Ultrasensitive plasma-based monitoring of tumor burden using machine-learning-guided signal enrichment.
Journal
Nature medicine
ISSN: 1546-170X
Titre abrégé: Nat Med
Pays: United States
ID NLM: 9502015
Informations de publication
Date de publication:
14 Jun 2024
14 Jun 2024
Historique:
received:
21
12
2023
accepted:
30
04
2024
medline:
15
6
2024
pubmed:
15
6
2024
entrez:
14
6
2024
Statut:
aheadofprint
Résumé
In solid tumor oncology, circulating tumor DNA (ctDNA) is poised to transform care through accurate assessment of minimal residual disease (MRD) and therapeutic response monitoring. To overcome the sparsity of ctDNA fragments in low tumor fraction (TF) settings and increase MRD sensitivity, we previously leveraged genome-wide mutational integration through plasma whole-genome sequencing (WGS). Here we now introduce MRD-EDGE, a machine-learning-guided WGS ctDNA single-nucleotide variant (SNV) and copy-number variant (CNV) detection platform designed to increase signal enrichment. MRD-EDGE
Identifiants
pubmed: 38877116
doi: 10.1038/s41591-024-03040-4
pii: 10.1038/s41591-024-03040-4
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
ID : CA263301-01A1
Organisme : Melanoma Research Alliance (MRA)
ID : 1039927
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.
Références
Powles, T. et al. ctDNA guiding adjuvant immunotherapy in urothelial carcinoma. Nature https://doi.org/10.1038/s41586-021-03642-9 (2021).
Bratman, S. V. et al. Personalized circulating tumor DNA analysis as a predictive biomarker in solid tumor patients treated with pembrolizumab. Nat. Cancer 1, 873–881 (2020).
pubmed: 35121950
doi: 10.1038/s43018-020-0096-5
Tie, J. et al. Circulating tumor DNA analysis guiding adjuvant therapy in stage II colon cancer. N. Engl. J. Med. 386, 2261–2272 (2022).
pubmed: 35657320
pmcid: 9701133
doi: 10.1056/NEJMoa2200075
Phallen, J. et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aan2415 (2017).
Newman, A. M. et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat. Med. 20, 548–554 (2014).
pubmed: 24705333
pmcid: 4016134
doi: 10.1038/nm.3519
Nabet, B. Y. et al. Noninvasive early identification of therapeutic benefit from immune checkpoint inhibition. Cell 183, 363–376 (2020).
pubmed: 33007267
pmcid: 7572899
doi: 10.1016/j.cell.2020.09.001
Rose Brannon, A. et al. Enhanced specificity of clinical high-sensitivity tumor mutation profiling in cell-free DNA via paired normal sequencing using MSK-ACCESS. Nat. Commun. 12, 3770 (2021).
pubmed: 34145282
pmcid: 8213710
doi: 10.1038/s41467-021-24109-5
Magbanua, M. J. M. et al. Circulating tumor DNA in neoadjuvant-treated breast cancer reflects response and survival. Ann. Oncol. 32, 229–239 (2021).
pubmed: 33232761
doi: 10.1016/j.annonc.2020.11.007
Henriksen, T. V. et al. Circulating tumor DNA in stage III colorectal cancer, beyond minimal residual disease detection, towards assessment of adjuvant therapy efficacy and clinical behavior of recurrences. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.CCR-21-2404 (2021).
Kotani, D. et al. Molecular residual disease and efficacy of adjuvant chemotherapy in patients with colorectal cancer. Nat. Med. 29, 127–134 (2023).
pubmed: 36646802
pmcid: 9873552
doi: 10.1038/s41591-022-02115-4
Kurtz, D. M. et al. Enhanced detection of minimal residual disease by targeted sequencing of phased variants in circulating tumor DNA. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-00981-w (2021).
Haque, I. S. & Elemento, O. Challenges in using ctDNA to achieve early detection of cancer. Preprint at bioRxiv https://doi.org/10.1101/237578 (2017).
Avanzini, S. et al. A mathematical model of ctDNA shedding predicts tumor detection size. Sci. Adv. 6, eabc4308 (2020).
pubmed: 33310847
pmcid: 7732186
doi: 10.1126/sciadv.abc4308
Zviran, A. et al. Genome-wide cell-free DNA mutational integration enables ultra-sensitive cancer monitoring. Nat. Med. 26, 1114–1124 (2020).
pubmed: 32483360
pmcid: 8108131
doi: 10.1038/s41591-020-0915-3
Newman, A. M. et al. Integrated digital error suppression for improved detection of circulating tumor DNA. Nat. Biotechnol. 34, 547–555 (2016).
pubmed: 27018799
pmcid: 4907374
doi: 10.1038/nbt.3520
Wan, J. C. M. et al. ctDNA monitoring using patient-specific sequencing and integration of variant reads. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aaz8084 (2020).
Gydush, G. et al. Massively parallel enrichment of low-frequency alleles enables duplex sequencing at low depth. Nat. Biomed. Eng. 6, 257–266 (2022).
pubmed: 35301450
pmcid: 9089460
doi: 10.1038/s41551-022-00855-9
Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).
pubmed: 23945592
pmcid: 3776390
doi: 10.1038/nature12477
Alexandrov, L. B. et al. Mutational signatures associated with tobacco smoking in human cancer. Science 354, 618–622 (2016).
pubmed: 27811275
pmcid: 6141049
doi: 10.1126/science.aag0299
Underhill, H. R. et al. Fragment length of circulating tumor DNA. PLoS Genet. 12, e1006162 (2016).
pubmed: 27428049
pmcid: 4948782
doi: 10.1371/journal.pgen.1006162
Mouliere, F. et al. Enhanced detection of circulating tumor DNA by fragment size analysis. Sci. Transl. Med. 10, eaat4921 (2018).
pubmed: 30404863
pmcid: 6483061
doi: 10.1126/scitranslmed.aat4921
Guo, J. et al. Quantitative characterization of tumor cell-free DNA shortening. BMC Genomics 21, 473 (2020).
pubmed: 32650715
pmcid: 7350596
doi: 10.1186/s12864-020-06848-9
Gonzalez-Perez, A., Sabarinathan, R. & Lopez-Bigas, N. Local determinants of the mutational landscape of the human genome. Cell 177, 101–114 (2019).
pubmed: 30901533
doi: 10.1016/j.cell.2019.02.051
Woo, Y. H. & Li, W.-H. DNA replication timing and selection shape the landscape of nucleotide variation in cancer genomes. Nat. Commun. 3, 1004 (2012).
pubmed: 22893128
doi: 10.1038/ncomms1982
Haradhvala, N. J. et al. Mutational strand asymmetries in cancer genomes reveal mechanisms of DNA damage and repair. Cell 164, 538–549 (2016).
pubmed: 26806129
pmcid: 4753048
doi: 10.1016/j.cell.2015.12.050
Donley, N. & Thayer, M. J. DNA replication timing, genome stability and cancer: late and/or delayed DNA replication timing is associated with increased genomic instability. Semin. Cancer Biol. 23, 80–89 (2013).
pubmed: 23327985
pmcid: 3615080
doi: 10.1016/j.semcancer.2013.01.001
Polak, P. et al. Cell-of-origin chromatin organization shapes the mutational landscape of cancer. Nature 518, 360–364 (2015).
pubmed: 25693567
pmcid: 4405175
doi: 10.1038/nature14221
Bruhm, D. C. et al. Single-molecule genome-wide mutation profiles of cell-free DNA for non-invasive detection of cancer. Nat. Genet. 55, 1301–1310 (2023).
pubmed: 37500728
pmcid: 10412448
doi: 10.1038/s41588-023-01446-3
Taylor, A. M. et al. Genomic and functional approaches to understanding cancer aneuploidy. Cancer Cell 33, 676–689.e3 (2018).
pubmed: 29622463
pmcid: 6028190
doi: 10.1016/j.ccell.2018.03.007
Deshpande, A., Walradt, T., Hu, Y., Koren, A. & Imielinski, M. Robust foreground detection in somatic copy number data. Preprint at bioRxiv https://doi.org/10.1101/847681 (2019).
Raine, K. M. et al. AscatNgs: identifying somatically acquired copy-number alterations from whole-genome sequencing data. Curr. Protoc. Bioinform. 56, 15.9.1–15.9.17 (2016).
doi: 10.1002/cpbi.17
Carter, S. L. et al. Absolute quantification of somatic DNA alterations in human cancer. Nat. Biotechnol. 30, 413–421 (2012).
pubmed: 22544022
pmcid: 4383288
doi: 10.1038/nbt.2203
Cristiano, S. et al. Genome-wide cell-free DNA fragmentation in patients with cancer. Nature 570, 385–389 (2019).
pubmed: 31142840
pmcid: 6774252
doi: 10.1038/s41586-019-1272-6
Snyder, M. W., Kircher, M., Hill, A. J., Daza, R. M. & Shendure, J. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell 164, 57–68 (2016).
pubmed: 26771485
pmcid: 4715266
doi: 10.1016/j.cell.2015.11.050
Jiang, P. et al. Preferred end coordinates and somatic variants as signatures of circulating tumor DNA associated with hepatocellular carcinoma. Proc. Natl Acad. Sci. USA 115, E10925–E10933 (2018).
pubmed: 30373822
pmcid: 6243268
doi: 10.1073/pnas.1814616115
Renaud, G. et al. Unsupervised detection of fragment length signatures of circulating tumor DNA using non-negative matrix factorization. eLife https://doi.org/10.7554/eLife.71569 (2022).
Zack, T. I. et al. Pan-cancer patterns of somatic copy number alteration. Nat. Genet. 45, 1134–1140 (2013).
pubmed: 24071852
pmcid: 3966983
doi: 10.1038/ng.2760
Reinert, T. et al. Analysis of plasma cell-free DNA by ultradeep sequencing in patients with stages I to III colorectal cancer. JAMA Oncol. 5, 1124–1131 (2019).
pubmed: 31070691
pmcid: 6512280
doi: 10.1001/jamaoncol.2019.0528
Tan, A. C. et al. Abstract 5114: ultra-sensitive detection of minimal residual disease (MRD) through whole genome sequencing (WGS) using an AI-based error suppression model in resected early-stage non-small cell lung cancer (NSCLC). Cancer Res. 82, 5114 (2022).
doi: 10.1158/1538-7445.AM2022-5114
Tie, J. et al. Circulating tumor DNA analyses as markers of recurrence risk and benefit of adjuvant therapy for stage III colon cancer. JAMA Oncol. 5, 1710–1717 (2019).
pubmed: 31621801
pmcid: 6802034
doi: 10.1001/jamaoncol.2019.3616
Altorki, N. K. et al. Neoadjuvant durvalumab with or without stereotactic body radiotherapy in patients with early-stage non-small-cell lung cancer: a single-centre, randomised phase 2 trial. Lancet Oncol. 22, 824–835 (2021).
pubmed: 34015311
doi: 10.1016/S1470-2045(21)00149-2
Kageyama, S.-I. et al. Radiotherapy increases plasma levels of tumoral cell-free DNA in non-small cell lung cancer patients. Oncotarget 9, 19368–19378 (2018).
pubmed: 29721209
pmcid: 5922403
doi: 10.18632/oncotarget.25053
Shaw, J. et al. Serial postoperative ctDNA monitoring of breast cancer recurrence. J. Clin. Orthod. 40, 562 (2022).
Myint, N. N. M. et al. Circulating tumor DNA in patients with colorectal adenomas: assessment of detectability and genetic heterogeneity. Cell Death Dis. 9, 894 (2018).
pubmed: 30166531
pmcid: 6117318
doi: 10.1038/s41419-018-0934-x
Junca, A. et al. Detection of colorectal cancer and advanced adenoma by liquid biopsy (Decalib Study): the ddPCR challenge. Cancers https://doi.org/10.3390/cancers12061482 (2020).
Galanopoulos, M. et al. Comparative study of mutations in single nucleotide polymorphism loci of KRAS and BRAF genes in patients who underwent screening colonoscopy, with and without premalignant intestinal polyps. Anticancer Res. 37, 651–657 (2017).
pubmed: 28179313
doi: 10.21873/anticanres.11360
Rasmussen, L. et al. Protocol outlines for parts 1 and 2 of the prospective endoscopy III study for the early detection of colorectal cancer: validation of a concept based on blood biomarkers. JMIR Res. Protoc. 5, e182 (2016).
pubmed: 27624815
pmcid: 5039335
doi: 10.2196/resprot.6346
Alcántara Torres, M. et al. DNA aneuploidy in colorectal adenomas. Role in the adenoma-carcinoma sequence. Rev. Esp. Enferm. Dig. 97, 7–15 (2005).
pubmed: 15801893
doi: 10.4321/S1130-01082005000100002
Lin, Y. et al. Intensity-modulated radiation therapy for definitive treatment of cervical cancer: a meta-analysis. Radiat. Oncol. 13, 177 (2018).
pubmed: 30217165
pmcid: 6137729
doi: 10.1186/s13014-018-1126-7
Wolff, R. K. et al. Mutation analysis of adenomas and carcinomas of the colon: early and late drivers. Genes Chromosomes Cancer 57, 366–376 (2018).
pubmed: 29575536
pmcid: 5951744
doi: 10.1002/gcc.22539
Cindy Yang, S. Y. et al. Pan-cancer analysis of longitudinal metastatic tumors reveals genomic alterations and immune landscape dynamics associated with pembrolizumab sensitivity. Nat. Commun. 12, 5137 (2021).
pubmed: 34446728
pmcid: 8390680
doi: 10.1038/s41467-021-25432-7
Postow, M. A. et al. Adaptive dosing of nivolumab + ipilimumab immunotherapy based upon early, interim radiographic assessment in advanced melanoma (The ADAPT-IT Study). J. Clin. Oncol. https://doi.org/10.1200/JCO.21.01570 (2021).
Adalsteinsson, V. A. et al. Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors. Nat. Commun. 8, 1324 (2017).
pubmed: 29109393
pmcid: 5673918
doi: 10.1038/s41467-017-00965-y
Weber, S. et al. Dynamic changes of circulating tumor DNA predict clinical outcome in patients with advanced non–small-cell lung cancer treated with immune checkpoint inhibitors. JCO Precis. Oncol. https://doi.org/10.1200/PO.21.00182 (2021).
Zhang, Q. et al. Prognostic and predictive impact of circulating tumor DNA in patients with advanced cancers treated with immune checkpoint blockade. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-20-0047 (2020).
Wolchok, J. D. et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 377, 1345–1356 (2017).
pubmed: 28889792
pmcid: 5706778
doi: 10.1056/NEJMoa1709684
Bai, X. et al. Early use of high-dose glucocorticoid for the management of irAE is associated with poorer survival in patients with advanced melanoma treated with anti-PD-1 monotherapy. Clin. Cancer Res. 27, 5993–6000 (2021).
pubmed: 34376536
pmcid: 9401488
doi: 10.1158/1078-0432.CCR-21-1283
Almogy, G. et al. Cost-efficient whole genome-sequencing using novel mostly natural sequencing-by-synthesis chemistry and open fluidics platform. Preprint at bioRxiv https://doi.org/10.1101/2022.05.29.493900 (2022).
Chowell, D. et al. Improved prediction of immune checkpoint blockade efficacy across multiple cancer types. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-01070-8 (2021).
Gerstung, M. et al. The evolutionary history of 2,658 cancers. Nature 578, 122–128 (2020).
pubmed: 32025013
pmcid: 7054212
doi: 10.1038/s41586-019-1907-7
Illumina. TruSeq DNA PCR-Free Reference Guide (Illumina, 2017).
Reinert, T. et al. Analysis of circulating tumour DNA to monitor disease burden following colorectal cancer surgery. Gut 65, 625–634 (2016).
pubmed: 25654990
doi: 10.1136/gutjnl-2014-308859
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
pubmed: 19451168
pmcid: 2705234
doi: 10.1093/bioinformatics/btp324
Jiang, H., Lei, R., Ding, S.-W. & Zhu, S. Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinform. 15, 182 (2014).
doi: 10.1186/1471-2105-15-182
Bergmann, E. A., Chen, B.-J., Arora, K., Vacic, V. & Zody, M. C. Conpair: concordance and contamination estimator for matched tumor-normal pairs. Bioinformatics 32, 3196–3198 (2016).
pubmed: 27354699
pmcid: 5048070
doi: 10.1093/bioinformatics/btw389
Arora, K. et al. Deep whole-genome sequencing of 3 cancer cell lines on 2 sequencing platforms. Sci. Rep. 9, 19123 (2019).
pubmed: 31836783
pmcid: 6911065
doi: 10.1038/s41598-019-55636-3
Favero, F. et al. Sequenza: allele-specific copy number and mutation profiles from tumor sequencing data. Ann. Oncol. 26, 64–70 (2015).
pubmed: 25319062
doi: 10.1093/annonc/mdu479
Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).
pubmed: 32461654
pmcid: 7334197
doi: 10.1038/s41586-020-2308-7
Amemiya, H. M., Kundaje, A. & Boyle, A. P. The ENCODE blacklist: identification of problematic regions of the genome. Sci. Rep. 9, 9354 (2019).
pubmed: 31249361
pmcid: 6597582
doi: 10.1038/s41598-019-45839-z
Benjamin, D. et al. Calling somatic SNVs and indels with Mutect2. Preprint at bioRxiv https://doi.org/10.1101/861054 (2019).
ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).
doi: 10.1038/nature11247
Rozowsky, J. et al. PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls. Nat. Biotechnol. 27, 66–75 (2009).
pubmed: 19122651
pmcid: 2924752
doi: 10.1038/nbt.1518
Corces, M. R. et al. The chromatin accessibility landscape of primary human cancers. Science 362, eaav1898 (2018).
pubmed: 30361341
pmcid: 6408149
doi: 10.1126/science.aav1898
Ernst, J. & Kellis, M. ChromHMM: automating chromatin-state discovery and characterization. Nat. Methods 9, 215–216 (2012).
pubmed: 22373907
pmcid: 3577932
doi: 10.1038/nmeth.1906
Xiong, K. & Ma, J. Revealing Hi-C subcompartments by imputing inter-chromosomal chromatin interactions. Nat. Commun. 10, 5069 (2019).
pubmed: 31699985
pmcid: 6838123
doi: 10.1038/s41467-019-12954-4
Imielinski, M. et al. fragCounter: GC and mappability corrected fragment coverage for paired end whole genome sequencing. GitHub https://github.com/mskilab-org/fragCounter (2018).
van de Geijn, B., McVicker, G., Gilad, Y. & Pritchard, J. K. WASP: allele-specific software for robust molecular quantitative trait locus discovery. Nat. Methods 12, 1061–1063 (2015).
pubmed: 26366987
pmcid: 4626402
doi: 10.1038/nmeth.3582
Dentro, S. C., Wedge, D. C. & Van Loo, P. Principles of reconstructing the subclonal architecture of cancers. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a026625 (2017).
Henriksen, T. V. et al. Error characterization and statistical modeling improves circulating tumor DNA detection by droplet digital PCR. Clin. Chem. 68, 657–667 (2022).
pubmed: 35030248
doi: 10.1093/clinchem/hvab274
Henriksen, T. V. et al. Comparing single-target and multitarget approaches for postoperative circulating tumour DNA detection in stage II-III colorectal cancer patients. Mol. Oncol. 16, 3654–3665 (2022).
pubmed: 35895438
pmcid: 9580876
doi: 10.1002/1878-0261.13294
Cheng, D. T. et al. Memorial Sloan Kettering-integrated mutation profiling of actionable cancer targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. J. Mol. Diagn. 17, 251–264 (2015).
pubmed: 25801821
pmcid: 5808190
doi: 10.1016/j.jmoldx.2014.12.006
Shen, R. & Seshan, V. E. FACETS: allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA sequencing. Nucleic Acids Res. 44, e131 (2016).
pubmed: 27270079
pmcid: 5027494
doi: 10.1093/nar/gkw520
Davidson-Pilon, C. lifelines, survival analysis in Python. Zenodo https://doi.org/10.5281/zenodo.5512044 (2021).
Zivich, P., Davidson-Pilon, C., Reger, D., Diong, J. & The Gitter Badger. pzivich/zEpid: v.0.9.0. Zenodo https://doi.org/10.5281/zenodo.7234506 (2020).