Cerebrovascular dysregulation and postoperative cognitive alterations after carotid endarterectomy.
Carotid endarterectomy
Cerebral tissue saturation
Cognitive function
Near-infrared spectroscopy
Postoperative neurocognitive disorder
Journal
GeroScience
ISSN: 2509-2723
Titre abrégé: Geroscience
Pays: Switzerland
ID NLM: 101686284
Informations de publication
Date de publication:
15 Jun 2024
15 Jun 2024
Historique:
received:
04
03
2024
accepted:
01
06
2024
medline:
15
6
2024
pubmed:
15
6
2024
entrez:
14
6
2024
Statut:
aheadofprint
Résumé
There are controversial data about the effect of carotid endarterectomy regarding postoperative cognitive function. Our aim was to analyze the effect of cerebral tissue saturation monitored by near-infrared spectroscopy (NIRS) on cognitive function. Perioperative data of 103 asymptomatic patients undergoing elective carotid surgery under general anesthesia were analyzed. Preoperatively and 3 months after the operation, MMSE (Mini Mental State Examination) and MoCA (Montreal Cognitive Assessment) tests were conducted. For cerebral monitoring, NIRS was used, and the lowest rSO
Identifiants
pubmed: 38877342
doi: 10.1007/s11357-024-01237-6
pii: 10.1007/s11357-024-01237-6
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
ID : 129277
Informations de copyright
© 2024. The Author(s).
Références
Naylor R, et al. European Society for Vascular Surgery (ESVS) 2023 clinical practice guidelines on the management of atherosclerotic carotid and vertebral artery disease. Eur J Vasc Endovasc Surg. 2023;65:7–111. https://doi.org/10.1016/j.ejvs.2022.04.011 .
doi: 10.1016/j.ejvs.2022.04.011
pubmed: 35598721
Sridharan ND, Asaadi S, Thirumala PD, Avgerinos ED. A systematic review of cognitive function after carotid endarterectomy in asymptomatic patients. J Vasc Surg. 2022;75:2074–85. https://doi.org/10.1016/j.jvs.2021.12.059 .
doi: 10.1016/j.jvs.2021.12.059
pubmed: 34995717
Gray VL, et al. Asymptomatic carotid stenosis is associated with mobility and cognitive dysfunction and heightens falls in older adults. J Vasc Surg. 2022;71:1930–7.
doi: 10.1016/j.jvs.2019.09.020
Suraarunsumrit P, et al. Postoperative cognitive dysfunction in older surgical patients associated with increased healthcare utilization: a prospective study from an upper-middle-income country. BMC Geriatr. 2022;22:213. https://doi.org/10.1186/s12877-022-02873-3 .
doi: 10.1186/s12877-022-02873-3
pubmed: 35296258
pmcid: 8925052
Relander K, et al. Cognitive dysfunction and mortality after carotid endarterectomy. Front Neurol. 2021;11:593719. https://doi.org/10.3389/fneur.2020.593719 .
doi: 10.3389/fneur.2020.593719
pubmed: 33519678
pmcid: 7840953
Ton TGN, et al. The financial burden and health care utilization patterns associated with amnestic mild cognitive impairment. Alzheimer’s & Dementia. 2017;13:217–24.
doi: 10.1016/j.jalz.2016.08.009
Han F, et al. Risk factors affecting cognitive impairment of the elderly aged 65 and over: a cross-sectional study. Front Aging Neurosci. 2022;14:903794.
doi: 10.3389/fnagi.2022.903794
pubmed: 35783132
pmcid: 9243469
Wang Y, et al. The efficacy of near-infrared spectroscopy monitoring in carotid endarterectomy: a prospective, single-center, observational study. Cell Transplant. 2019;28:170–5. https://doi.org/10.1177/0963689718817760 .
doi: 10.1177/0963689718817760
pubmed: 30545240
Radak D, Sotirovic V, Obradovic M, Isenovic ER. Practical use of near-infrared spectroscopy in carotid surgery. Sage J Angiol. 2013;65:769–72. https://doi.org/10.1177/0003319713508642 .
doi: 10.1177/0003319713508642
Jonsson M, Lindström D, Wanhainen A, Gidlund KD, Gillgren P. Near infrared spectroscopy as a predictor for shunt requirement during carotid endarterectomy. Eur J Vasc Endovasc Surg. 2017;53:783–91. https://doi.org/10.1016/j.ejvs.2017.02.033 .
doi: 10.1016/j.ejvs.2017.02.033
pubmed: 28431821
Uysal S, Lin HM, Trinh M, Park CH, Reich DL. Optimizing cerebral oxygenation in cardiac surgery: a randomized controlled trial examining neurocognitive and perioperative outcomes. J Thorac Cardiovasc Surg. 2020;159:943–53. https://doi.org/10.1016/j.jtcvs.2019.03.036 .
doi: 10.1016/j.jtcvs.2019.03.036
pubmed: 31056357
Holmgaard F, et al. The association between postoperative cognitive dysfunction and cerebral oximetry during cardiac surgery: a secondary analysis of a randomised trial. Br J Anaesth. 2019;123:196–205. https://doi.org/10.1016/j.bja.2019.03.045 .
doi: 10.1016/j.bja.2019.03.045
pubmed: 31104758
pmcid: 6676044
Yu Y, et al. Cerebral near-infrared spectroscopy (NIRS) for perioperative monitoring of brain oxygenation in children and adults. Cochrane Database Syst Rev. 2018;1:CD010947. https://doi.org/10.1002/14651858.CD010947.pub2 .
doi: 10.1002/14651858.CD010947.pub2
pubmed: 29341066
Ding X, et al. Effects of regional cerebral oxygen saturation monitoring on postoperative cognitive dysfunction in older patients: a systematic review and meta-analysis. BMC Geriatr. 2023;23:123. https://doi.org/10.1186/s12877-023-03804-6 .
doi: 10.1186/s12877-023-03804-6
pubmed: 36879186
pmcid: 9987102
Moneta GL, et al. Correlation of North American Symptomatic Carotid Endarterectomy Trial (NASCET) angiographic definition of 70% to 99% internal carotid artery stenosis with duplex scanning. J Vasc Surg. 1993;17:152–9. https://doi.org/10.1016/0741-5214(93)90019-I .
doi: 10.1016/0741-5214(93)90019-I
pubmed: 8421332
Singh S, et al. Entropy as an indicator to measure depth of anaesthesia for laryngeal mask airway (LMA) insertion during sevoflurane and propofol anaesthesia. J Clin Diagn Res. 2017;11:UC01–3. https://doi.org/10.7860/JCDR/2017/27316.10177 .
doi: 10.7860/JCDR/2017/27316.10177
pubmed: 28893011
pmcid: 5583804
Bikbov MM, et al. Cognitive impairment in the population-based ural very old study. Front Ageing Neurosci. 2022;14:912755. https://doi.org/10.3389/fnagi.2022.912755 .
doi: 10.3389/fnagi.2022.912755
Mahanna EP, et al. Defining neuropsychological dysfunction after coronary artery bypass grafting. Ann Thorac Surg. 1996;61:1342–7.
doi: 10.1016/0003-4975(95)01095-5
pubmed: 8633938
Pinto TCC, et al. Is the Montreal Cognitive Assessment (MoCA) screening superior to the Mini-Mental State Examination (MMSE) in the detection of mild cognitive impairment (MCI) and Alzheimer’s disease (AD) in the elderly? Int Psychogeriatr. 2019;31:491–504. https://doi.org/10.1017/S1041610218001370 .
doi: 10.1017/S1041610218001370
pubmed: 30426911
Jia X, et al. A comparison of the Mini-Mental State Examination (MMSE) with the Montreal Cognitive Assessment (MoCA) for mild cognitive impairment screening in Chinese middle-aged and older population: a cross-sectional study. BMC Psychiatry. 2021;21:485. https://doi.org/10.1186/s12888-021-03495-6 .
doi: 10.1186/s12888-021-03495-6
pubmed: 34607584
pmcid: 8489046
Ciesielska N, et al. Is the Montreal Cognitive Assessment (MoCA) test better suited than the Mini-Mental State Examination (MMSE) in mild cognitive impairment (MCI) detection among people aged over 60? Meta-analysis. Psychiatria Polska. 2016;50:1039–52. https://doi.org/10.12740/PP/45368 .
doi: 10.12740/PP/45368
pubmed: 27992895
Fasnacht JS, et al. Conversion between the Montreal Cognitive Assessment and the Mini-Mental Status Examination. J Am Geriatr Soc. 2023;71:869–79. https://doi.org/10.1111/jgs.18124 .
doi: 10.1111/jgs.18124
pubmed: 36346002
Roheger M, et al. Conversion between the Mini-Mental State Examination and the Montreal Cognitive Assessment for patients with different forms of dementia. Jamda. 2022;23:1986–9. https://doi.org/10.1016/j.jamda.2022.03.018 .
doi: 10.1016/j.jamda.2022.03.018
pubmed: 35561758
Robu CB, et al. Advanced age and sex influence baseline regional cerebral oxygen saturation as measured by near-infrared spectroscopy: subanalysis of a prospective study. J Cardiothorac Vasc Anesth. 2020;34:3282–9. https://doi.org/10.1053/j.jvca.2020.06.025 .
doi: 10.1053/j.jvca.2020.06.025
pubmed: 32646630
Watzman HM, et al. Arterial and venous contributions to near-infrared cerebral oximetry. Anesthesiol. 2000;93:947–53. https://doi.org/10.1097/00000542-200010000-00012 .
doi: 10.1097/00000542-200010000-00012
Colak Z, et al. Influence of intraoperative cerebral oximetry monitoring on neurocognitive function after coronary artery bypass surgery: a randomized, prospective study. Eur J Cardiothorac Surg. 2015;47:447–54. https://doi.org/10.1093/ejcts/ezu193 .
doi: 10.1093/ejcts/ezu193
pubmed: 24810757
Tang L, et al. Reduced cerebral oxygen saturation during thoracic surgery predicts early postoperative cognitive dysfunction. Br J Anaesth. 2012;108:623–9. https://doi.org/10.1093/bja/aer501 .
doi: 10.1093/bja/aer501
pubmed: 22311364
Zhu J, Wang W, Shi H. The association between postoperative cognitive dysfunction and cerebral oximetry during geriatric orthopedic surgery: a randomized controlled study. Biomed Res Int. 2021;2021:1–9. https://doi.org/10.1155/2021/5733139 .
doi: 10.1155/2021/5733139
Nielsen HB. Systematic review of near-infrared spectroscopy determined cerebral oxygenation during non-cardiac surgery. Front Physiol. 2014;5:93. https://doi.org/10.3389/fphys.2014.00093 .
doi: 10.3389/fphys.2014.00093
pubmed: 24672486
pmcid: 3955969
Inčiūra D, et al. Near-infrared spectroscopy as a predictor of cerebral ischaemia during carotid endarterectomy in awake patients. Vascular. 2020;28:301–8. https://doi.org/10.1177/1708538119893830 .
doi: 10.1177/1708538119893830
pubmed: 31937208
Kamenskaya OV, Loginova IY, Lomivorotov VV. Brain oxygen supply parameters in the risk assessment of cerebral complications during carotid endarterectomy. J Cardiothorac Vasc Anesth. 2017;31:944–9. https://doi.org/10.1053/j.jvca.2016.10.017 .
doi: 10.1053/j.jvca.2016.10.017
pubmed: 28082030
Fudickar A, et al. Postoperative cognitive deficit after cardiopulmonary bypass with preserved cerebral oxygenation: a prospective observational pilot study. BMC Anesthesiol. 2011;11:7. https://doi.org/10.1186/1471-2253-11-7 .
doi: 10.1186/1471-2253-11-7
pubmed: 21401948
pmcid: 3068111
Moritz S, Kasprzak P, Arlt M, Taeger K, Metzet C. Accuracy of cerebral monitoring in detecting cerebral ischemia during carotid endarterectomy: a comparison of transcranial Doppler sonography, near-infrared spectroscopy, stump pressure, and somatosensory evoked potentials. Anesthesiology. 2007;107:563–9. https://doi.org/10.1097/01.anes.0000281894.69422.ff .
doi: 10.1097/01.anes.0000281894.69422.ff
pubmed: 17893451
Yamashita T, et al. Combination of preoperative cerebral blood flow and 123I-iomazenil SPECT imaging predicts postoperative cognitive improvement in patients undergoing uncomplicated endarterectomy for unilateral carotid stenosis. Clin Nucl Med. 2012;37:128–33. https://doi.org/10.1097/RLU.0b013e31823e9a9a .
doi: 10.1097/RLU.0b013e31823e9a9a
pubmed: 22228333
Wang X, et al. Utility of sample entropy from intraoperative cerebral NIRS oximetry data in the diagnosis of postoperative cognitive improvement. Front Physiol. 2022;13:965768. https://doi.org/10.3389/fphys.2022.965768 .
doi: 10.3389/fphys.2022.965768
pubmed: 36246131
pmcid: 9558228
Lin KA, et al. Marked gender differences in progression of mild cognitive impairment over 8 years. Alzheimer’s & Dementia. 2015;1:103–10. https://doi.org/10.1016/j.trci.2015.07.001 .
doi: 10.1016/j.trci.2015.07.001
Liu Y, et al. Gender-specific prevalence and risk factors of mild cognitive impairment among older adults in Chongming, Shanghai China. Front Aging Neurosci. 2022;14:900523. https://doi.org/10.3389/fnagi.2022.900523 .
doi: 10.3389/fnagi.2022.900523
pubmed: 36118698
pmcid: 9475287
Sohn D, et al. Sex differences in cognitive decline in subjects with high likelihood of mild cognitive impairment due to Alzheimer’s disease. Sci Rep. 2018;8:7490. https://doi.org/10.1038/s41598-018-25377-w .
doi: 10.1038/s41598-018-25377-w
pubmed: 29748598
pmcid: 5945611
Berezuk C, et al. Sex differences in risk factors that predict progression from mild cognitive impairment to Alzheimer’s dementia. J Int Neuropsychol Soc. 2023;29:360–8. https://doi.org/10.1017/S1355617722000297 .
doi: 10.1017/S1355617722000297
pubmed: 35968841
Turowicz A, et al. Carotid revascularization improves cognition in patients with asymptomatic carotid artery stenosis and cognitive decline greater improvement in younger patients with more disordered neuropsychological performance. J Stroke Cerebrovasc Dis. 2021;30:105608. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.105608 .
doi: 10.1016/j.jstrokecerebrovasdis.2021.105608
pubmed: 33461024
Damanik J, Yunir E. Type 2 diabetes mellitus and cognitive impairment. Acta Medica Indonesia. 2021;53:213–20.
Jeong MJ, et al. Comparison of outcomes after carotid endarterectomy between type 2 diabetic and non-patients with diabetes with significant carotid stenosis. Cardiovasc Diabetol. 2019;18:41. https://doi.org/10.1186/s12933-019-0848-7 .
doi: 10.1186/s12933-019-0848-7
pubmed: 30909911
pmcid: 6432752
Dimic A, et al. Impact of diabetes mellitus on early outcome of carotid endarterectomy. Vasa. 2019;48:148–56. https://doi.org/10.1024/0301-1526/a000737 .
doi: 10.1024/0301-1526/a000737
pubmed: 30192204
Harada CN, Natelson Love MC, Triebel K. Normal cognitive aging clinics in geriatric medicine. 2013;29:737–52. https://doi.org/10.1016/j.cger.2013.07.002 .
doi: 10.1016/j.cger.2013.07.002
pubmed: 24094294
Kilic A, et al. Role of dyslipidemia in early vascular aging syndrome. Turkish J Med Sci. 2021;51:727–34. https://doi.org/10.3906/sag-2008-165 .
doi: 10.3906/sag-2008-165
Zhan B, et al. Association between lipid profiles and arterial stiffness in Chinese patients with hypertension: insights from the CSPPT. Angiology. 2019;70:515–22. https://doi.org/10.1177/0003319718823341 .
doi: 10.1177/0003319718823341
pubmed: 30651004
Rastogi T, et al. Impact of smoking on cardiovascular risk and premature ageing: findings from the STANISLAS cohort. Atherosclerosis. 2022;346:1–9. https://doi.org/10.1016/j.atherosclerosis.2022.02.017 .
doi: 10.1016/j.atherosclerosis.2022.02.017
pubmed: 35247627
Csiszar A, et al. Oxidative stress and accelerated vascular aging: implications for cigarette smoking. Front Biosci. 2009;14:3128–44.
doi: 10.2741/3440
pmcid: 2756477
Khan SS, et al. Association of body mass index with lifetime risk of cardiovascular disease and compression of morbidity. JAMA Cardiology. 2018;3:280–7. https://doi.org/10.1001/jamacardio.2018.0022 .
doi: 10.1001/jamacardio.2018.0022
pubmed: 29490333
pmcid: 5875319
Knipp SC, et al. Cognitive outcomes three years after coronary artery bypass surgery: relation to diffusion-weighted magnetic resonance imaging. Ann Thorac Surg. 2008;85:872–9. https://doi.org/10.1016/j.athoracsur.2007.10.083 .
doi: 10.1016/j.athoracsur.2007.10.083
pubmed: 18291160