A Fully-Automated Senescence Test (FAST) for the high-throughput quantification of senescence-associated markers.

Aging Cellular senescence High-content image analysis High-throughput screening Machine learning Senescence-associated-β-galactosidase

Journal

GeroScience
ISSN: 2509-2723
Titre abrégé: Geroscience
Pays: Switzerland
ID NLM: 101686284

Informations de publication

Date de publication:
13 Jun 2024
Historique:
received: 22 12 2023
accepted: 15 03 2024
medline: 13 6 2024
pubmed: 13 6 2024
entrez: 13 6 2024
Statut: aheadofprint

Résumé

Cellular senescence is a major driver of aging and age-related diseases. Quantification of senescent cells remains challenging due to the lack of senescence-specific markers and generalist, unbiased methodology. Here, we describe the Fully-Automated Senescence Test (FAST), an image-based method for the high-throughput, single-cell assessment of senescence in cultured cells. FAST quantifies three of the most widely adopted senescence-associated markers for each cell imaged: senescence-associated β-galactosidase activity (SA-β-Gal) using X-Gal, proliferation arrest via lack of 5-ethynyl-2'-deoxyuridine (EdU) incorporation, and enlarged morphology via increased nuclear area. The presented workflow entails microplate image acquisition, image processing, data analysis, and graphing. Standardization was achieved by (i) quantifying colorimetric SA-β-Gal via optical density; (ii) implementing staining background controls; and (iii) automating image acquisition, image processing, and data analysis. In addition to the automated threshold-based scoring, a multivariate machine learning approach is provided. We show that FAST accurately quantifies senescence burden and is agnostic to cell type and microscope setup. Moreover, it effectively mitigates false-positive senescence marker staining, a common issue arising from culturing conditions. Using FAST, we compared X-Gal with fluorescent C

Identifiants

pubmed: 38869711
doi: 10.1007/s11357-024-01167-3
pii: 10.1007/s11357-024-01167-3
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s).

Références

Gorgoulis V, et al. Cellular senescence: defining a path forward. Cell. 2019;179:813–27.
doi: 10.1016/j.cell.2019.10.005 pubmed: 31675495
Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature. 1990;345:458–60.
doi: 10.1038/345458a0 pubmed: 2342578
Bodnar AG, et al. Extension of life-span by introduction of telomerase into normal human cells. Science. 1998;279:349–52.
doi: 10.1126/science.279.5349.349 pubmed: 9454332
Leonardo AD, Linke SP, Clarkin K, Wahl GM. DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev. 1994;8:2540–51.
doi: 10.1101/gad.8.21.2540 pubmed: 7958916
Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell. 1997;88:593–602.
doi: 10.1016/S0092-8674(00)81902-9 pubmed: 9054499
Di Micco R, et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature. 2006;444:638–42.
doi: 10.1038/nature05327 pubmed: 17136094
Bartkova J, et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature. 2006;444:633–7.
doi: 10.1038/nature05268 pubmed: 17136093
Wiley CD, et al. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab. 2016;23:303–14.
doi: 10.1016/j.cmet.2015.11.011 pubmed: 26686024
Cells S, et al. Unmasking transcriptional heterogeneity in senescent cells. Curr Biol. 2017;27:2652–2660.e4.
doi: 10.1016/j.cub.2017.07.033
Basisty N, et al. A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLOS Biol. 2020;18:e3000599.
doi: 10.1371/journal.pbio.3000599 pubmed: 31945054 pmcid: 6964821
Muñoz-Espín D, et al. Programmed cell senescence during mammalian embryonic development. Cell. 2013;155:1104–18.
doi: 10.1016/j.cell.2013.10.019 pubmed: 24238962
Storer M, et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell. 2013;155:1119–30.
doi: 10.1016/j.cell.2013.10.041 pubmed: 24238961
Demaria M, et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell. 2014;31:722–33.
doi: 10.1016/j.devcel.2014.11.012 pubmed: 25499914 pmcid: 4349629
Dimri GP, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA. 1995;92:9363–7.
doi: 10.1073/pnas.92.20.9363 pubmed: 7568133 pmcid: 40985
Idda ML, et al. Survey of senescent cell markers with age in human tissues. Aging. 2020;12:4052–66.
doi: 10.18632/aging.102903 pubmed: 32160592 pmcid: 7093180
Xu M, et al. Senolytics improve physical function and increase lifespan in old age. Nat Med. 2018;24:1246.
doi: 10.1038/s41591-018-0092-9 pubmed: 29988130 pmcid: 6082705
Muñoz-Espín D, Serrano M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol. 2014;15:482–96.
doi: 10.1038/nrm3823 pubmed: 24954210
Di Micco R, Krizhanovsky V, Baker D, d’Adda di Fagagna F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol. 2020;222(22):75–95.
Chaib S, Tchkonia T, Kirkland JL. Cellular senescence and senolytics: the path to the clinic. Nat Med. 2022;28:1556–68.
doi: 10.1038/s41591-022-01923-y pubmed: 35953721 pmcid: 9599677
UNITY. Biotechnology announces positive 48-week results from phase 2 BEHOLD Study of UBX1325 in patients with diabetic macular edema. Unity Biotechnology. https://ir.unitybiotechnology.com/news-releases/news-release-details/unity-biotechnology-announces-positive-48-week-results-phase-2/
Kohli J, et al. Algorithmic assessment of cellular senescence in experimental and clinical specimens. Nat Protoc. 2021;16:2471–98.
doi: 10.1038/s41596-021-00505-5 pubmed: 33911261 pmcid: 8710232
Woods G, Andersen JK. Screening method for identifying toxicants capable of inducing astrocyte senescence. Toxicol Sci. 2018;166:16–24.
doi: 10.1093/toxsci/kfy181 pubmed: 30010981 pmcid: 6204767
Krzystyniak A, Gluchowska A, Mosieniak G, Sikora E. Fiji-based tool for rapid and unbiased analysis of SA-β-Gal activity in cultured cells. Biomolecules. 2023;13:362.
doi: 10.3390/biom13020362 pubmed: 36830731 pmcid: 9953415
Biran A, et al. Quantitative identification of senescent cells in aging and disease. Aging Cell. 2017;16:661–71.
doi: 10.1111/acel.12592 pubmed: 28455874 pmcid: 5506427
Neri F, Basisty N, Desprez PY, Campisi J, Schilling B. Quantitative proteomic analysis of the senescence-associated secretory phenotype by data-independent acquisition. Curr Protoc. 1(2):e32.
Chang, W. et al. Shiny: web application framework for R. (2023).  https://github.com/rstudio/shiny .
Kuhn M. Building predictive models in R using the caret package. J Stat Softw. 2008;28:1–26.
doi: 10.18637/jss.v028.i05
Gerencser AA, Doczi J, Töröcsik B, Bossy-Wetzel E, Adam-Vizi V. Mitochondrial swelling measurement in situ by optimized spatial filtering: astrocyte-neuron differences. Biophys J. 2008;95:2583–98.
doi: 10.1529/biophysj.107.118620 pubmed: 18424491 pmcid: 2517017
Stringer C, Wang T, Michaelos M, Pachitariu M. Cellpose: a generalist algorithm for cellular segmentation. Nat Methods. 2021;18:100–6.
doi: 10.1038/s41592-020-01018-x pubmed: 33318659
Pachitariu M, Stringer C. Cellpose 2.0: how to train your own model. Nat Methods. 2022;19:1634–41.
doi: 10.1038/s41592-022-01663-4 pubmed: 36344832 pmcid: 9718665
Kurz DJ, Decary S, Hong Y, Erusalimsky JD. Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J. Cell Sci. 2000;113:3613–22.
doi: 10.1242/jcs.113.20.3613 pubmed: 11017877
Martínez-Zamudio RI, et al. Senescence-associated β-galactosidase reveals the abundance of senescent CD8+ T cells in aging humans. Aging Cell. 2021;20:e13344.
doi: 10.1111/acel.13344 pubmed: 33939265 pmcid: 8135084
Flor AC, Doshi AP, Kron SJ. Modulation of therapy-induced senescence by reactive lipid aldehydes. Cell Death Discov. 2016;2:16045.
doi: 10.1038/cddiscovery.2016.45 pubmed: 27453792 pmcid: 4957821
Maejima Y, Adachi S, Ito H, Hirao K, Isobe M. Induction of premature senescence in cardiomyocytes by doxorubicin as a novel mechanism of myocardial damage. Aging Cell. 2008;7:125–36.
doi: 10.1111/j.1474-9726.2007.00358.x pubmed: 18031568
Piegari E, et al. Doxorubicin induces senescence and impairs function of human cardiac progenitor cells. Basic Res Cardiol. 2013;108:334.
doi: 10.1007/s00395-013-0334-4 pubmed: 23411815
Zhang J-H, Oldenburg KR. Z-Factor. In: Schwab M, editor. Encyclopedia of Cancer. Berlin, Heidelberg: (Springer; 2017. p. 4885–7. https://doi.org/10.1007/978-3-662-46875-3_6298 .
doi: 10.1007/978-3-662-46875-3_6298
Chang J, et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med. 2016;22:78–83.
doi: 10.1038/nm.4010 pubmed: 26657143
Shlush LI, et al. Quantitative digital in situ senescence-associated β-galactosidase assay. BMC Cell Biol. 2011;12:16.
doi: 10.1186/1471-2121-12-16 pubmed: 21496240 pmcid: 3101133
Flor A, Pagacz J, Thompson D, Kron S. Far-red fluorescent senescence-associated β-galactosidase probe for identification and enrichment of senescent tumor cells by flow cytometry. JoVE J Vis Exp. 2022:e64176. https://doi.org/10.3791/64176 .
Fuhrmann-Stroissnigg H, et al. SA-β-galactosidase-based screening assay for the identification of senotherapeutic drugs. JoVE J Vis Exp. 2019:e58133. https://doi.org/10.3791/58133 .
Marini N, et al. Data-driven color augmentation for H&E stained images in computational pathology. J Pathol Inform. 2023;14:100183.
doi: 10.1016/j.jpi.2022.100183 pubmed: 36687531 pmcid: 9852546
Brand MD, et al. Suppressors of superoxide-H2O2 production at site IQ of mitochondrial complex I protect against stem cell hyperplasia and ischemia-reperfusion injury. Cell Metab. 2016;24:582–92.
doi: 10.1016/j.cmet.2016.08.012 pubmed: 27667666 pmcid: 5061631
Smer-Barreto V, et al. Discovery of senolytics using machine learning. Nat Commun. 2023;14:3445.
doi: 10.1038/s41467-023-39120-1 pubmed: 37301862 pmcid: 10257182
Heckenbach I, et al. Nuclear morphology is a deep learning biomarker of cellular senescence. Nat Aging. 2022;1–14.  https://doi.org/10.1038/s43587-022-00263-3 .
Duran I, et al. Detection of senescence using machine learning algorithms based on nuclear features. Nat Commun. 2024;15:1041.
doi: 10.1038/s41467-024-45421-w pubmed: 38310113 pmcid: 10838307
Levitsky KL, Toledo-Aral JJ, López-Barneo J, Villadiego J. Direct confocal acquisition of fluorescence from X-gal staining on thick tissue sections. Sci Rep. 2013;3:2937.
doi: 10.1038/srep02937 pubmed: 24121824 pmcid: 3796308
Liu Y, et al. Environmental pollutants exposure: a potential contributor for aging and age-related diseases. Environ Toxicol Pharmacol. 2021;83:103575.
doi: 10.1016/j.etap.2020.103575 pubmed: 33385577

Auteurs

Francesco Neri (F)

Buck Institute for Research on Aging, Novato, CA, USA.
USC Leonard Davis School of Gerontology, Los Angeles, CA, USA.

Selma N Takajjart (SN)

Buck Institute for Research on Aging, Novato, CA, USA.

Chad A Lerner (CA)

Buck Institute for Research on Aging, Novato, CA, USA.

Pierre-Yves Desprez (PY)

Buck Institute for Research on Aging, Novato, CA, USA.
California Pacific Medical Center, San Francisco, CA, USA.

Birgit Schilling (B)

Buck Institute for Research on Aging, Novato, CA, USA. bschilling@buckinstitute.org.
USC Leonard Davis School of Gerontology, Los Angeles, CA, USA. bschilling@buckinstitute.org.

Judith Campisi (J)

Buck Institute for Research on Aging, Novato, CA, USA.
USC Leonard Davis School of Gerontology, Los Angeles, CA, USA.

Akos A Gerencser (AA)

Buck Institute for Research on Aging, Novato, CA, USA. agerencser@buckinstitute.org.

Classifications MeSH