A Fully-Automated Senescence Test (FAST) for the high-throughput quantification of senescence-associated markers.
Aging
Cellular senescence
High-content image analysis
High-throughput screening
Machine learning
Senescence-associated-β-galactosidase
Journal
GeroScience
ISSN: 2509-2723
Titre abrégé: Geroscience
Pays: Switzerland
ID NLM: 101686284
Informations de publication
Date de publication:
13 Jun 2024
13 Jun 2024
Historique:
received:
22
12
2023
accepted:
15
03
2024
medline:
13
6
2024
pubmed:
13
6
2024
entrez:
13
6
2024
Statut:
aheadofprint
Résumé
Cellular senescence is a major driver of aging and age-related diseases. Quantification of senescent cells remains challenging due to the lack of senescence-specific markers and generalist, unbiased methodology. Here, we describe the Fully-Automated Senescence Test (FAST), an image-based method for the high-throughput, single-cell assessment of senescence in cultured cells. FAST quantifies three of the most widely adopted senescence-associated markers for each cell imaged: senescence-associated β-galactosidase activity (SA-β-Gal) using X-Gal, proliferation arrest via lack of 5-ethynyl-2'-deoxyuridine (EdU) incorporation, and enlarged morphology via increased nuclear area. The presented workflow entails microplate image acquisition, image processing, data analysis, and graphing. Standardization was achieved by (i) quantifying colorimetric SA-β-Gal via optical density; (ii) implementing staining background controls; and (iii) automating image acquisition, image processing, and data analysis. In addition to the automated threshold-based scoring, a multivariate machine learning approach is provided. We show that FAST accurately quantifies senescence burden and is agnostic to cell type and microscope setup. Moreover, it effectively mitigates false-positive senescence marker staining, a common issue arising from culturing conditions. Using FAST, we compared X-Gal with fluorescent C
Identifiants
pubmed: 38869711
doi: 10.1007/s11357-024-01167-3
pii: 10.1007/s11357-024-01167-3
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s).
Références
Gorgoulis V, et al. Cellular senescence: defining a path forward. Cell. 2019;179:813–27.
doi: 10.1016/j.cell.2019.10.005
pubmed: 31675495
Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature. 1990;345:458–60.
doi: 10.1038/345458a0
pubmed: 2342578
Bodnar AG, et al. Extension of life-span by introduction of telomerase into normal human cells. Science. 1998;279:349–52.
doi: 10.1126/science.279.5349.349
pubmed: 9454332
Leonardo AD, Linke SP, Clarkin K, Wahl GM. DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev. 1994;8:2540–51.
doi: 10.1101/gad.8.21.2540
pubmed: 7958916
Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell. 1997;88:593–602.
doi: 10.1016/S0092-8674(00)81902-9
pubmed: 9054499
Di Micco R, et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature. 2006;444:638–42.
doi: 10.1038/nature05327
pubmed: 17136094
Bartkova J, et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature. 2006;444:633–7.
doi: 10.1038/nature05268
pubmed: 17136093
Wiley CD, et al. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab. 2016;23:303–14.
doi: 10.1016/j.cmet.2015.11.011
pubmed: 26686024
Cells S, et al. Unmasking transcriptional heterogeneity in senescent cells. Curr Biol. 2017;27:2652–2660.e4.
doi: 10.1016/j.cub.2017.07.033
Basisty N, et al. A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLOS Biol. 2020;18:e3000599.
doi: 10.1371/journal.pbio.3000599
pubmed: 31945054
pmcid: 6964821
Muñoz-Espín D, et al. Programmed cell senescence during mammalian embryonic development. Cell. 2013;155:1104–18.
doi: 10.1016/j.cell.2013.10.019
pubmed: 24238962
Storer M, et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell. 2013;155:1119–30.
doi: 10.1016/j.cell.2013.10.041
pubmed: 24238961
Demaria M, et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell. 2014;31:722–33.
doi: 10.1016/j.devcel.2014.11.012
pubmed: 25499914
pmcid: 4349629
Dimri GP, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA. 1995;92:9363–7.
doi: 10.1073/pnas.92.20.9363
pubmed: 7568133
pmcid: 40985
Idda ML, et al. Survey of senescent cell markers with age in human tissues. Aging. 2020;12:4052–66.
doi: 10.18632/aging.102903
pubmed: 32160592
pmcid: 7093180
Xu M, et al. Senolytics improve physical function and increase lifespan in old age. Nat Med. 2018;24:1246.
doi: 10.1038/s41591-018-0092-9
pubmed: 29988130
pmcid: 6082705
Muñoz-Espín D, Serrano M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol. 2014;15:482–96.
doi: 10.1038/nrm3823
pubmed: 24954210
Di Micco R, Krizhanovsky V, Baker D, d’Adda di Fagagna F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol. 2020;222(22):75–95.
Chaib S, Tchkonia T, Kirkland JL. Cellular senescence and senolytics: the path to the clinic. Nat Med. 2022;28:1556–68.
doi: 10.1038/s41591-022-01923-y
pubmed: 35953721
pmcid: 9599677
UNITY. Biotechnology announces positive 48-week results from phase 2 BEHOLD Study of UBX1325 in patients with diabetic macular edema. Unity Biotechnology. https://ir.unitybiotechnology.com/news-releases/news-release-details/unity-biotechnology-announces-positive-48-week-results-phase-2/
Kohli J, et al. Algorithmic assessment of cellular senescence in experimental and clinical specimens. Nat Protoc. 2021;16:2471–98.
doi: 10.1038/s41596-021-00505-5
pubmed: 33911261
pmcid: 8710232
Woods G, Andersen JK. Screening method for identifying toxicants capable of inducing astrocyte senescence. Toxicol Sci. 2018;166:16–24.
doi: 10.1093/toxsci/kfy181
pubmed: 30010981
pmcid: 6204767
Krzystyniak A, Gluchowska A, Mosieniak G, Sikora E. Fiji-based tool for rapid and unbiased analysis of SA-β-Gal activity in cultured cells. Biomolecules. 2023;13:362.
doi: 10.3390/biom13020362
pubmed: 36830731
pmcid: 9953415
Biran A, et al. Quantitative identification of senescent cells in aging and disease. Aging Cell. 2017;16:661–71.
doi: 10.1111/acel.12592
pubmed: 28455874
pmcid: 5506427
Neri F, Basisty N, Desprez PY, Campisi J, Schilling B. Quantitative proteomic analysis of the senescence-associated secretory phenotype by data-independent acquisition. Curr Protoc. 1(2):e32.
Chang, W. et al. Shiny: web application framework for R. (2023). https://github.com/rstudio/shiny .
Kuhn M. Building predictive models in R using the caret package. J Stat Softw. 2008;28:1–26.
doi: 10.18637/jss.v028.i05
Gerencser AA, Doczi J, Töröcsik B, Bossy-Wetzel E, Adam-Vizi V. Mitochondrial swelling measurement in situ by optimized spatial filtering: astrocyte-neuron differences. Biophys J. 2008;95:2583–98.
doi: 10.1529/biophysj.107.118620
pubmed: 18424491
pmcid: 2517017
Stringer C, Wang T, Michaelos M, Pachitariu M. Cellpose: a generalist algorithm for cellular segmentation. Nat Methods. 2021;18:100–6.
doi: 10.1038/s41592-020-01018-x
pubmed: 33318659
Pachitariu M, Stringer C. Cellpose 2.0: how to train your own model. Nat Methods. 2022;19:1634–41.
doi: 10.1038/s41592-022-01663-4
pubmed: 36344832
pmcid: 9718665
Kurz DJ, Decary S, Hong Y, Erusalimsky JD. Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J. Cell Sci. 2000;113:3613–22.
doi: 10.1242/jcs.113.20.3613
pubmed: 11017877
Martínez-Zamudio RI, et al. Senescence-associated β-galactosidase reveals the abundance of senescent CD8+ T cells in aging humans. Aging Cell. 2021;20:e13344.
doi: 10.1111/acel.13344
pubmed: 33939265
pmcid: 8135084
Flor AC, Doshi AP, Kron SJ. Modulation of therapy-induced senescence by reactive lipid aldehydes. Cell Death Discov. 2016;2:16045.
doi: 10.1038/cddiscovery.2016.45
pubmed: 27453792
pmcid: 4957821
Maejima Y, Adachi S, Ito H, Hirao K, Isobe M. Induction of premature senescence in cardiomyocytes by doxorubicin as a novel mechanism of myocardial damage. Aging Cell. 2008;7:125–36.
doi: 10.1111/j.1474-9726.2007.00358.x
pubmed: 18031568
Piegari E, et al. Doxorubicin induces senescence and impairs function of human cardiac progenitor cells. Basic Res Cardiol. 2013;108:334.
doi: 10.1007/s00395-013-0334-4
pubmed: 23411815
Zhang J-H, Oldenburg KR. Z-Factor. In: Schwab M, editor. Encyclopedia of Cancer. Berlin, Heidelberg: (Springer; 2017. p. 4885–7. https://doi.org/10.1007/978-3-662-46875-3_6298 .
doi: 10.1007/978-3-662-46875-3_6298
Chang J, et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med. 2016;22:78–83.
doi: 10.1038/nm.4010
pubmed: 26657143
Shlush LI, et al. Quantitative digital in situ senescence-associated β-galactosidase assay. BMC Cell Biol. 2011;12:16.
doi: 10.1186/1471-2121-12-16
pubmed: 21496240
pmcid: 3101133
Flor A, Pagacz J, Thompson D, Kron S. Far-red fluorescent senescence-associated β-galactosidase probe for identification and enrichment of senescent tumor cells by flow cytometry. JoVE J Vis Exp. 2022:e64176. https://doi.org/10.3791/64176 .
Fuhrmann-Stroissnigg H, et al. SA-β-galactosidase-based screening assay for the identification of senotherapeutic drugs. JoVE J Vis Exp. 2019:e58133. https://doi.org/10.3791/58133 .
Marini N, et al. Data-driven color augmentation for H&E stained images in computational pathology. J Pathol Inform. 2023;14:100183.
doi: 10.1016/j.jpi.2022.100183
pubmed: 36687531
pmcid: 9852546
Brand MD, et al. Suppressors of superoxide-H2O2 production at site IQ of mitochondrial complex I protect against stem cell hyperplasia and ischemia-reperfusion injury. Cell Metab. 2016;24:582–92.
doi: 10.1016/j.cmet.2016.08.012
pubmed: 27667666
pmcid: 5061631
Smer-Barreto V, et al. Discovery of senolytics using machine learning. Nat Commun. 2023;14:3445.
doi: 10.1038/s41467-023-39120-1
pubmed: 37301862
pmcid: 10257182
Heckenbach I, et al. Nuclear morphology is a deep learning biomarker of cellular senescence. Nat Aging. 2022;1–14. https://doi.org/10.1038/s43587-022-00263-3 .
Duran I, et al. Detection of senescence using machine learning algorithms based on nuclear features. Nat Commun. 2024;15:1041.
doi: 10.1038/s41467-024-45421-w
pubmed: 38310113
pmcid: 10838307
Levitsky KL, Toledo-Aral JJ, López-Barneo J, Villadiego J. Direct confocal acquisition of fluorescence from X-gal staining on thick tissue sections. Sci Rep. 2013;3:2937.
doi: 10.1038/srep02937
pubmed: 24121824
pmcid: 3796308
Liu Y, et al. Environmental pollutants exposure: a potential contributor for aging and age-related diseases. Environ Toxicol Pharmacol. 2021;83:103575.
doi: 10.1016/j.etap.2020.103575
pubmed: 33385577