Genetic/epigenetic effects in NF1 microdeletion syndrome: beyond the haploinsufficiency, looking at the contribution of not deleted genes.


Journal

Human genetics
ISSN: 1432-1203
Titre abrégé: Hum Genet
Pays: Germany
ID NLM: 7613873

Informations de publication

Date de publication:
14 Jun 2024
Historique:
received: 15 03 2024
accepted: 03 06 2024
medline: 14 6 2024
pubmed: 14 6 2024
entrez: 14 6 2024
Statut: aheadofprint

Résumé

NF1 microdeletion syndrome, accounting for 5-11% of NF1 patients, is caused by a deletion in the NF1 region and it is generally characterized by a severe phenotype. Although 70% of NF1 microdeletion patients presents the same 1.4 Mb type-I deletion, some patients may show additional clinical features. Therefore, the contribution of several pathogenic mechanisms, besides haploinsufficiency of some genes within the deletion interval, is expected and needs to be defined. We investigated an altered expression of deletion flanking genes by qPCR in patients with type-1 NF1 deletion, compared to healthy donors, possibly contributing to the clinical traits of NF1 microdeletion syndrome. In addition, the 1.4-Mb deletion leads to changes in the 3D chromatin structure in the 17q11.2 region. Specifically, this deletion alters DNA-DNA interactions in the regions flanking the breakpoints, as demonstrated by our 4C-seq analysis. This alteration likely causes position effect on the expression of deletion flanking genes.Interestingly, 4C-seq analysis revealed that in microdeletion patients, an interaction was established between the RHOT1 promoter and the SLC6A4 gene, which showed increased expression. We performed NGS on putative modifier genes, and identified two "likely pathogenic" rare variants in RAS pathway, possibly contributing to incidental phenotypic features.This study provides new insights into understanding the pathogenesis of NF1 microdeletion syndrome and suggests a novel pathomechanism that contributes to the expression phenotype in addition to haploinsufficiency of genes located within the deletion.This is a pivotal approach that can be applied to unravel microdeletion syndromes, improving precision medicine, prognosis and patients' follow-up.

Identifiants

pubmed: 38874808
doi: 10.1007/s00439-024-02683-0
pii: 10.1007/s00439-024-02683-0
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s).

Références

Amarillo IE, Dipple KM, Quintero-Rivera F (2013) Familial microdeletion of 17q24.3 Upstream of SOX9 is Associated with isolated Pierre Robin sequence due to position effect. Am J Med Genet Part A 161:1167–1172. https://doi.org/10.1002/ajmg.a.35847
doi: 10.1002/ajmg.a.35847
Auton A, Abecasis GR, Altshuler DM et al (2015) A global reference for human genetic variation. Nature 526:68–74. https://doi.org/10.1038/nature15393
doi: 10.1038/nature15393 pubmed: 26432245
Bettinaglio P, Mangano E, Tritto V et al (2023) New insights into the molecular basis of spinal neurofibromatosis type 1. Eur J Hum Genet 31:931–938. https://doi.org/10.1038/s41431-023-01377-x
doi: 10.1038/s41431-023-01377-x pubmed: 37217626
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170
doi: 10.1093/bioinformatics/btu170 pubmed: 24695404 pmcid: 4103590
Bolzer A, Kreth G, Solovei I et al (2005) Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol 3:e157. https://doi.org/10.1371/journal.pbio.0030157
doi: 10.1371/journal.pbio.0030157 pubmed: 15839726 pmcid: 1084335
Costa ADA, Gutmann DH (2020) Brain tumors in neurofibromatosis type 1. Neuro-Oncology Adv 2:i85–i97. https://doi.org/10.1093/noajnl/vdz040
doi: 10.1093/noajnl/vdz040
Dang D, Zhang S-W, Duan R, Zhang S (2023) Defining the separation landscape of topological domains for decoding consensus domain organization of the 3D genome. Genome Res 33:386–400. https://doi.org/10.1101/gr.277187.122
doi: 10.1101/gr.277187.122 pubmed: 36894325 pmcid: 10078287
De Raedt T, Brems H, Wolkenstein P et al (2003) Elevated risk for MPNST in NF1 microdeletion patients. Am J Hum Genet 72:1288–1292. https://doi.org/10.1086/374821
doi: 10.1086/374821 pubmed: 12660952 pmcid: 1180281
Deltas C (2018) Digenic inheritance and genetic modifiers. Clin Genet 93:429–438. https://doi.org/10.1111/cge.13150
doi: 10.1111/cge.13150 pubmed: 28977688
DePristo MA, Banks E, Poplin R et al (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43:491–498. https://doi.org/10.1038/ng.806
doi: 10.1038/ng.806 pubmed: 21478889 pmcid: 3083463
Dhandapany PS, Razzaque MA, Muthusami U et al (2014) RAF1 mutations in childhood-onset dilated cardiomyopathy. Nat Genet 46:635–639. https://doi.org/10.1038/ng.2963
doi: 10.1038/ng.2963 pubmed: 24777450 pmcid: 4049514
Di Croce L, Helin K (2013) Transcriptional regulation by polycomb group proteins. Nat Struct Mol Biol 20:1147–1155. https://doi.org/10.1038/nsmb.2669
doi: 10.1038/nsmb.2669 pubmed: 24096405
Douglas J, Cilliers D, Coleman K et al (2007) Mutations in RNF135, a gene within the NF1 microdeletion region, cause phenotypic abnormalities including overgrowth. Nat Genet 39:963–965. https://doi.org/10.1038/ng2083
doi: 10.1038/ng2083 pubmed: 17632510
Fang F, Xia N, Angulo B et al (2018) A distinct isoform of ZNF207 controls self-renewal and pluripotency of human embryonic stem cells. Nat Commun 9:4384. https://doi.org/10.1038/s41467-018-06908-5
doi: 10.1038/s41467-018-06908-5 pubmed: 30349051 pmcid: 6197280
Ferrari L, Scuvera G, Tucci A et al (2017) Identification of an atypical microdeletion generating the RNF135-SUZ12 chimeric gene and causing a position effect in an NF1 patient with overgrowth. Hum Genet 136:1329–1339. https://doi.org/10.1007/s00439-017-1832-5
doi: 10.1007/s00439-017-1832-5 pubmed: 28776093
Ferrari L, Mangano E, Bonati MT et al (2020) Digenic inheritance of subclinical variants in Noonan Syndrome patients: an alternative pathogenic model? Eur J Hum Genet 28:1432–1445. https://doi.org/10.1038/s41431-020-0658-0
doi: 10.1038/s41431-020-0658-0 pubmed: 32514133 pmcid: 7608271
Finn EH, Pegoraro G, Brandão HB et al (2019) Extensive heterogeneity and intrinsic variation in spatial Genome Organization. Cell 176:1502–1515e10. https://doi.org/10.1016/j.cell.2019.01.020
doi: 10.1016/j.cell.2019.01.020 pubmed: 30799036 pmcid: 6408223
Firth HV, Richards SM, Bevan AP et al (2009) DECIPHER: database of chromosomal imbalance and phenotype in humans using Ensembl resources. Am J Hum Genet 84:524–533. https://doi.org/10.1016/j.ajhg.2009.03.010
doi: 10.1016/j.ajhg.2009.03.010 pubmed: 19344873 pmcid: 2667985
Fransson Å, Ruusala A, Aspenström P (2003) Atypical rho GTPases have roles in mitochondrial homeostasis and apoptosis. J Biol Chem 278:6495–6502. https://doi.org/10.1074/jbc.M208609200
doi: 10.1074/jbc.M208609200 pubmed: 12482879
Gallati S (2014) Disease-modifying genes and monogenic disorders: experience in cystic fibrosis. Appl Clin Genet 7:133–146. https://doi.org/10.2147/TACG.S18675
doi: 10.2147/TACG.S18675 pubmed: 25053892 pmcid: 4104546
Gervasini C, Orzan F, Bentivegna A et al (2004) Evidence for non-homologous end joining and non-allelic homologous recombination in atypical NF1 microdeletions. Hum Genet 115:69–80. https://doi.org/10.1007/s00439-004-1101-2
doi: 10.1007/s00439-004-1101-2 pubmed: 15103551
Gervasini C, Venturin M, Orzan F et al (2005) Uncommon alu-mediated NF1 microdeletion with a breakpoint inside the NF1 gene. Genomics 85:273–279. https://doi.org/10.1016/j.ygeno.2004.10.014
doi: 10.1016/j.ygeno.2004.10.014 pubmed: 15676286
Gheldof N, Witwicki RM, Migliavacca E et al (2013) Structural variation-associated expression changes are paralleled by chromatin architecture modifications. PLoS ONE 8:e79973. https://doi.org/10.1371/journal.pone.0079973
doi: 10.1371/journal.pone.0079973 pubmed: 24265791 pmcid: 3827143
Hamosh A (2004) Online mendelian inheritance in man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 33:D514–D517. https://doi.org/10.1093/nar/gki033
doi: 10.1093/nar/gki033 pmcid: 539987
Hartill VL, Dillon MW, Warren DJ, Blyth M (2017) RAF1-associated Noonan syndrome presenting antenatally with an abnormality of skull shape, subdural haematoma and associated with novel cerebral malformations. Clin Dysmorphol 26:101–106. https://doi.org/10.1097/MCD.0000000000000153
doi: 10.1097/MCD.0000000000000153 pubmed: 27753652
Jensen RT, Berna MJ, Bingham DB, Norton JA (2008) Inherited pancreatic endocrine tumor syndromes: advances in molecular pathogenesis, diagnosis, management, and controversies. Cancer 113:1807–1843. https://doi.org/10.1002/cncr.23648
doi: 10.1002/cncr.23648 pubmed: 18798544
Jiang H, He X, Wang S et al (2014) A microtubule-associated zinc finger protein, BuGZ, regulates mitotic chromosome alignment by ensuring Bub3 stability and kinetochore targeting. Dev Cell 28:268–281. https://doi.org/10.1016/j.devcel.2013.12.013
doi: 10.1016/j.devcel.2013.12.013 pubmed: 24462186 pmcid: 3927447
Karczewski KJ, Francioli LC, Tiao G et al (2020) The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581:434–443. https://doi.org/10.1038/s41586-020-2308-7
doi: 10.1038/s41586-020-2308-7 pubmed: 32461654 pmcid: 7334197
Kehrer-Sawatzki H, Kluwe L, Sandig C et al (2004) High frequency of mosaicism among patients with neurofibromatosis type 1 (NF1) with microdeletions caused by somatic recombination of the JJAZ1 gene. Am J Hum Genet 75:410–423. https://doi.org/10.1086/423624
doi: 10.1086/423624 pubmed: 15257518 pmcid: 1182020
Kehrer-Sawatzki H, Mautner V-F, Cooper DN (2017) Emerging genotype–phenotype relationships in patients with large NF1 deletions. Hum Genet 136:349–376. https://doi.org/10.1007/s00439-017-1766-y
doi: 10.1007/s00439-017-1766-y pubmed: 28213670 pmcid: 5370280
Khosrotehrani K, Bastuji-Garin S, Zeller J et al (2003) Clinical risk factors for mortality in patients with neurofibromatosis 1: a cohort study of 378 patients. Arch Dermatol 139:187–191. https://doi.org/10.1001/archderm.139.2.187
doi: 10.1001/archderm.139.2.187 pubmed: 12588224
Kleinjan DJ, van Heyningen V (1998) Position effect in human genetic disease. Hum Mol Genet 7:1611–1618. https://doi.org/10.1093/hmg/7.10.1611
doi: 10.1093/hmg/7.10.1611 pubmed: 9735382
Krijger PHL, Geeven G, Bianchi V et al (2020) 4 C-seq from beginning to end: a detailed protocol for sample preparation and data analysis. Methods 170:17–32. https://doi.org/10.1016/j.ymeth.2019.07.014
doi: 10.1016/j.ymeth.2019.07.014 pubmed: 31351925
Landrum MJ, Lee JM, Benson M et al (2018) ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res 46:D1062–D1067. https://doi.org/10.1093/nar/gkx1153
doi: 10.1093/nar/gkx1153 pubmed: 29165669
Laugsch M, Bartusel M, Rehimi R et al (2019) Modeling the pathological Long-Range Regulatory effects of Human Structural Variation with patient-specific hiPSCs. Cell Stem Cell 24:736–752e12. https://doi.org/10.1016/j.stem.2019.03.004
doi: 10.1016/j.stem.2019.03.004 pubmed: 30982769
Lek M, Karczewski KJ, Minikel EV et al (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:285–291. https://doi.org/10.1038/nature19057
doi: 10.1038/nature19057 pubmed: 27535533 pmcid: 5018207
Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv Prepr arXiv
Li H, Handsaker B, Wysoker A et al (2009) The sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352
doi: 10.1093/bioinformatics/btp352 pubmed: 19505943 pmcid: 2723002
Li M, Nishio S-Y, Naruse C et al (2020) Digenic inheritance of mutations in EPHA2 and SLC26A4 in Pendred syndrome. Nat Commun 11:1343. https://doi.org/10.1038/s41467-020-15198-9
doi: 10.1038/s41467-020-15198-9 pubmed: 32165640 pmcid: 7067772
Löwik M, Levtchenko E, Westra D et al (2008) Bigenic heterozygosity and the development of steroid-resistant focal segmental glomerulosclerosis. Nephrol Dial Transplant off Publ Eur Dial Transpl Assoc -. Eur Ren Assoc 23:3146–3151. https://doi.org/10.1093/ndt/gfn208
doi: 10.1093/ndt/gfn208
Lubeck BA, Lapinski PE, Oliver JA et al (2015) Cutting Edge: Codeletion of the ras GTPase-Activating proteins (RasGAPs) Neurofibromin 1 and p120 RasGAP in T cells results in the development of T cell Acute Lymphoblastic Leukemia. J Immunol 195:31–35. https://doi.org/10.4049/jimmunol.1402639
doi: 10.4049/jimmunol.1402639 pubmed: 26002977
Lupiáñez DG, Kraft K, Heinrich V et al (2015) Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161:1012–1025. https://doi.org/10.1016/j.cell.2015.04.004
doi: 10.1016/j.cell.2015.04.004 pubmed: 25959774 pmcid: 4791538
MacArthur DG, Balasubramanian S, Frankish A et al (2012) A systematic survey of loss-of-function variants in human protein-coding genes. Sci (80-) 335:823–828. https://doi.org/10.1126/science.1215040
doi: 10.1126/science.1215040
Mautner V-F, Kluwe L, Friedrich RE et al (2010) Clinical characterisation of 29 neurofibromatosis type-1 patients with molecularly ascertained 1.4 mb type-1 NF1 deletions. J Med Genet 47:623–630. https://doi.org/10.1136/jmg.2009.075937
doi: 10.1136/jmg.2009.075937 pubmed: 20543202
Mebrek ML, Clède S, de Chalus A et al (2020) Simple FISH-based evaluation of spermatic nuclear architecture shows an abnormal chromosomal organization in balanced chromosomal rearrangement carriers. J Assist Reprod Genet 37:803–809. https://doi.org/10.1007/s10815-020-01736-3
doi: 10.1007/s10815-020-01736-3 pubmed: 32193768 pmcid: 7183033
Mensink KA (2005) Connective tissue dysplasia in five new patients with NF1 microdeletions: further expansion of phenotype and review of the literature. J Med Genet 43:e08–e08. https://doi.org/10.1136/jmg.2005.034256
doi: 10.1136/jmg.2005.034256
Messiaen L, Vogt J, Bengesser K et al (2011) Mosaic type-1 NF1 microdeletions as a cause of both generalized and segmental neurofibromatosis type-1 (NF1). Hum Mutat 32:213–219. https://doi.org/10.1002/humu.21418
doi: 10.1002/humu.21418 pubmed: 21280148
Mettananda S, Higgs DR (2018) Molecular basis and genetic modifiers of Thalassemia. Hematol Oncol Clin North Am 32:177–191. https://doi.org/10.1016/j.hoc.2017.11.003
doi: 10.1016/j.hoc.2017.11.003 pubmed: 29458725
Minczuk M, He J, Duch AM et al (2011) TEFM (c17orf42) is necessary for transcription of human mtDNA. Nucleic Acids Res 39:4284–4299. https://doi.org/10.1093/nar/gkq1224
doi: 10.1093/nar/gkq1224 pubmed: 21278163 pmcid: 3105396
Morlino G, Barreiro O, Baixauli F et al (2014) Miro-1 Links Mitochondria and Microtubule Dynein Motors to control Lymphocyte Migration and Polarity. Mol Cell Biol 34:1412–1426. https://doi.org/10.1128/MCB.01177-13
doi: 10.1128/MCB.01177-13 pubmed: 24492963 pmcid: 3993592
Pasmant E, Sabbagh A, Spurlock G et al (2010) NF1 microdeletions in neurofibromatosis type 1: from genotype to phenotype. Hum Mutat 31:E1506–E1518. https://doi.org/10.1002/humu.21271
doi: 10.1002/humu.21271 pubmed: 20513137
Pasmant E, Vidaud M, Vidaud D, Wolkenstein P (2012) Neurofibromatosis type 1: from genotype to phenotype. J Med Genet 49:483–489. https://doi.org/10.1136/jmedgenet-2012-100978
doi: 10.1136/jmedgenet-2012-100978 pubmed: 22889851
Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842. https://doi.org/10.1093/bioinformatics/btq033
doi: 10.1093/bioinformatics/btq033 pubmed: 20110278 pmcid: 2832824
Raedt T, De, Stephens M, Heyns I et al (2006) Conservation of hotspots for recombination in low-copy repeats associated with the NF1 microdeletion. Nat Genet 38:1419–1423. https://doi.org/10.1038/ng1920
doi: 10.1038/ng1920 pubmed: 17115058
Rajderkar S, Barozzi I, Zhu Y et al (2023) Topologically associating domain boundaries are required for normal genome function. Commun Biol 6:435. https://doi.org/10.1038/s42003-023-04819-w
doi: 10.1038/s42003-023-04819-w pubmed: 37081156 pmcid: 10119121
Remeseiro S, Hörnblad A, Spitz F (2016) Gene regulation during development in the light of topologically associating domains. Wiley Interdiscip Rev Dev Biol 5:169–185. https://doi.org/10.1002/wdev.218
doi: 10.1002/wdev.218 pubmed: 26558551
Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med off J Am Coll Med Genet 17:405–424. https://doi.org/10.1038/gim.2015.30
doi: 10.1038/gim.2015.30
Rodrigues CHM, Pires DEV, Ascher DB (2018) DynaMut: predicting the impact of mutations on protein conformation, flexibility and stability. Nucleic Acids Res 46:W350–W355. https://doi.org/10.1093/nar/gky300
doi: 10.1093/nar/gky300 pubmed: 29718330 pmcid: 6031064
Santoni FA, Stamoulis G, Garieri M et al (2017) Detection of imprinted genes by single-cell allele-specific gene expression. Am J Hum Genet 100:444–453. https://doi.org/10.1016/j.ajhg.2017.01.028
doi: 10.1016/j.ajhg.2017.01.028 pubmed: 28190458 pmcid: 5339288
Sellmer L, Farschtschi S, Marangoni M et al (2017) Non-optic glioma in adults and children with neurofibromatosis 1. Orphanet J Rare Dis 12:34. https://doi.org/10.1186/s13023-017-0588-2
doi: 10.1186/s13023-017-0588-2 pubmed: 28202035 pmcid: 5312522
Seminog OO, Goldacre MJ (2013) Risk of benign tumours of nervous system, and of malignant neoplasms, in people with neurofibromatosis: population-based record-linkage study. Br J Cancer 108:193–198. https://doi.org/10.1038/bjc.2012.535
doi: 10.1038/bjc.2012.535 pubmed: 23257896
Sherry ST (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29:308–311. https://doi.org/10.1093/nar/29.1.308
doi: 10.1093/nar/29.1.308 pubmed: 11125122 pmcid: 29783
Shirokova OM, Pchelin PV, Mukhina IV (2020) MERCs. The Novel Assistant to Neurotransmission? Front Neurosci 14:. https://doi.org/10.3389/fnins.2020.589319
Spielmann M, Lupiáñez DG, Mundlos S (2018) Structural variation in the 3D genome. Nat Rev Genet 19:453–467. https://doi.org/10.1038/s41576-018-0007-0
doi: 10.1038/s41576-018-0007-0 pubmed: 29692413
Summerer A, Mautner V-F, Upadhyaya M et al (2018) Extreme clustering of type-1 NF1 deletion breakpoints co-locating with G-quadruplex forming sequences. Hum Genet 137:511–520. https://doi.org/10.1007/s00439-018-1904-1
doi: 10.1007/s00439-018-1904-1 pubmed: 29992513
Tate JG, Bamford S, Jubb HC et al (2019) COSMIC: the catalogue of somatic mutations in Cancer. Nucleic Acids Res 47:D941–D947. https://doi.org/10.1093/nar/gky1015
doi: 10.1093/nar/gky1015 pubmed: 30371878
Tritto V, Eoli M, Paterra R et al (2022) Characterization of 22q12 microdeletions causing position effect in rare NF2 patients with Complex Phenotypes. Int J Mol Sci 23. https://doi.org/10.3390/ijms231710017
Tritto V, Capitanio D, Gelfi C, Riva P (2023a) Changes of RAS Pathway Phosphorylation in Lymphoblastoid Cell lines from Noonan Syndrome patients carrying hypomorphic variants in two NS genes. Int J Mol Sci 24. https://doi.org/10.3390/ijms24044035
Tritto V, Grilli F, Milani D, Riva P (2023b) Deregulated expression of polycomb repressive complex 2 target genes in a NF1 patient with microdeletion generating the RNF135-SUZ12 chimeric gene. Neurogenetics 24:181–188. https://doi.org/10.1007/s10048-023-00718-8
doi: 10.1007/s10048-023-00718-8 pubmed: 37145209 pmcid: 10319651
Uusitalo E, Rantanen M, Kallionpää RA et al (2016) Distinctive Cancer associations in patients with neurofibromatosis type 1. J Clin Oncol 34:1978–1986. https://doi.org/10.1200/JCO.2015.65.3576
doi: 10.1200/JCO.2015.65.3576 pubmed: 26926675
Venturin M (2004) Mental retardation and cardiovascular malformations in NF1 microdeleted patients point to candidate genes in 17q11.2. J Med Genet 41:35–41. https://doi.org/10.1136/jmg.2003.014761
doi: 10.1136/jmg.2003.014761 pubmed: 14729829 pmcid: 1757270
Venturin M, Bentivegna A, Moroni R et al (2005) Evidence by Expression Analysis of Candidate Genes for Congenital Heart Defects in the NF1 microdeletion interval. Ann Hum Genet 69:508–516. https://doi.org/10.1111/j.1529-8817.2005.00203.x
doi: 10.1111/j.1529-8817.2005.00203.x pubmed: 16138909
Venturin M, Carra S, Gaudenzi G et al (2014) ADAP2 in heart development: a candidate gene for the occurrence of cardiovascular malformations in NF1 microdeletion syndrome. J Med Genet 51:436–443. https://doi.org/10.1136/jmedgenet-2013-102240
doi: 10.1136/jmedgenet-2013-102240 pubmed: 24711647
Visser R, Landman EBM, Goeman J et al (2012) Sotos Syndrome is Associated with Deregulation of the MAPK/ERK-Signaling pathway. PLoS ONE. https://doi.org/10.1371/journal.pone.0049229
doi: 10.1371/journal.pone.0049229 pubmed: 23300613 pmcid: 3530591
Vogt J, Bengesser K, Claes KBM et al (2014) SVA retrotransposon insertion-associated deletion represents a novel mutational mechanism underlying large genomic copy number changes with non-recurrent breakpoints. Genome Biol 15:R80. https://doi.org/10.1186/gb-2014-15-6-r80
doi: 10.1186/gb-2014-15-6-r80 pubmed: 24958239 pmcid: 4229983
Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:e164. https://doi.org/10.1093/nar/gkq603
doi: 10.1093/nar/gkq603 pubmed: 20601685 pmcid: 2938201
Wimmer R, Cseh B, Maier B et al (2012) Angiogenic sprouting requires the fine tuning of endothelial cell cohesion by the Raf-1/Rok-α complex. Dev Cell 22:158–171. https://doi.org/10.1016/j.devcel.2011.11.012
doi: 10.1016/j.devcel.2011.11.012 pubmed: 22209329 pmcid: 3268451
Witvliet DK, Strokach A, Giraldo-Forero AF et al (2016) ELASPIC web-server: proteome-wide structure-based prediction of mutation effects on protein stability and binding affinity. Bioinformatics 32:1589–1591. https://doi.org/10.1093/bioinformatics/btw031
doi: 10.1093/bioinformatics/btw031 pubmed: 26801957
Wooderchak-Donahue WL, Johnson P, McDonald J et al (2018) Expanding the clinical and molecular findings in RASA1 capillary malformation-arteriovenous malformation. Eur J Hum Genet. https://doi.org/10.1038/s41431-018-0196-1
doi: 10.1038/s41431-018-0196-1 pubmed: 29891884 pmcid: 6138627
YIP-SCHNEIDER MT, MIAO W, LIN A et al (2000) Regulation of the Raf-1 kinase domain by phosphorylation and 14-3-3 association. Biochem J 351:151. https://doi.org/10.1042/0264-6021:3510151
doi: 10.1042/0264-6021:3510151 pubmed: 10998357
Zarate YA, Lichty AW, Champion KJ et al (2014) Unique cerebrovascular anomalies in Noonan Syndrome with RAF1 mutation. J Child Neurol 29:NP13–NP17. https://doi.org/10.1177/0883073813492384
doi: 10.1177/0883073813492384 pubmed: 23877478
Zhang J, Tong H, Fu X et al (2015) Molecular characterization of NF1 and neurofibromatosis type 1 genotype-phenotype correlations in a Chinese Population. Sci Rep 5:11291. https://doi.org/10.1038/srep11291
doi: 10.1038/srep11291 pubmed: 26056819 pmcid: 4460887

Auteurs

Viviana Tritto (V)

Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Segrate, Milan, Italy.

Paola Bettinaglio (P)

Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Segrate, Milan, Italy.

Eleonora Mangano (E)

Institute for Biomedical Technologies (ITB), National Research Council (CNR), Segrate (Milan), Italy.

Claudia Cesaretti (C)

Medical Genetics Unit, Woman-Child-Newborn Department, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy.

Federica Marasca (F)

Genome Biology Unit, Istituto Nazionale di Genetica Molecolare (INGM) "Romeo ed Enrica Invernizzi", Milan, Italy.

Chiara Castronovo (C)

Institute for Biomedical Technologies (ITB), National Research Council (CNR), Segrate (Milan), Italy.

Roberta Bordoni (R)

Institute for Biomedical Technologies (ITB), National Research Council (CNR), Segrate (Milan), Italy.

Cristina Battaglia (C)

Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Segrate, Milan, Italy.
Institute for Biomedical Technologies (ITB), National Research Council (CNR), Segrate (Milan), Italy.

Veronica Saletti (V)

Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.

Valeria Ranzani (V)

Genome Biology Unit, Istituto Nazionale di Genetica Molecolare (INGM) "Romeo ed Enrica Invernizzi", Milan, Italy.

Beatrice Bodega (B)

Genome Biology Unit, Istituto Nazionale di Genetica Molecolare (INGM) "Romeo ed Enrica Invernizzi", Milan, Italy.
Department of Biosciences (DBS), University of Milan, Milan, Italy.

Marica Eoli (M)

Molecular Neuroncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.

Federica Natacci (F)

Medical Genetics Unit, Woman-Child-Newborn Department, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy. federica.natacci@policlinico.mi.it.

Paola Riva (P)

Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Segrate, Milan, Italy. paola.riva@unimi.it.

Classifications MeSH