Methanol as a co-substrate with CO
Butyrate
CO2 utilisation
Electron donor
Methanol utilisation
Microbial electrosynthesis
Journal
Applied microbiology and biotechnology
ISSN: 1432-0614
Titre abrégé: Appl Microbiol Biotechnol
Pays: Germany
ID NLM: 8406612
Informations de publication
Date de publication:
14 Jun 2024
14 Jun 2024
Historique:
received:
01
12
2023
accepted:
02
06
2024
revised:
28
05
2024
medline:
14
6
2024
pubmed:
14
6
2024
entrez:
14
6
2024
Statut:
epublish
Résumé
Methanol is a promising feedstock for the bio-based economy as it can be derived from organic waste streams or produced electrochemically from CO
Identifiants
pubmed: 38874789
doi: 10.1007/s00253-024-13218-y
pii: 10.1007/s00253-024-13218-y
doi:
Substances chimiques
Methanol
Y4S76JWI15
Carbon Dioxide
142M471B3J
Butyrates
0
Carbon
7440-44-0
Acetates
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
372Subventions
Organisme : Research Council of Finland
ID : 329227
Organisme : Research Council of Finland
ID : 353658
Informations de copyright
© 2024. The Author(s).
Références
Anderson MJ (2008) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x
doi: 10.1111/j.1442-9993.2001.01070.pp.x
Aresta M, Dibenedetto A (2007) Utilisation of CO
Aro E-M (2016) From first generation biofuels to advanced solar biofuels. Ambio 45:24–31. https://doi.org/10.1007/s13280-015-0730-0
doi: 10.1007/s13280-015-0730-0
Bache R, Pfennig N (1981) Selective isolation of Acetobacterium woodii on methoxylated aromatic acids and determination of growth yields. Arch Microbiol 130:255–261. https://doi.org/10.1007/BF00459530
doi: 10.1007/BF00459530
Balch WE, Schoberth S, Tanner RS, Wolfe RS (1977) Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria. Int J Syst Bacteriol 27:355–361. https://doi.org/10.1099/00207713-27-4-355
doi: 10.1099/00207713-27-4-355
Batlle-Vilanova P, Puig S, Gonzalez-Olmos R, Balaguer MD, Colprim J (2016) Continuous acetate production through microbial electrosynthesis from CO
doi: 10.1002/jctb.4657
Batlle-Vilanova P, Ganigué R, Ramió-Pujol S, Bañeras L, Jiménez G, Hidalgo M, Balaguer MD, Colprim J, Puig S (2017) Microbial electrosynthesis of butyrate from carbon dioxide: production and extraction. Bioelectrochem 117:57–64. https://doi.org/10.1016/j.bioelechem.2017.06.004
doi: 10.1016/j.bioelechem.2017.06.004
Blasco-Gómez R, Ramió-Pujol S, Bañeras L, Colprim J, Balaguer MD, Puig S (2019) Unravelling the factors that influence the bio-electrorecycling of carbon dioxide towards biofuels. Green Chem 21:684–691. https://doi.org/10.1039/C8GC03417F
doi: 10.1039/C8GC03417F
Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley GA (2018) Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2' s q2-feature-classifier plugin. Microbiome 6:90. https://doi.org/10.1186/s40168-018-0470-z
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu Y-X, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9
doi: 10.1038/s41587-019-0209-9
pubmed: 31341288
pmcid: 7015180
Chen WS, Ye Y, Steinbusch KJJ, Strik DPBTB, Buisman CJN (2016) Methanol as an alternative electron donor in chain elongation for butyrate and caproate formation. Biomass Bioenergy 93:201–208. https://doi.org/10.1016/j.biombioe.2016.07.008
doi: 10.1016/j.biombioe.2016.07.008
Chen WS, Huang S, Strik DPBTB, Buisman CJN (2017) Isobutyrate biosynthesis via methanol chain elongation: converting organic wastes to platform chemicals. J Chem Technol Biotechnol 92:1370–1379. https://doi.org/10.1002/jctb.5132
doi: 10.1002/jctb.5132
Chen WS, Huang S, Plugge CM, Buisman CJN, Strik DPBTB (2020) Concurrent use of methanol and ethanol for chain-elongating short chain fatty acids into caproate and isobutyrate. J Environ Manage 258:110008. https://doi.org/10.1016/j.jenvman.2019.110008
doi: 10.1016/j.jenvman.2019.110008
pubmed: 31929052
Claassens NJ, Cotton CAR, Kopljar D, Bar-Even A (2019) Making quantitative sense of electromicrobial production. Nat Catal 2:437–447. https://doi.org/10.1038/s41929-019-0272-0
doi: 10.1038/s41929-019-0272-0
De Leeuw KD, De Smit SM, Van Oossanen S, Moerland MJ, Buisman CJN, Strik DPBTB (2020) Methanol-based chain elongation with acetate to n-butyrate and isobutyrate at varying selectivities dependent on pH. ACS Sustain Chem Eng 8:8184–8194. https://doi.org/10.1021/acssuschemeng.0c00907
doi: 10.1021/acssuschemeng.0c00907
De Smit SM, De Leeuw KD, Buisman CJN, Strik DPBTB (2019) Continuous n-valerate formation from propionate and methanol in an anaerobic chain elongation open-culture bioreactor. Biotechnol Biofuels 12:1–16. https://doi.org/10.1186/s13068-019-1468-x
doi: 10.1186/s13068-019-1468-x
Diender M, Stams AJM, Sousa DZ (2015) Pathways and bioenergetics of anaerobic carbon monoxide fermentation. Front Microbiol 6:1–18. https://doi.org/10.3389/fmicb.2015.01275
doi: 10.3389/fmicb.2015.01275
Dietrich HM, Kremp F, Öppinger C, Ribaric L, Müller V (2021) Biochemistry of methanol-dependent acetogenesis in Eubacterium callanderi KIST612. Environ Microbiol 23:4505–4517. https://doi.org/10.1111/1462-2920.15643
doi: 10.1111/1462-2920.15643
pubmed: 34125457
Dwidar M, Park J-Y, Mitchell RJ, Sang B-I (2012) The future of butyric acid in industry. Sci World J 2012:e471417. https://doi.org/10.1100/2012/471417
doi: 10.1100/2012/471417
Eregowda T, Kokko ME, Rene ER, Rintala J, Lens PNL (2021) Volatile fatty acid production from Kraft mill foul condensate in upflow anaerobic sludge blanket reactors. Environ Technol 42:2447–2460. https://doi.org/10.1080/09593330.2019.1703823
doi: 10.1080/09593330.2019.1703823
pubmed: 31928330
Fierer N, Jackson JA, Vilgalys R, Jackson RB (2005) Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microbiol 71:4117–4120. https://doi.org/10.1128/AEM.71.7.4117-4120.2005
doi: 10.1128/AEM.71.7.4117-4120.2005
pubmed: 16000830
pmcid: 1169028
Ganigué R, Puig S, Batlle-Vilanova P, Balaguer MD, Colprim J (2015) Microbial electrosynthesis of butyrate from carbon dioxide. Chem Commun 51:3235–3238. https://doi.org/10.1039/c4cc10121a
doi: 10.1039/c4cc10121a
Ginige MP, Bowyer JC, Foley L, Keller J, Yuan Z (2009) A comparative study of methanol as a supplementary carbon source for enhancing denitrification in primary and secondary anoxic zones. Biodegradation 20:221–234. https://doi.org/10.1007/s10532-008-9215-1
doi: 10.1007/s10532-008-9215-1
pubmed: 18803025
Hobson C, Márquez C (2018) Renewable methanol report. Methanol Institute, Singapore https://www.methanol.org/wp-content/uploads/2019/01/MethanolReport.pdf . Accessed 24 May 2024
Iaquaniello G, Centi G, Salladini A, Palo E, Perathoner S, Spadaccini L (2017) Waste-to-methanol: process and economics assessment. Bioresour Technol 243:611–619. https://doi.org/10.1016/j.biortech.2017.06.172
doi: 10.1016/j.biortech.2017.06.172
pubmed: 28709065
Izadi P, Fontmorin J-M, Lim SS, Head IM, Eileen HY (2021a) Enhanced bio-production from CO
doi: 10.1039/D0FD00132E
pubmed: 34259692
Izadi P, Fontmorin JM, Virdis B, Head IM, Yu EH (2021b) The effect of the polarised cathode, formate and ethanol on chain elongation of acetate in microbial electrosynthesis. Appl Energy 283:116310. https://doi.org/10.1016/j.apenergy.2020.116310
doi: 10.1016/j.apenergy.2020.116310
Jeong J, Bertsch J, Hess V, Choi S, Choi I-G, Chang IS, Müller V (2015) Energy conservation model based on genomic and experimental analyses of a carbon monoxide-utilizing, butyrate-forming acetogen, Eubacterium limosum KIST612. Appl Environ Microbiol 81:4782–4790. https://doi.org/10.1128/AEM.00675-15
doi: 10.1128/AEM.00675-15
pubmed: 25956767
pmcid: 4551209
Jourdin L, Winkelhorst M, Rawls B, Buisman CJN, Strik DPBTB (2019) Enhanced selectivity to butyrate and caproate above acetate in continuous bioelectrochemical chain elongation from CO
doi: 10.1016/j.biteb.2019.100284
Kallscheuer N, Polen T, Bott M, Marienhagen J (2017) Reversal of β-oxidative pathways for the microbial production of chemicals and polymer building blocks. Metab Eng 42:33–42. https://doi.org/10.1016/j.ymben.2017.05.004
doi: 10.1016/j.ymben.2017.05.004
pubmed: 28550000
Kim J-Y, Park S, Jeong J, Lee M, Kang B, Jang SH, Jeon J, Jang N, Oh S, Park Z-Y, Chang IS (2021) Methanol supply speeds up synthesis gas fermentation by methylotrophic-acetogenic bacterium, Eubacterium limosum KIST612. Bioresour Technol 321:124521. https://doi.org/10.1016/j.biortech.2020.124521
doi: 10.1016/j.biortech.2020.124521
pubmed: 33321298
Kremp F, Müller V (2021) Methanol and methyl group conversion in acetogenic bacteria: biochemistry, physiology and application. FEMS Microbiol Rev 45:fuaa040. https://doi.org/10.1093/femsre/fuaa040
doi: 10.1093/femsre/fuaa040
pubmed: 32901799
Li Z, Cai J, Gao Y, Zhang L, Liang Q, Hao W, Jiang Y, Jianxiong Zeng R (2022) Efficient production of medium chain fatty acids in microbial electrosynthesis with simultaneous bio-utilization of carbon dioxide and ethanol. Bioresour Technol 352:127101. https://doi.org/10.1016/j.biortech.2022.127101
doi: 10.1016/j.biortech.2022.127101
pubmed: 35367601
Litty D, Müller V (2021) Butyrate production in the acetogen Eubacterium limosum is dependent on the carbon and energy source. Microb Biotechnol 14:2686–2692. https://doi.org/10.1111/1751-7915.13779
doi: 10.1111/1751-7915.13779
pubmed: 33629808
pmcid: 8601167
Litty D, Kremp F, Müller V (2022) One substrate, many fates: different ways of methanol utilization in the acetogen Acetobacterium woodii. Environ Microbiol 24:3124–3133. https://doi.org/10.1111/1462-2920.16011
doi: 10.1111/1462-2920.16011
pubmed: 35416389
Liu C-G, Xue C, Lin Y-H, Bai F-W (2013) Redox potential control and applications in microaerobic and anaerobic fermentations. Biotechnol Adv 31:257–265. https://doi.org/10.1016/j.biotechadv.2012.11.005
doi: 10.1016/j.biotechadv.2012.11.005
pubmed: 23178703
Mäki E, Saastamoinen H, Melin K, Matschegg D, Pihkola H (2021) Drivers and barriers in retrofitting pulp and paper industry with bioenergy for more efficient production of liquid, solid and gaseous biofuels: a review. Biomass Bioenergy 148:106036. https://doi.org/10.1016/j.biombioe.2021.106036
doi: 10.1016/j.biombioe.2021.106036
Marshall CW, Ross DE, Fichot EB, Norman RS, May HD (2013) Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes. Environ Sci Technol 47:6023–6029. https://doi.org/10.1021/es400341b
doi: 10.1021/es400341b
pubmed: 23676111
May HD, Evans PJ, LaBelle EV (2016) The bioelectrosynthesis of acetate. Curr Opin Biotechnol 42:225–233. https://doi.org/10.1016/j.copbio.2016.09.004
doi: 10.1016/j.copbio.2016.09.004
pubmed: 27743996
Medina JDC, Magalhaes Jr AI (2021) Ethanol production, current facts, future scenarios, and techno-economic assessment of different biorefinery configurations. In: Bioethanol Technologies, Inambao FL (ed.), IntechOpen. https://doi.org/10.5772/intechopen.95081
Mohanakrishna G, Vanbroekhoven K, Pant D (2018) Impact of dissolved carbon dioxide concentration on the process parameters during its conversion to acetate through microbial electrosynthesis. React Chem Eng 3:371–378. https://doi.org/10.1039/C7RE00220C
doi: 10.1039/C7RE00220C
Mountfort DO, Grant WD, Clarke R, Asher RA (1988) Eubacterium callanderi sp. nov. that demethoxylates O-methoxylated aromatic acids to volatile fatty acids. Int J Syst Evol Microbiol 38:254–258. https://doi.org/10.1099/00207713-38-3-254
doi: 10.1099/00207713-38-3-254
Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR (2010) Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. Mbio 1:e00103-e110. https://doi.org/10.1128/mbio.00103-10
doi: 10.1128/mbio.00103-10
pubmed: 20714445
pmcid: 2921159
Pacaud S, Loubiere P, Goma G (1985) Methanol metabolism by Eubacterium limosum B2: effects of pH and carbon dioxide on growth and organic acid production. Curr Microbiol 12:245–250. https://doi.org/10.1007/BF01567972
doi: 10.1007/BF01567972
Pacaud S, Loubiere P, Goma G, Lindley ND (1986) Effects of various organic acid supplements on growth rates of Eubacterium limosum B2 on methanol. Appl Microbiol Biotechnol 24:75–78. https://doi.org/10.1007/BF00266289
doi: 10.1007/BF00266289
Rabaey K, Rozendal RA (2010) Microbial electrosynthesis — revisiting the electrical route for microbial production. Nat Rev Microbiol 8(10):706–16. https://doi.org/10.1038/nrmicro2422
doi: 10.1038/nrmicro2422
pubmed: 20844557
Rinta-Kanto JM, Sinkko H, Rajala T, Al-Soud WA, Sørensen SJ, Tamminen MV, Timonen S (2016) Natural decay process affects the abundance and community structure of Bacteria and Archaea in Picea abies logs. FEMS Microbiol Ecol 92:fiw087. https://doi.org/10.1093/femsec/fiw087
doi: 10.1093/femsec/fiw087
pubmed: 27127195
Sharma M, Alvarez-gallego Y, Achouak W, Pant D, Sarma PM, Dominguez-Benetton X (2019) Electrode material properties for designing effective microbial electrosynthesis systems. J Mater Chem A 7:24420–24436. https://doi.org/10.1039/c9ta04886c
doi: 10.1039/c9ta04886c
Vassilev I, Hernandez PA, Batlle-Vilanova P, Freguia S, Krömer JO, Keller J, Ledezma P, Virdis B (2018) Microbial electrosynthesis of isobutyric, butyric, caproic acids, and corresponding alcohols from carbon dioxide. ACS Sustain Chem Eng 6:8485–8493. https://doi.org/10.1021/acssuschemeng.8b00739
doi: 10.1021/acssuschemeng.8b00739
Vassilev I, Kracke F, Freguia S, Keller J, Krömer JO, Ledezma P, Virdis B (2019) Microbial electrosynthesis system with dual biocathode arrangement for simultaneous acetogenesis, solventogenesis and carbon chain elongation. Chem Commun 55(30):4351–4. https://doi.org/10.1039/c9cc00208a
doi: 10.1039/c9cc00208a
Vassilev I, Rinta-Kanto JM, Kokko M (2024) Comparing the performance of fluidized and fixed granular activated carbon beds as cathodes for microbial electrosynthesis of carboxylates from CO
Zhang K, Qiu Z, Luo D, Song T, Xie J (2023) Hybrid electron donors of ethanol and lactate stimulation chain elongation in microbial electrosynthesis with different inoculants. Renew Energy 202:942–951. https://doi.org/10.1016/j.renene.2022.11.123
doi: 10.1016/j.renene.2022.11.123
Zhao J, Ma H, Wu W, Ali Bacar M, Wang Q, Gao M, Wu C, Xia C, Qian D (2023) Conversion of liquor brewing wastewater into medium chain fatty acids by microbial electrosynthesis: effect of cathode potential and CO
doi: 10.1016/j.fuel.2022.126046