Native desert plants have the potential for phytoremediation of phytotoxic metals in urban cities: implications for cities sustainability in arid environments.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
14 Jun 2024
Historique:
received: 24 12 2023
accepted: 20 05 2024
medline: 15 6 2024
pubmed: 15 6 2024
entrez: 14 6 2024
Statut: epublish

Résumé

Arid regions can benefit from using native desert plants, which require minimal freshwater and can aid in remediating soil phytotoxic metals (PTMs) from traffic emissions. In this study, we assessed the ability of three native desert plants-Pennisetum divisum, Tetraena qatarensis, and Brassica tournefortii-to accumulate phytotoxic metals (PTMs) in their different plant organs, including leaves, stems, and roots/rhizomes. The PTMs were analyzed in soil and plant samples collected from Dubai, United Arab Emirates (UAE). The results indicated significantly higher levels of PTMs on the soil surface than the subsurface layer. Brassica exhibited the highest concentrations of Fe and Zn, measuring 566.7 and 262.8 mg kg

Identifiants

pubmed: 38877054
doi: 10.1038/s41598-024-62622-x
pii: 10.1038/s41598-024-62622-x
doi:

Substances chimiques

Soil Pollutants 0
Soil 0
Metals, Heavy 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

13761

Subventions

Organisme : American University of Sharjah
ID : Open Access Program
Organisme : Taif University
ID : TU-DSPP-2024-171

Informations de copyright

© 2024. The Author(s).

Références

Ahmed, D. A., Slima, D. F., Al-Yasi, H. M., Hassan, L. M. & Galal, T. M. Risk assessment of trace metals in Solanum lycopersicum L. (tomato) grown under wastewater irrigation conditions. Environ. Sci. Pollut. Res. 30, 42255–42266 (2023).
doi: 10.1007/s11356-023-25157-8
Werkenthin, M., Kluge, B. & Wessolek, G. Metals in European roadside soils and soil solution: A review. Environ. Pollut. 189, 98–110 (2014).
pubmed: 24657603 doi: 10.1016/j.envpol.2014.02.025
McGrath, S. P., Zhao, F. J. & Lombi, E. Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil 232, 207–214 (2001).
doi: 10.1023/A:1010358708525
Murtaza, G. et al. Disposal and use of sewage on agricultural lands in Pakistan: A review. Pedosphere 20, 23–34 (2010).
doi: 10.1016/S1002-0160(09)60279-4
Sabir, M. et al. Phytoremediation: Mechanisms and adaptations. Soil Remediat. Plants 85, 85–105 (2014).
Hussain, M. I., El-Keblawy, A. & Elwakil, A. S. Aluminum influence on Calotropis procera seedling growth, nutrient accumulation and electrochemical attributes. Flora 248, 34–42 (2018).
doi: 10.1016/j.flora.2018.08.012
Sheteiwy, M. S. et al. Zinc oxide nanoparticles: Potential effects on crop production, soil properties, antibacterial activity, food processing and quality. Environ. Sci. Pollut. Res. 7, 1–25 (2021).
Zereini, F. et al. Platinum group elements (Pt, Pd, Rh) in airborne particulate matter in rural vs. urban areas of Germany: concentrations and spatial patterns of distribution. Sci. Total Environ. 416, 261–268 (2012).
pubmed: 22221875 doi: 10.1016/j.scitotenv.2011.11.070
Wilson, B., Lang, B. & Pyatt, F. B. The dispersion of heavy metals in the vicinity of Britannia Mine, British Columbia, Canada. Ecotoxicol. Environ. Saf. 60, 269–276 (2005).
pubmed: 15590003 doi: 10.1016/j.ecoenv.2004.04.005
Omar, N. et al. Levels and distributions of organic source tracers in air and roadside dust particles of Kuala Lumpur, Malaysia. Environ. Geol. 52, 1485–1500 (2007).
doi: 10.1007/s00254-006-0593-6
Almehdi, A. et al. Old leaves accumulate more heavy metals than other parts of the desert shrub Calotropis procera at a traffic-polluted site as assessed by two analytical techniques. Int. J. Phytoremediat. 12, 1254–1262 (2019).
doi: 10.1080/15226514.2019.1619164
Viard, W., Pihan, F., Promeyrat, S. & Pihan, J. C. Integrated assessment of heavy metal (Pb, Zn, Cd) highway pollution: Bioaccumulation in soil, Graminaceae and land snails. Chemosphere 55, 1349–1359 (2004).
pubmed: 15081778 doi: 10.1016/j.chemosphere.2004.01.003
Wiseman, C. S., Zereini, F. & Püttmann, W. Traffic-related trace element fate and uptake by plants cultivated in roadside soils in Toronto, Canada. Sci. Total Environ. 442, 86–95 (2013).
pubmed: 23178768 doi: 10.1016/j.scitotenv.2012.10.051
Galal, T. M. & Shehata, H. S. Bioaccumulation and translocation of heavy metals by Plantago major L. grown in contaminated soils under the effect of traffic pollution. Ecol. Indic. 48, 244–251 (2015).
doi: 10.1016/j.ecolind.2014.08.013
Tanee, Y. & Albert, E. Heavy metals contamination of roadside soils and plants along three major roads in Eleme, Rivers State of Nigeria. J. Biol. Sci. 13, 264–270 (2013).
doi: 10.3923/jbs.2013.264.270
Jim, C. Y. Sustainable urban greening strategies for compact cities in developing and developed economies. Urban Ecosyst. 16, 741–761 (2013).
doi: 10.1007/s11252-012-0268-x
Phondani, P. C., Bhatt, A., Elsarrag, E., Alhorr, Y. M. & El-Keblawy, A. Criteria and indicator approach of global sustainability assessment system for sustainable landscaping using native plants in Qatar. Ecol. Indic. 69, 381–389 (2016).
doi: 10.1016/j.ecolind.2016.05.003
Alam, H., Khattak, J. Z. K., Ppoyil, S. B. T., Kurup, S. S. & Ksiksi, T. S. Landscaping with native plants in the UAE: A review. Emir. J. Food Agric. 89, 729–741 (2017).
doi: 10.9755/ejfa.2017.v29.i10.319
Odhiambo, G. O. Water scarcity in the Arabian Peninsula and socio-economic implications. Appl. Water Sci. 7, 2479–2492 (2017).
doi: 10.1007/s13201-016-0440-1
Cumming, G. et al. Implications of agricultural transitions and urbanization for ecosystem services. Nature 515, 50–57 (2014).
pubmed: 25373674 doi: 10.1038/nature13945
Riad, P., Graefe, S., Hussein, H. & Buerkert, A. Landscape transformation processes in two large and two small cities in Egypt and Jordan over the last five decades using remote sensing data. Landsc. Urban Plan. 197, 103766 (2020).
doi: 10.1016/j.landurbplan.2020.103766
Chehregani, A. & Malayeri, B. E. Removal of heavy metals by native accumulator plants. Int. J. Agric. Biol. 9, 462–465 (2007).
Galal, T. M., Farahat, E. A., El-Midany, M. M. & Hassan, L. M. Nutrients and heavy metals accumulation by the giant milkweed Calotropis procera (Aiton) W.T. Aiton in urbanized areas, Egypt. Rendiconti Lincei. Sci. Fisiche e Naturali. 27, 241–250 (2015).
doi: 10.1007/s12210-015-0468-4
Zhang, H. et al. Traffic-related metal(loid) status and uptake by dominant plants growing naturally in roadside soils in the Tibetan plateau, China. Sci. Total Environ. 573, 915–923 (2016).
pubmed: 27599055 doi: 10.1016/j.scitotenv.2016.08.128
Bravin, M. N. et al. Root-induced changes in pH and dissolved organic matter binding capacity affect copper dynamic speciation in the rhizosphere. Geochim. Cosmochim. Acta 84, 256–268 (2012).
doi: 10.1016/j.gca.2012.01.031
Tangahu, B. V. et al. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int. J. Chem. Eng. 89, 1–31 (2011).
doi: 10.1155/2011/939161
Galal, T. M., Al-Sodany, Y. M. & Al-Yasi, H. M. Phytostabilization as a phytoremediation strategy for mitigating water pollutants by the floating macrophyte Ludwigia stolonifera (Guill. & Perr.) P.H. Raven. Int. J. Phytoremediat. 22, 373–382 (2020).
doi: 10.1080/15226514.2019.1663487
Hu, W. Y., Chen, Y., Huang, B. & Niedermann, S. Health risk assessment of heavy metals in soils and vegetables from a typical greenhouse vegetable production system in China. Hum. Ecol. Risk Assess. 20, 1264e1280 (2014).
doi: 10.1080/10807039.2013.831267
Wakefield, S., Yeudall, F., Taron, C., Reynolds, J. & Skinner, A. Growing urban health: community gardening in south-east Toronto. Health Promot. Int. 22, 92–101 (2007).
pubmed: 17324956 doi: 10.1093/heapro/dam001
Bhatt, A., Batista-Silva, W., Gallacher, D. J. & Pompelli, M. F. Germination of Cenchrus ciliaris, Pennisetum divisum, and Panicum turgidum is seasonally dependent. Botany 98, 449–458 (2020).
doi: 10.1139/cjb-2019-0194
Liu, T. et al. Effect of hydrothermal carbonization on migration and environmental risk of heavy metals in sewage sludge during pyrolysis. Bioresour. Technol. 247, 282–290 (2018).
pubmed: 28950137 doi: 10.1016/j.biortech.2017.09.090
Abd El-Ghani, M. M., Bornkamm, R., El-Sawaf, N. & Turky, H. Plant species distribution and spatial habitat heterogeneity in the landscape of urbanizing desert ecosystem of Egypt. Urban Ecosyst. 14, 585–616 (2011).
doi: 10.1007/s11252-011-0188-1
Abdelfattah, M. A., El-Keblawy, A. & Dawoud, M. A. Impacts of long-term sewage effluent application on heavy metals level in soils of urban parks of Al-Ain, UAE. In The Tenth Annual UAE Research Conference 597–606 (2009).
Allen, S. E. Chemical Analysis of Ecological Materials (Wiley, 1989).
Ali, H., Khan, E. & Sajad, M. A. Phytoremediation of heavy metals-concepts and applications. Chemosphere 91, 869–881 (2013).
pubmed: 23466085 doi: 10.1016/j.chemosphere.2013.01.075
Galal, T. M. et al. Health risks of heavy metals uptake by the curds of cauliflower (Brassica oleracea var. botrytis) grown in contaminated agricultural lands. Appl. Ecol. Environ. Res. 21, 975–991 (2023).
doi: 10.15666/aeer/2102_975991
Cui, S., Zhou, Q. & Chao, L. Potential hyper-accumulation of Pb, Zn, Cu and Cd in endurant plants distributed in an old smelter, northeast China. Environ. Geol. 51, 1043–1048 (2007).
doi: 10.1007/s00254-006-0373-3
Siromlya, T. I. Influence of traffic pollution on ecological state of Plantago major. Contemp. Probl. Ecol. 18, 677–688 (2011).
Malizia, D., Giuliano, A., Ortaggi, G. & Masotti, A. Common plants as alternative analytical tools to monitor heavy metals in soil. Chem. Cent. J. 6 Suppl 2(Suppl 2), S6. https://doi.org/10.1186/1752-153X-6-S2-S6 (2012).
doi: 10.1186/1752-153X-6-S2-S6 pubmed: 22594441
Pivić, R. N., Stanojković, S. A. B. & Jošić, D. Assessment of soil and plant contamination by select heavy metals along a major european highway. Pol. J. Environ. Stud. 22, 1465–1472 (2013).
Abdulhay, H. S. & Rathi, M. H. Lead, cadmium and nickel contamination of roadside soils and plant leaves in Baghdad City. J. Chem. Pharm. Res. 9, 47–51 (2017).
Amusan, A. A., Bada, S. B. & Salami, A. Effect of traffic density on heavy metal content of soil and vegetation along roadside in Osun state, Nigeria. West Afr. J. Appl. Sci. 4, 107 (2003).
Li, F. R. et al. Traffic-related heavy metal accumulation in soils and plants in Northwest China. Soil Sediment Contam. 16, 473–484 (2007).
doi: 10.1080/15320380701490168
Kabata-Pendias, A. & Pendias, H. Trace Elements in Soils and Plants 365 (CRC Press, 1992).
Nagajyoti, C. P., Lee, D. K. & Sreekanth, M. V. T. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 8, 199–216 (2010).
doi: 10.1007/s10311-010-0297-8
Chiroma, T. M., Ebewele, R. O. & Hymore, F. K. Comparative assessment of heavy metal levels in soil, vegetables and urban grey waste water used for irrigation in Yola and Kano. J. Eng. Sci. 3, 1–9 (2014).
ATSDR. Agency for Toxic Substances and Disease Registry. Toxicological Profile for strontium. Division of Toxicology/Toxicology Information Branch 1600 Clifton Road NE, Mailstop F-32 Atlanta, Georgia, USA (2004).
Zhang, H., Wang, Z. F., Zhang, Y. L. & Hu, Z. J. The effects of the Qinghai-Tibet railway on heavy metals enrichment in soils. Sci. Total Environ. 439, 240–248 (2012).
pubmed: 23079687 doi: 10.1016/j.scitotenv.2012.09.027
Gupta, V. Vehicle-generated heavy metal pollution in an urban environment and its distribution into various environmental components. Environ. Concerns Sustain. Dev. Air Water Energy Res. 45, 113–127 (2020).
Porebska, G. & Ostrowska, A. Heavy metal accumulation in wild plants: Implications for phytoremediation. Pol. J. Environ. Stud. 8, 433–442 (1999).
Kumar, J. I. N., Soni, H. & Kumar, R. N. Biomonitoring of selected freshwater macrophytes to assess lake trace element contamination: a case study of Nal Sarovar Bird Sanctuary, Gujarat, India. J. Limnol. 65, 9–16 (2006).
doi: 10.4081/jlimnol.2006.9
Liu, R., Wang, M., Chen, W. & Peng, C. Spatial pattern of heavy metals accumulation risk in urban soils of Beijing and its influencing factors. Environ. Pollut. 210, 174–181 (2016).
pubmed: 26716731 doi: 10.1016/j.envpol.2015.11.044
Jahan, S., Alias, Y. B., Abubakar, A. F. & Yussof, I. Toxicity evaluation of Zno and TiO
doi: 10.1016/j.jes.2017.12.022
Akanbi-gada, M. A., Ogunkunle, C. O., Vishwakarma, V., Viswanathan, K. & Fatoba, P. O. Environmental Technology & Innovation Phytotoxicity of nano-zinc oxide to tomato plant (Solanum lycopersicum L.): Zn uptake, stress enzymes response and influence on non-enzymatic antioxidants in fruits. Environ. Tech. Innov. 14, 100325 (2019).
doi: 10.1016/j.eti.2019.100325
Quronfulah, A. S., El-Morsy, M. H., Tarek, M., Galal, T. M. & Osman, H. E. Phytoaccumulation of Zinc and its associated impact on the growth performance and tolerance index of six Non-food crop plants grown in Zn-contaminated soil. Environ. Sci. Pollut. Res. 30, 43872–43885 (2023).
doi: 10.1007/s11356-023-25332-x
Marschner, H. Mineral Nutrition of Higher Plants (Harcourt Brace and Company Publishers, 1995).
Kabata-Pendias, A. & Mukherjee, A. B. Trace Elements from Soil to Human (Springer, 2007).
doi: 10.1007/978-3-540-32714-1
Dubchak, S. Distribution of strontium in soil: Interception, weathering, speciation, and translocation to plants. In Behaviour of Strontium in Plants and the Environment (eds Gupta, D. K. & Walther, C.) 33–43 (Springer, 2018).
doi: 10.1007/978-3-319-66574-0_3
Katayama, N., Baba, Y., Kusumoto, Y. & Tanaka, K. A review of post-war changes in rice farming and biodiversity in Japan. Agric. Syst. 132, 73–84 (2015).
doi: 10.1016/j.agsy.2014.09.001
Chowdhury, M. A. H., Chowdhury, T. & Rahman, M. A. Heavy metal accumulation in tomato and cabbage grown in some industrially contaminated soils of Bangladesh. J. Bangladesh Agric. Univ. 17, 288–294 (2019).
doi: 10.3329/jbau.v17i3.43198
Gharib, F. A., Mansour, K. H., Ahmed, E. Z. & Galal, T. M. Heavy metals concentration, and antioxidant activity of the essential oil of the wild mint (Mentha longifolia L.) in the Egyptian watercourses. Int. J. Phytoremediat. 23, 641–651 (2020).
Yan, Y. et al. Soil organic carbon and total nitrogen in intensively managed arable soils. Agric. Ecosyst. Environ. 150, 102–110 (2012).
doi: 10.1016/j.agee.2012.01.024
Alam, M. G. M., Snow, E. T. & Tanaka, A. Arsenic and heavy metal contamination of rice, pulses and vegetables grown in Samta village, Bangladesh. Sci. Total Environ. 308, 83–96 (2003).
pubmed: 12738203 doi: 10.1016/S0048-9697(02)00651-4
Lokeshwari, H. & Chandrappa, G. T. Impact of heavy metal contamination of Bellandur lake on soil and cultivated vegetation. Curr. Sci. 91, 622–627 (2006).
Patale, V. & Tank, J. G. Ecological assessment of heavy metals accumulation in sediments and leaves of Avicennia marina along the Diu coast of the northeast Arabian Sea. Oceanologia 64, 276–286 (2022).
doi: 10.1016/j.oceano.2021.12.002
Eid, E. M., El-Sheikh, M. A. & Alatar, A. A. Uptake of Ag, Co and Ni by the organs of Typha domingensis (Pers.) Poir. ex Steud. in Lake Burullus and their potential use as contamination indicators. Open J. Mod. Hydraul. 2, 21–27 (2012).
doi: 10.4236/ojmh.2012.21004
Bonanno, G. Comparative performance of trace element bioaccumulation and biomonitoring in the plant species Typha domingensis, Phragmites australis and Arundo donax. Ecotox. Environ. Safe 78, 124–130 (2013).
doi: 10.1016/j.ecoenv.2013.07.017
Susarla, S., Medina, V. F. & McCutcheon, S. C. Phytoremediation: An ecological solution to organic chemical contamination. Ecol. Eng. 18, 647–658 (2002).
doi: 10.1016/S0925-8574(02)00026-5
Mganga, N., Manoko, M. & Rulangaranga, Z. Classification of plants according to their heavy metal content around North Mara Gold Mine, Tanzania: Implication for phytoremediation. Tanz. J. Sci. 37, 109–119 (2011).
Zhao, L. Y., Schulin, R., Weng, L. & Nowack, B. Coupled mobilization of dissolved organic matter and metals (Cu and Zn) in soil columns. Geochim. Cosmochim. Acta 71, 3407–3418 (2007).
doi: 10.1016/j.gca.2007.04.020
Eid, E. M. et al. Evaluation of newly reclaimed areas in Saudi Arabia for cultivation of the leguminous crop Phaseolus vulgaris under sewage sludge amendment. J. Consum. Prot. Food Saf. 16, 153–169 (2021).
doi: 10.1007/s00003-020-01311-z
Weis, J. S. & Weis, P. Metal uptake, transport and release by wetland plants: Implications for phytoremediation and restoration. Environ. Int. 30, 685–700 (2004).
pubmed: 15051245 doi: 10.1016/j.envint.2003.11.002
Page, V. & Feller, U. Heavy metals in crop plants: transport and redistribution processes on the whole plant level. Agronomy 5, 447–463 (2015).
doi: 10.3390/agronomy5030447
Buscaroli, A. An overview of indexes to evaluate terrestrial plants for phytoremediation purposes. Ecol. Indic. 82, 367–380 (2017).
doi: 10.1016/j.ecolind.2017.07.003
Yan, B. F. et al. In situ phytostabilization of arable soils severely contaminated with cadmium at Yangshuo, Southern China, using cash crops and amendments: a comprehensive performance evaluation. J. Soils Sediments 23, 817–830 (2023).
doi: 10.1007/s11368-022-03371-0
Ahmed, D. A., Galal, T. M., Al-Yasi, H. M., Hassan, L. M. & Slima, D. F. Accumulation and translocation of eight trace metals by the different tissues of Abelmoschus esculentus Moench. irrigated with untreated wastewater. Environ. Sci. Pollut. Res. 29, 21221–21231 (2021).
doi: 10.1007/s11356-021-17315-7
Wu, Q. et al. Phytostabilization potential of Jatropha curcas L. in polymetallic acid mine tailings. Int. J. Phytoremediat. 13, 788–804 (2011).
doi: 10.1080/15226514.2010.525562
Yoon, J., Cao, X., Zhou, Q. & Ma, L. Q. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci. Total Environ. 368, 456–464 (2006).
pubmed: 16600337 doi: 10.1016/j.scitotenv.2006.01.016
Gupta, S., Nayek, S., Saha, R. N. & Satpati, S. Assessment of heavy metal accumulation in macrophyte, agricultural soil and crop plants adjacent to discharge zone of sponge iron factory. Environ. Geol. 55, 731–739 (2008).
doi: 10.1007/s00254-007-1025-y
Singh, R. P. & Agrawal, M. Variations in heavy metal accumulation, growth and yield of rice plants grown at different sewage sludge amendment rates. Ecotoxicol. Environ. Saf. 73, 63–641 (2010).
doi: 10.1016/j.ecoenv.2010.01.020

Auteurs

Ali El-Keblawy (A)

Department of Applied Biology, College of Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates. akeblawy@sharjah.ac.ae.
Department of Biology, Faculty of Science, Al-Arish University, El-Arish, Egypt. akeblawy@sharjah.ac.ae.

Ahmed M Almehdi (AM)

Department of Chemistry, College of Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates. smirza@sharjah.ac.ae.

Elsiddig A E Elsheikh (EAE)

Department of Applied Biology, College of Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates.

Mohamed Y Abouleish (MY)

Biology, Chemistry and Environmental Sciences Department, College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates.

Mohamed S Sheteiwy (MS)

Department of Applied Biology, College of Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates.
Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt.
Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates.

Tarek M Galal (TM)

Department of Biology, College of Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia. tarekhelwan@yahoo.com.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages
Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Fragaria Light Plant Leaves Osmosis Stress, Physiological

Classifications MeSH