PlexinB1 inactivation reprograms immune cells in the tumor microenvironment, inhibiting breast cancer growth and metastatic dissemination.
Journal
Cancer immunology research
ISSN: 2326-6074
Titre abrégé: Cancer Immunol Res
Pays: United States
ID NLM: 101614637
Informations de publication
Date de publication:
14 Jun 2024
14 Jun 2024
Historique:
accepted:
12
06
2024
received:
04
04
2023
revised:
15
03
2024
medline:
14
6
2024
pubmed:
14
6
2024
entrez:
14
6
2024
Statut:
aheadofprint
Résumé
Semaphorin-Plexin signaling plays a major role in the tumor microenvironment (TME). In particular, Semaphorin 4D (SEMA4D) has been shown to promote tumor growth and metastasis; however, the role of its high-affinity receptor Plexin-B1 (PLXNB1), which is expressed in the TME, is poorly understood. In this study, we directly targeted PLXNB1 in the TME of triple-negative murine breast carcinoma to elucidate its relevance in cancer progression. We found that primary tumor growth, and metastatic dissemination were strongly reduced in PLXNB1-deficient mice, which showed longer survival. PLXNB1-loss in the TME induced a switch in the polarization of tumor-associated macrophages (TAMs) towards a pro-inflammatory M1 phenotype and enhanced the infiltration of CD8+ T lymphocytes both in primary tumors and in distant metastases. Moreover, PLXNB1-deficiency promoted a shift in the Th1/Th2 balance of the T-cell population and an antitumor gene signature, with the up-regulation of Icos, Perforin-1, Stat3 and Ccl5 in tumor infiltrating lymphocytes (TILs). We thus tested the translational relevance of TME re-programming driven by PLXNB1 inactivation for responsiveness to immunotherapy. Indeed, in the absence of PLXNB1, the efficacy of anti-PD-1 blockade was strongly enhanced, efficiently reducing tumor growth and distant metastasis. Consistent with this, pharmacological PLXNB1 blockade by systemic treatment with a specific inhibitor significantly hampered breast cancer growth and enhanced the antitumor activity of the anti-PD1 treatment in a preclinical model. Altogether, these data indicate that PLXNB1 signaling controls the antitumor immune response in the TME and highlight this receptor as a promising immune therapeutic target for metastatic breast cancers.
Identifiants
pubmed: 38874583
pii: 745947
doi: 10.1158/2326-6066.CIR-23-0289
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM