Elevated memory T-cell conversion in a preclinical mouse model of hemophilia A.

Activation threshold Factor VIII Hemophilia A Memory T cells

Journal

European journal of immunology
ISSN: 1521-4141
Titre abrégé: Eur J Immunol
Pays: Germany
ID NLM: 1273201

Informations de publication

Date de publication:
14 Jun 2024
Historique:
revised: 27 05 2024
received: 06 10 2023
accepted: 31 05 2024
medline: 14 6 2024
pubmed: 14 6 2024
entrez: 14 6 2024
Statut: aheadofprint

Résumé

One of the major challenges in the choice of the best therapeutic approach for the treatment of patients affected by hemophilia A (HA) is the definition of criteria predicting the formation of factor VIII (FVIII) neutralizing antibodies, called inhibitors. Both genetic and environmental elements influencing the immune response toward FVIII have been identified but still not all the factors causing the pathological rejection of FVIII have been identified. Since there is a connection between coagulation and inflammation, here we assessed the role played by the FVIII deficiency in shaping the humoral and cellular response toward an antigen other than FVIII itself. To this aim, we challenged both HA and wild-type (WT) mice with either FVIII or ovalbumin (OVA) and followed antigen-specific antibody level, immune cell population frequency and phenotype up to 9 weeks after the last antigen booster. The activation threshold was evaluated in vitro by stimulating the murine T cells with a decreasing dose of α-CD3. The humoral response to FVIII was similar between the two groups while both the in vivo and in vitro experiments highlighted an antigen-independent sensitivity of HA compared with WT T cells causing an increase in memory T-cell conversion and proliferation capability.

Identifiants

pubmed: 38873896
doi: 10.1002/eji.202350807
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2350807

Subventions

Organisme : Fondazione Telethon
ID : GGP19201
Organisme : European Union's Horizon 2020 Hemacure
ID : 667421
Organisme : Fondazione Cariplo
ID : 2018-0253

Informations de copyright

© 2024 Wiley‐VCH GmbH.

Références

Bolton‐Maggs, P. H. and Pasi, K. J., Haemophilias A and B. The Lancet. 2003. 361: 1801–1809.
Blanchette, V. S., Key, N. S., Ljung, L. R., Manco‐Johnson, M. J., Berg, H. M. and Srivastava, A., Disorders the S on FV Factor IX and Rare Coagulation. Definitions in hemophilia: Communication from the SSC of the ISTH. J. Thromb. Haemost. 2014. 12: 1935–1939.
Josephson, N., The hemophilias and their clinical management. Hematol. Educ. Program Am Soc. 2013. 2013: 261–267.
Marchesini, E., Morfini, M. and Valentino, L., Recent advances in the treatment of hemophilia: A review. Biologics Targets Ther. 2021. 15: 221–235.
Batty, P. and Lillicrap, D., Hemophilia gene therapy: Approaching the first licensed product. Hemasphere. 2021. 5: e540.
Cormier, M., Batty, P., Tarrant, J. and Lillicrap, D., Advances in knowledge of inhibitor formation in severe haemophilia A. Brit. J. Haematol. 2020. 189: 39–53.
Georgescu, M. T., Lai, J. D., Hough, C. and Lillicrap, D., War and peace: Factor VIII and the adaptive immune response. Cell Immunol. 2016. 301: 2–7.
Algiman, M., Dietrich, G., Nydegger, U. E., Boieldieu, D., Sultan, Y. and Kazatchkine, M. D., Natural antibodies to factor VIII (anti‐hemophilic factor) in healthy individuals. Proc. Natl. Acad. Sci. 1992. 89: 3795–3799.
Gilles, J. G. and Saint‐Remy, J. M., Healthy subjects produce both anti‐factor VIII and specific anti‐idiotypic antibodies. J. Clin. Investig. 1994. 94: 1496–1505.
Hu, G., Okita, D. K., Diethelm‐Okita, B. M. and Conti‐Fine, B. M., Recognition of coagulation factor VIII by CD4+ T cells of healthy humans. J. Thromb. Haemost. 2003. 1: 2159–2166.
Krudysz‐Amblo, J., Parhami‐Seren, B., Butenas, S., Brummel‐Ziedins, K. E., Gomperts, E. D., Rivard, G. E. and Mann, K. G., Quantitation of anti‐factor VIII antibodies in human plasma. Blood. 2009. 113: 2587–2594.
Astermark, J., FVIII inhibitors: Pathogenesis and avoidance. Blood. 2015. 125: 2045–2051.
Hausl, C., Maier, E., Schwarz, H., Ahmad, R., Turecek, P., Dorner, F. and Reipert, B., Long‐term persistence of anti‐factor VIII antibody‐secreting cells in hemophilic mice after treatment with human factor VIII. Thromb Haemostasis. 2002. 87: 840–845.
Garagiola, I., Palla, R. and Peyvandi, F., Risk factors for inhibitor development in severe hemophilia A. Thromb Res. 2018. 168: 20–27.
Foley, J. H. and Conway, E. M., cross talk pathways between coagulation and inflammation. Circ Res. 2016. 118: 1392–1408.
Cadé, M., Muñoz‐Garcia, J., Babuty, A., Fouassier, M., Heymann, M.‐F., Monahan, P. E. and Heymann, D., FVIII at the crossroad of coagulation, bone and immune biology: Emerging evidence of biological activities beyond hemostasis. Drug Discov Today. 2021. 27: 102–116.
López, M. L., Soriano‐Sarabia, N., Bruges, G., Marquez, M. E., Preissner, K. T., Schmitz, M. L. and Hackstein, H., Expression pattern of protease activated receptors in lymphoid cells. Cell. Immunol. 2014. 288: 47–52.
Bretscher, P. and Cohn, M., A theory of self‐nonself discrimination. Science. 1970. 169: 1042–1049.
Matzinger, P., The danger model: A renewed sense of self. Science. 2002. 296: 301–305.
Schep, S. J., Boes, M., Schutgens, R. E. G. and van, V. L. F. D., An update on the ‘danger theory’ in inhibitor development in hemophilia A. Expert Rev. Hematol. 2019. 12: 335–344.
Doering, C., Parker, E. T., Healey, J. F., Craddock, H. N., Barrow, R. T. and Lollar, P., Expression and characterization of recombinant murine factor VIII. Thromb. Haemost. 2002. 88: 450–458.
Bi, L., Lawler, A. M., Antonarakis, S. E., High, K. A., Gearhart, J. D. and Kazazian, H. H., Targeted disruption of the mouse factor VIII gene produces a model of haemophilia A. Nat. Genet. 1995. 10: 119–121.
Reipert, B., Ahmad, R., Turecek, P. and Schwarz, H., Characterization of antibodies induced by human factor viii in a murine knockout model of hemophilia A. Thromb Haemostasis. 2000. 84: 826–832.
Moorehead, P. C., Waters, B., Sponagle, K., Steinitz, K. N., Reipert, B. M. and Lillicrap, D., Surgical injury alone does not provoke the development of factor VIII inhibitors in mouse models of hemophilia A. Blood. 2012. 120: 627–627.
Skupsky, J., Zhang, A.‐H., Su, Y. and Scott, D. W., A role for thrombin in the initiation of the immune response to therapeutic factor VIII. Blood. 2009. 114: 4741–4748.
Kaczmarek, R., Pineros, A. R., Patterson, P. E., Bertolini, T. B., Perrin, G. Q., Sherman, A., Born, J. et al., Factor VIII Trafficking to CD4+ T cells shapes its immunogenicity and requires several types of antigen presenting cells. Blood. 2023.
Jing, W., Chen, J., Cai, Y., Chen, Y., Schroeder, J. A., Johnson, B. D., Cui, W. et al., Induction of activated T follicular helper cells is critical for anti‐FVIII inhibitor development in hemophilia A mice. Blood Adv. 2019. 3: 3099–3110.
Vinuesa, C. G., Linterman, M. A., Yu, D. and MacLennan, I. C. M., Follicular Helper T Cells. Annu. Rev. Immunol. 2015. 34: 1–34.
van, A. S., IS, L., der, Z. R., van, E. W. and Broere, F., Bystander activation of irrelevant CD4+ T cells following antigen‐specific vaccination occurs in the presence and absence of adjuvant. PLoS ONE. 2017. 12: e0177365.
Lee, H.‐G., Lee, J.‐U., Kim, D.‐H., Lim, S., Kang, I. and Choi, J.‐M., Pathogenic function of bystander‐activated memory‐like CD4+ T cells in autoimmune encephalomyelitis. Nat. Commun. 2019. 10: 709.
Genova, G. D., Roddick, J., McNicholl, F. and Stevenson, F. K., Vaccination of human subjects expands both specific and bystander memory T cells but antibody production remains vaccine specific. Blood. 2006. 107: 2806–2813.
Causi, E. L., Parikh, S. C., Chudley, L., Layfield, D. M., Ottensmeier, C. H., Stevenson, F. K. and Genova, G. D., Vaccination expands antigen‐specific CD4+ memory T cells and mobilizes bystander central memory T cells. PLoS ONE. 2015. 10: e0136717.
Lee, H.‐G., Cho, M.‐J. and Choi, J.‐M., Bystander CD4+ T cells: Crossroads between innate and adaptive immunity. Exp. Mol. Med. 2020. 52: 1255–1263.
Paprckova, D., Salyova, E., Michalik, J. and Stepanek, O., Bystander activation in memory and antigen‐inexperienced memory‐like CD8 T cells. Curr. Opin. Immunol. 2023. 82: 102299.
Kaech, S. M., Wherry, E. J. and Ahmed, R., Effector and memory T‐cell differentiation: Implications for vaccine development. Nat. Rev. Immunol. 2002. 2: 251–262.
Singh, A., Wüthrich, M., Klein, B. and Suresh, M., Indirect regulation of CD4 T‐cell responses by tumor necrosis factor receptors in an acute viral infection. J. Virol. 2007. 81: 6502–6512.
Pearce, E. L. and Shen, H., Generation of CD8 T cell memory is regulated by IL‐12. J. Immunol. 2007. 179: 2074–2081.
Au‐Yeung, B. B., Zikherman, J., Mueller, J. L., Ashouri, J. F., Matloubian, M., Cheng, D. A., Chen, Y. et al., A sharp T‐cell antigen receptor signaling threshold for T‐cell proliferation. Proc National Acad Sci. 2014. 111: E3679–E3688.
Zikherman, J. and Au‐Yeung, B., The role of T cell receptor signaling thresholds in guiding T cell fate decisions. Curr. Opin. Immunol. 2015. 33: 43–48.
Devarajan, P. and Chen, Z., Autoimmune effector memory T cells: The bad and the good. Immunol. Res. 2013. 57: 12–22.
Singh, K., Deshpande, P., Pryshchep, S., Colmegna, I., Liarski, V., Weyand, C. M. and Goronzy, J. J., ERK‐dependent T cell receptor threshold calibration in rheumatoid arthritis. J. Immunol. 2009. 183: 8258–8267.
Sprent, J. and Surh, C. D., Normal T cell homeostasis: The conversion of naive cells into memory‐phenotype cells. Nat. Immunol. 2011. 12: 478–484.
Manz, M. G. and granulopoiesis, B. S. E, Emergency granulopoiesis Nat. Rev. Immunol. 2014. 14: 302–314.
Fulop, G. M., Pietrangeli, C. E. and Osmond, D. G., Regulation of bone marrow lymphocyte production: IV. Altered kinetic steady state of lymphocyte production after chronic changes in exogenous stimuli. Exp. Hematol. 1986. 14: 27–34.
McIntosh, J., Lenting, P. J., Rosales, C., Lee, D., Rabbanian, S., Raj, D., Patel, N. et al., Therapeutic levels of FVIII following a single peripheral vein administration of rAAV vector encoding a novel human factor VIII variant. Blood. 2013. 121: 3335–3344.
Verbruggen, B., Novakova, I., Wessels, H., Boezeman, J., den, B. M. and Mauser‐Bunschoten, E., The Nijmegen modification of the Bethesda assay for factor VIII:C inhibitors: Improved specificity and reliability. Thromb. Haemost. 1995. 73: 247–251.

Auteurs

Vakhtang Kalandadze (V)

Department of Health Sciences, University of Piemonte Orientale, Novara, Italy.

Paolo E Di Simone (PE)

Department of Health Sciences, University of Piemonte Orientale, Novara, Italy.

Imtiyazuddin Mohammed (I)

Department of Health Sciences, University of Piemonte Orientale, Novara, Italy.

Daniele Murari (D)

Department of Health Sciences, University of Piemonte Orientale, Novara, Italy.

Antonia Follenzi (A)

Department of Health Sciences, University of Piemonte Orientale, Novara, Italy.

Chiara Borsotti (C)

Department of Health Sciences, University of Piemonte Orientale, Novara, Italy.

Classifications MeSH