M. & Sau, J. D. Fusion protocol for Majorana modes in coupled quantum dots. Phys. Rev. B 108, 085437 (2023).
doi: 10.1103/PhysRevB.108.085437
Sedlmayr, N. & Bena, C. Visualizing Majorana bound states in one and two dimensions using the generalized Majorana polarization. Phys. Rev. B 92, 115115 (2015).
doi: 10.1103/PhysRevB.92.115115
Liu, C.-X., Wang, G., Dvir, T. & Wimmer, M. Tunable superconducting coupling of quantum dots via Andreev bound states in semiconductor–superconductor nanowires. Phys. Rev. Lett. 129, 267701 (2022).
doi: 10.1103/PhysRevLett.129.267701
pubmed: 36608192
Bordin, A. et al. Tunable crossed Andreev reflection and elastic cotunneling in hybrid nanowires. Phys. Rev. X 13, 031031 (2023).
Wang, G. et al. Singlet and triplet Cooper pair splitting in hybrid superconducting nanowires. Nature 612, 448 (2022).
doi: 10.1038/s41586-022-05352-2
pubmed: 36418399
Liu, C.-X. et al. Enhancing the excitation gap of a quantum-dot-based Kitaev chain. Preprint at https://arxiv.org/abs/2310.09106 (2023).
Zatelli, F. et al. Robust poor man’s Majorana zero modes using Yu-Shiba-Rusinov states. Preprint at https://arxiv.org/abs/2311.03193 (2023).
Meng, T., Florens, S. & Simon, P. Self-consistent description of Andreev bound states in Josephson quantum dot devices. Phys. Rev. B 79, 224521 (2009).
doi: 10.1103/PhysRevB.79.224521
Grove-Rasmussen, K. et al. Superconductivity-enhanced bias spectroscopy in carbon nanotube quantum dots. Phys. Rev. B 79, 134518 (2009).
doi: 10.1103/PhysRevB.79.134518
Deacon, R. S. et al. Tunneling spectroscopy of Andreev energy levels in a quantum dot coupled to a superconductor. Phys. Rev. Lett. 104, 076805 (2010).
doi: 10.1103/PhysRevLett.104.076805
pubmed: 20366905
Lee, E. J. et al. Spin-resolved Andreev levels and parity crossings in hybrid superconductor–semiconductor nanostructures. Nat. Nanotechnol. 9, 79 (2014).
doi: 10.1038/nnano.2013.267
pubmed: 24336403
Jellinggaard, A., Grove-Rasmussen, K., Madsen, M. H. & Nygård, J. Tuning Yu-Shiba-Rusinov states in a quantum dot. Phys. Rev. B 94, 064520 (2016).
doi: 10.1103/PhysRevB.94.064520
Grove-Rasmussen, K. et al. Yu-Shiba-Rusinov screening of spins in double quantum dots. Nat. Commun. 9, 2376 (2018).
doi: 10.1038/s41467-018-04683-x
pubmed: 29915280
pmcid: 6006160
Wang, Q. et al. Triplet correlations in Cooper pair splitters realized in a two-dimensional electron gas. Nat. Commun. 14, 4876 (2023).
doi: 10.1038/s41467-023-40551-z
pubmed: 37573341
pmcid: 10423214
Dai, L., Kuo, W. & Chung, M.-C. Extracting entangled qubits from Majorana fermions in quantum dot chains through the measurement of parity. Sci. Rep. 5, 11188 (2015).
doi: 10.1038/srep11188
pubmed: 26062033
pmcid: 5395956
Pino, D. M., Souto, R. S. & Aguado, R. Minimal Kitaev-transmon qubit based on double quantum dots. Phys. Rev. B 109, 075101 (2024).
Clarke, D. J. Experimentally accessible topological quality factor for wires with zero energy modes. Phys. Rev. B 96, 201109 (2017).
doi: 10.1103/PhysRevB.96.201109
Prada, E., Aguado, R. & San-Jose, P. Measuring Majorana nonlocality and spin structure with a quantum dot. Phys. Rev. B 96, 085418 (2017).
doi: 10.1103/PhysRevB.96.085418
Souto, R. S., Tsintzis, A., Leijnse, M. & Danon, J. Probing Majorana localization in minimal Kitaev chains through a quantum dot. Phys. Rev. Res. 5, 043182 (2023).
Möhle, C. M. et al. Controlling Andreev bound states with the magnetic vector potential. Nano Lett. 22, 8601 (2022).
doi: 10.1021/acs.nanolett.2c03130
Martinez, E. A. et al. Measurement circuit effects in three-terminal electrical transport measurements. Preprint at https://arxiv.org/abs/2104.02671 (2021).
ten Haaf, S. L. D. Data and code for “A two-site Kitaev chain in a two-dimensional electron gas”. Zenodo https://doi.org/10.5281/zenodo.10801215 (2024).