Cerebrovascular dysregulation and postoperative cognitive alterations after carotid endarterectomy.

Carotid endarterectomy Cerebral tissue saturation Cognitive function Near-infrared spectroscopy Postoperative neurocognitive disorder

Journal

GeroScience
ISSN: 2509-2723
Titre abrégé: Geroscience
Pays: Switzerland
ID NLM: 101686284

Informations de publication

Date de publication:
15 Jun 2024
Historique:
received: 04 03 2024
accepted: 01 06 2024
medline: 15 6 2024
pubmed: 15 6 2024
entrez: 14 6 2024
Statut: aheadofprint

Résumé

There are controversial data about the effect of carotid endarterectomy regarding postoperative cognitive function. Our aim was to analyze the effect of cerebral tissue saturation monitored by near-infrared spectroscopy (NIRS) on cognitive function. Perioperative data of 103 asymptomatic patients undergoing elective carotid surgery under general anesthesia were analyzed. Preoperatively and 3 months after the operation, MMSE (Mini Mental State Examination) and MoCA (Montreal Cognitive Assessment) tests were conducted. For cerebral monitoring, NIRS was used, and the lowest rSO

Identifiants

pubmed: 38877342
doi: 10.1007/s11357-024-01237-6
pii: 10.1007/s11357-024-01237-6
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
ID : 129277

Informations de copyright

© 2024. The Author(s).

Références

Naylor R, et al. European Society for Vascular Surgery (ESVS) 2023 clinical practice guidelines on the management of atherosclerotic carotid and vertebral artery disease. Eur J Vasc Endovasc Surg. 2023;65:7–111. https://doi.org/10.1016/j.ejvs.2022.04.011 .
doi: 10.1016/j.ejvs.2022.04.011 pubmed: 35598721
Sridharan ND, Asaadi S, Thirumala PD, Avgerinos ED. A systematic review of cognitive function after carotid endarterectomy in asymptomatic patients. J Vasc Surg. 2022;75:2074–85. https://doi.org/10.1016/j.jvs.2021.12.059 .
doi: 10.1016/j.jvs.2021.12.059 pubmed: 34995717
Gray VL, et al. Asymptomatic carotid stenosis is associated with mobility and cognitive dysfunction and heightens falls in older adults. J Vasc Surg. 2022;71:1930–7.
doi: 10.1016/j.jvs.2019.09.020
Suraarunsumrit P, et al. Postoperative cognitive dysfunction in older surgical patients associated with increased healthcare utilization: a prospective study from an upper-middle-income country. BMC Geriatr. 2022;22:213. https://doi.org/10.1186/s12877-022-02873-3 .
doi: 10.1186/s12877-022-02873-3 pubmed: 35296258 pmcid: 8925052
Relander K, et al. Cognitive dysfunction and mortality after carotid endarterectomy. Front Neurol. 2021;11:593719. https://doi.org/10.3389/fneur.2020.593719 .
doi: 10.3389/fneur.2020.593719 pubmed: 33519678 pmcid: 7840953
Ton TGN, et al. The financial burden and health care utilization patterns associated with amnestic mild cognitive impairment. Alzheimer’s & Dementia. 2017;13:217–24.
doi: 10.1016/j.jalz.2016.08.009
Han F, et al. Risk factors affecting cognitive impairment of the elderly aged 65 and over: a cross-sectional study. Front Aging Neurosci. 2022;14:903794.
doi: 10.3389/fnagi.2022.903794 pubmed: 35783132 pmcid: 9243469
Wang Y, et al. The efficacy of near-infrared spectroscopy monitoring in carotid endarterectomy: a prospective, single-center, observational study. Cell Transplant. 2019;28:170–5. https://doi.org/10.1177/0963689718817760 .
doi: 10.1177/0963689718817760 pubmed: 30545240
Radak D, Sotirovic V, Obradovic M, Isenovic ER. Practical use of near-infrared spectroscopy in carotid surgery. Sage J Angiol. 2013;65:769–72. https://doi.org/10.1177/0003319713508642 .
doi: 10.1177/0003319713508642
Jonsson M, Lindström D, Wanhainen A, Gidlund KD, Gillgren P. Near infrared spectroscopy as a predictor for shunt requirement during carotid endarterectomy. Eur J Vasc Endovasc Surg. 2017;53:783–91. https://doi.org/10.1016/j.ejvs.2017.02.033 .
doi: 10.1016/j.ejvs.2017.02.033 pubmed: 28431821
Uysal S, Lin HM, Trinh M, Park CH, Reich DL. Optimizing cerebral oxygenation in cardiac surgery: a randomized controlled trial examining neurocognitive and perioperative outcomes. J Thorac Cardiovasc Surg. 2020;159:943–53. https://doi.org/10.1016/j.jtcvs.2019.03.036 .
doi: 10.1016/j.jtcvs.2019.03.036 pubmed: 31056357
Holmgaard F, et al. The association between postoperative cognitive dysfunction and cerebral oximetry during cardiac surgery: a secondary analysis of a randomised trial. Br J Anaesth. 2019;123:196–205. https://doi.org/10.1016/j.bja.2019.03.045 .
doi: 10.1016/j.bja.2019.03.045 pubmed: 31104758 pmcid: 6676044
Yu Y, et al. Cerebral near-infrared spectroscopy (NIRS) for perioperative monitoring of brain oxygenation in children and adults. Cochrane Database Syst Rev. 2018;1:CD010947. https://doi.org/10.1002/14651858.CD010947.pub2 .
doi: 10.1002/14651858.CD010947.pub2 pubmed: 29341066
Ding X, et al. Effects of regional cerebral oxygen saturation monitoring on postoperative cognitive dysfunction in older patients: a systematic review and meta-analysis. BMC Geriatr. 2023;23:123. https://doi.org/10.1186/s12877-023-03804-6 .
doi: 10.1186/s12877-023-03804-6 pubmed: 36879186 pmcid: 9987102
Moneta GL, et al. Correlation of North American Symptomatic Carotid Endarterectomy Trial (NASCET) angiographic definition of 70% to 99% internal carotid artery stenosis with duplex scanning. J Vasc Surg. 1993;17:152–9. https://doi.org/10.1016/0741-5214(93)90019-I .
doi: 10.1016/0741-5214(93)90019-I pubmed: 8421332
Singh S, et al. Entropy as an indicator to measure depth of anaesthesia for laryngeal mask airway (LMA) insertion during sevoflurane and propofol anaesthesia. J Clin Diagn Res. 2017;11:UC01–3. https://doi.org/10.7860/JCDR/2017/27316.10177 .
doi: 10.7860/JCDR/2017/27316.10177 pubmed: 28893011 pmcid: 5583804
Bikbov MM, et al. Cognitive impairment in the population-based ural very old study. Front Ageing Neurosci. 2022;14:912755. https://doi.org/10.3389/fnagi.2022.912755 .
doi: 10.3389/fnagi.2022.912755
Mahanna EP, et al. Defining neuropsychological dysfunction after coronary artery bypass grafting. Ann Thorac Surg. 1996;61:1342–7.
doi: 10.1016/0003-4975(95)01095-5 pubmed: 8633938
Pinto TCC, et al. Is the Montreal Cognitive Assessment (MoCA) screening superior to the Mini-Mental State Examination (MMSE) in the detection of mild cognitive impairment (MCI) and Alzheimer’s disease (AD) in the elderly? Int Psychogeriatr. 2019;31:491–504. https://doi.org/10.1017/S1041610218001370 .
doi: 10.1017/S1041610218001370 pubmed: 30426911
Jia X, et al. A comparison of the Mini-Mental State Examination (MMSE) with the Montreal Cognitive Assessment (MoCA) for mild cognitive impairment screening in Chinese middle-aged and older population: a cross-sectional study. BMC Psychiatry. 2021;21:485. https://doi.org/10.1186/s12888-021-03495-6 .
doi: 10.1186/s12888-021-03495-6 pubmed: 34607584 pmcid: 8489046
Ciesielska N, et al. Is the Montreal Cognitive Assessment (MoCA) test better suited than the Mini-Mental State Examination (MMSE) in mild cognitive impairment (MCI) detection among people aged over 60? Meta-analysis. Psychiatria Polska. 2016;50:1039–52. https://doi.org/10.12740/PP/45368 .
doi: 10.12740/PP/45368 pubmed: 27992895
Fasnacht JS, et al. Conversion between the Montreal Cognitive Assessment and the Mini-Mental Status Examination. J Am Geriatr Soc. 2023;71:869–79. https://doi.org/10.1111/jgs.18124 .
doi: 10.1111/jgs.18124 pubmed: 36346002
Roheger M, et al. Conversion between the Mini-Mental State Examination and the Montreal Cognitive Assessment for patients with different forms of dementia. Jamda. 2022;23:1986–9. https://doi.org/10.1016/j.jamda.2022.03.018 .
doi: 10.1016/j.jamda.2022.03.018 pubmed: 35561758
Robu CB, et al. Advanced age and sex influence baseline regional cerebral oxygen saturation as measured by near-infrared spectroscopy: subanalysis of a prospective study. J Cardiothorac Vasc Anesth. 2020;34:3282–9. https://doi.org/10.1053/j.jvca.2020.06.025 .
doi: 10.1053/j.jvca.2020.06.025 pubmed: 32646630
Watzman HM, et al. Arterial and venous contributions to near-infrared cerebral oximetry. Anesthesiol. 2000;93:947–53. https://doi.org/10.1097/00000542-200010000-00012 .
doi: 10.1097/00000542-200010000-00012
Colak Z, et al. Influence of intraoperative cerebral oximetry monitoring on neurocognitive function after coronary artery bypass surgery: a randomized, prospective study. Eur J Cardiothorac Surg. 2015;47:447–54. https://doi.org/10.1093/ejcts/ezu193 .
doi: 10.1093/ejcts/ezu193 pubmed: 24810757
Tang L, et al. Reduced cerebral oxygen saturation during thoracic surgery predicts early postoperative cognitive dysfunction. Br J Anaesth. 2012;108:623–9. https://doi.org/10.1093/bja/aer501 .
doi: 10.1093/bja/aer501 pubmed: 22311364
Zhu J, Wang W, Shi H. The association between postoperative cognitive dysfunction and cerebral oximetry during geriatric orthopedic surgery: a randomized controlled study. Biomed Res Int. 2021;2021:1–9. https://doi.org/10.1155/2021/5733139 .
doi: 10.1155/2021/5733139
Nielsen HB. Systematic review of near-infrared spectroscopy determined cerebral oxygenation during non-cardiac surgery. Front Physiol. 2014;5:93. https://doi.org/10.3389/fphys.2014.00093 .
doi: 10.3389/fphys.2014.00093 pubmed: 24672486 pmcid: 3955969
Inčiūra D, et al. Near-infrared spectroscopy as a predictor of cerebral ischaemia during carotid endarterectomy in awake patients. Vascular. 2020;28:301–8. https://doi.org/10.1177/1708538119893830 .
doi: 10.1177/1708538119893830 pubmed: 31937208
Kamenskaya OV, Loginova IY, Lomivorotov VV. Brain oxygen supply parameters in the risk assessment of cerebral complications during carotid endarterectomy. J Cardiothorac Vasc Anesth. 2017;31:944–9. https://doi.org/10.1053/j.jvca.2016.10.017 .
doi: 10.1053/j.jvca.2016.10.017 pubmed: 28082030
Fudickar A, et al. Postoperative cognitive deficit after cardiopulmonary bypass with preserved cerebral oxygenation: a prospective observational pilot study. BMC Anesthesiol. 2011;11:7. https://doi.org/10.1186/1471-2253-11-7 .
doi: 10.1186/1471-2253-11-7 pubmed: 21401948 pmcid: 3068111
Moritz S, Kasprzak P, Arlt M, Taeger K, Metzet C. Accuracy of cerebral monitoring in detecting cerebral ischemia during carotid endarterectomy: a comparison of transcranial Doppler sonography, near-infrared spectroscopy, stump pressure, and somatosensory evoked potentials. Anesthesiology. 2007;107:563–9. https://doi.org/10.1097/01.anes.0000281894.69422.ff .
doi: 10.1097/01.anes.0000281894.69422.ff pubmed: 17893451
Yamashita T, et al. Combination of preoperative cerebral blood flow and 123I-iomazenil SPECT imaging predicts postoperative cognitive improvement in patients undergoing uncomplicated endarterectomy for unilateral carotid stenosis. Clin Nucl Med. 2012;37:128–33. https://doi.org/10.1097/RLU.0b013e31823e9a9a .
doi: 10.1097/RLU.0b013e31823e9a9a pubmed: 22228333
Wang X, et al. Utility of sample entropy from intraoperative cerebral NIRS oximetry data in the diagnosis of postoperative cognitive improvement. Front Physiol. 2022;13:965768. https://doi.org/10.3389/fphys.2022.965768 .
doi: 10.3389/fphys.2022.965768 pubmed: 36246131 pmcid: 9558228
Lin KA, et al. Marked gender differences in progression of mild cognitive impairment over 8 years. Alzheimer’s & Dementia. 2015;1:103–10. https://doi.org/10.1016/j.trci.2015.07.001 .
doi: 10.1016/j.trci.2015.07.001
Liu Y, et al. Gender-specific prevalence and risk factors of mild cognitive impairment among older adults in Chongming, Shanghai China. Front Aging Neurosci. 2022;14:900523. https://doi.org/10.3389/fnagi.2022.900523 .
doi: 10.3389/fnagi.2022.900523 pubmed: 36118698 pmcid: 9475287
Sohn D, et al. Sex differences in cognitive decline in subjects with high likelihood of mild cognitive impairment due to Alzheimer’s disease. Sci Rep. 2018;8:7490. https://doi.org/10.1038/s41598-018-25377-w .
doi: 10.1038/s41598-018-25377-w pubmed: 29748598 pmcid: 5945611
Berezuk C, et al. Sex differences in risk factors that predict progression from mild cognitive impairment to Alzheimer’s dementia. J Int Neuropsychol Soc. 2023;29:360–8. https://doi.org/10.1017/S1355617722000297 .
doi: 10.1017/S1355617722000297 pubmed: 35968841
Turowicz A, et al. Carotid revascularization improves cognition in patients with asymptomatic carotid artery stenosis and cognitive decline greater improvement in younger patients with more disordered neuropsychological performance. J Stroke Cerebrovasc Dis. 2021;30:105608. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.105608 .
doi: 10.1016/j.jstrokecerebrovasdis.2021.105608 pubmed: 33461024
Damanik J, Yunir E. Type 2 diabetes mellitus and cognitive impairment. Acta Medica Indonesia. 2021;53:213–20.
Jeong MJ, et al. Comparison of outcomes after carotid endarterectomy between type 2 diabetic and non-patients with diabetes with significant carotid stenosis. Cardiovasc Diabetol. 2019;18:41. https://doi.org/10.1186/s12933-019-0848-7 .
doi: 10.1186/s12933-019-0848-7 pubmed: 30909911 pmcid: 6432752
Dimic A, et al. Impact of diabetes mellitus on early outcome of carotid endarterectomy. Vasa. 2019;48:148–56. https://doi.org/10.1024/0301-1526/a000737 .
doi: 10.1024/0301-1526/a000737 pubmed: 30192204
Harada CN, Natelson Love MC, Triebel K. Normal cognitive aging clinics in geriatric medicine. 2013;29:737–52. https://doi.org/10.1016/j.cger.2013.07.002 .
doi: 10.1016/j.cger.2013.07.002 pubmed: 24094294
Kilic A, et al. Role of dyslipidemia in early vascular aging syndrome. Turkish J Med Sci. 2021;51:727–34. https://doi.org/10.3906/sag-2008-165 .
doi: 10.3906/sag-2008-165
Zhan B, et al. Association between lipid profiles and arterial stiffness in Chinese patients with hypertension: insights from the CSPPT. Angiology. 2019;70:515–22. https://doi.org/10.1177/0003319718823341 .
doi: 10.1177/0003319718823341 pubmed: 30651004
Rastogi T, et al. Impact of smoking on cardiovascular risk and premature ageing: findings from the STANISLAS cohort. Atherosclerosis. 2022;346:1–9. https://doi.org/10.1016/j.atherosclerosis.2022.02.017 .
doi: 10.1016/j.atherosclerosis.2022.02.017 pubmed: 35247627
Csiszar A, et al. Oxidative stress and accelerated vascular aging: implications for cigarette smoking. Front Biosci. 2009;14:3128–44.
doi: 10.2741/3440 pmcid: 2756477
Khan SS, et al. Association of body mass index with lifetime risk of cardiovascular disease and compression of morbidity. JAMA Cardiology. 2018;3:280–7. https://doi.org/10.1001/jamacardio.2018.0022 .
doi: 10.1001/jamacardio.2018.0022 pubmed: 29490333 pmcid: 5875319
Knipp SC, et al. Cognitive outcomes three years after coronary artery bypass surgery: relation to diffusion-weighted magnetic resonance imaging. Ann Thorac Surg. 2008;85:872–9. https://doi.org/10.1016/j.athoracsur.2007.10.083 .
doi: 10.1016/j.athoracsur.2007.10.083 pubmed: 18291160

Auteurs

Ágnes Dóra Sándor (ÁD)

Department of Anesthesiology and Intensive Therapy, Semmelweis University, Budapest, Hungary.

Zsófia Czinege (Z)

Department of Vascular and Endovascular Surgery, Semmelweis University, Budapest, Hungary.

András Szabó (A)

Doctoral School of Theoretical and Translational Medicine, Semmelweis University, Budapest, Hungary.

Eszter Losoncz (E)

Doctoral School of Theoretical and Translational Medicine, Semmelweis University, Budapest, Hungary.

Krisztina Tóth (K)

Doctoral School of Theoretical and Translational Medicine, Semmelweis University, Budapest, Hungary.

Zsuzsanna Mihály (Z)

Department of Vascular and Endovascular Surgery, Semmelweis University, Budapest, Hungary.

Péter Sótonyi (P)

Department of Vascular and Endovascular Surgery, Semmelweis University, Budapest, Hungary.

Béla Merkely (B)

Heart and Vascular Center, Semmelweis University, Budapest, Hungary.

Andrea Székely (A)

Department of Anesthesiology and Intensive Therapy, Semmelweis University, Budapest, Hungary. szekely.andrea1@semmelweis.hu.

Classifications MeSH