Three-dimensional environment sensitizes pancreatic cancer cells to the anti-proliferative effect of budesonide by reprogramming energy metabolism.


Journal

Journal of experimental & clinical cancer research : CR
ISSN: 1756-9966
Titre abrégé: J Exp Clin Cancer Res
Pays: England
ID NLM: 8308647

Informations de publication

Date de publication:
14 Jun 2024
Historique:
received: 19 02 2024
accepted: 17 05 2024
medline: 15 6 2024
pubmed: 15 6 2024
entrez: 14 6 2024
Statut: epublish

Résumé

Pancreatic ductal adenocarcinoma (PDAC) is the most lethal cancer with an aggressive metastatic phenotype and very poor clinical prognosis. Interestingly, a lower occurrence of PDAC has been described in individuals with severe and long-standing asthma. Here we explored the potential link between PDAC and the glucocorticoid (GC) budesonide, a first-line therapy to treat asthma. We tested the effect of budesonide and the classical GCs on the morphology, proliferation, migration and invasiveness of patient-derived PDAC cells and pancreatic cancer cell lines, using 2D and 3D cultures in vitro. Furthermore, a xenograft model was used to investigate the effect of budesonide on PDAC tumor growth in vivo. Finally, we combined genome-wide transcriptome analysis with genetic and pharmacological approaches to explore the mechanisms underlying budesonide activities in the different environmental conditions. We found that in 2D culture settings, high micromolar concentrations of budesonide reduced the mesenchymal invasive/migrating features of PDAC cells, without affecting proliferation or survival. This activity was specific and independent of the Glucocorticoid Receptor (GR). Conversely, in a more physiological 3D environment, low nanomolar concentrations of budesonide strongly reduced PDAC cell proliferation in a GR-dependent manner. Accordingly, we found that budesonide reduced PDAC tumor growth in vivo. Mechanistically, we demonstrated that the 3D environment drives the cells towards a general metabolic reprogramming involving protein, lipid, and energy metabolism (e.g., increased glycolysis dependency). This metabolic change sensitizes PDAC cells to the anti-proliferative effect of budesonide, which instead induces opposite changes (e.g., increased mitochondrial oxidative phosphorylation). Finally, we provide evidence that budesonide inhibits PDAC growth, at least in part, through the tumor suppressor CDKN1C/p57Kip2. Collectively, our study reveals that the microenvironment influences the susceptibility of PDAC cells to GCs and provides unprecedented evidence for the anti-proliferative activity of budesonide on PDAC cells in 3D conditions, in vitro and in vivo. Our findings may explain, at least in part, the reason for the lower occurrence of pancreatic cancer in asthmatic patients and suggest a potential suitability of budesonide for clinical trials as a therapeutic approach to fight pancreatic cancer.

Sections du résumé

BACKGROUND BACKGROUND
Pancreatic ductal adenocarcinoma (PDAC) is the most lethal cancer with an aggressive metastatic phenotype and very poor clinical prognosis. Interestingly, a lower occurrence of PDAC has been described in individuals with severe and long-standing asthma. Here we explored the potential link between PDAC and the glucocorticoid (GC) budesonide, a first-line therapy to treat asthma.
METHODS METHODS
We tested the effect of budesonide and the classical GCs on the morphology, proliferation, migration and invasiveness of patient-derived PDAC cells and pancreatic cancer cell lines, using 2D and 3D cultures in vitro. Furthermore, a xenograft model was used to investigate the effect of budesonide on PDAC tumor growth in vivo. Finally, we combined genome-wide transcriptome analysis with genetic and pharmacological approaches to explore the mechanisms underlying budesonide activities in the different environmental conditions.
RESULTS RESULTS
We found that in 2D culture settings, high micromolar concentrations of budesonide reduced the mesenchymal invasive/migrating features of PDAC cells, without affecting proliferation or survival. This activity was specific and independent of the Glucocorticoid Receptor (GR). Conversely, in a more physiological 3D environment, low nanomolar concentrations of budesonide strongly reduced PDAC cell proliferation in a GR-dependent manner. Accordingly, we found that budesonide reduced PDAC tumor growth in vivo. Mechanistically, we demonstrated that the 3D environment drives the cells towards a general metabolic reprogramming involving protein, lipid, and energy metabolism (e.g., increased glycolysis dependency). This metabolic change sensitizes PDAC cells to the anti-proliferative effect of budesonide, which instead induces opposite changes (e.g., increased mitochondrial oxidative phosphorylation). Finally, we provide evidence that budesonide inhibits PDAC growth, at least in part, through the tumor suppressor CDKN1C/p57Kip2.
CONCLUSIONS CONCLUSIONS
Collectively, our study reveals that the microenvironment influences the susceptibility of PDAC cells to GCs and provides unprecedented evidence for the anti-proliferative activity of budesonide on PDAC cells in 3D conditions, in vitro and in vivo. Our findings may explain, at least in part, the reason for the lower occurrence of pancreatic cancer in asthmatic patients and suggest a potential suitability of budesonide for clinical trials as a therapeutic approach to fight pancreatic cancer.

Identifiants

pubmed: 38877560
doi: 10.1186/s13046-024-03072-1
pii: 10.1186/s13046-024-03072-1
doi:

Substances chimiques

Budesonide 51333-22-3

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

165

Subventions

Organisme : Associazione Italiana per la Ricerca sul Cancro
ID : IG 20736
Organisme : Associazione Italiana per la Ricerca sul Cancro
ID : Bridge Grant AIRC 2022 (#27012)
Organisme : Ministero dell'Università e della Ricerca
ID : PNRR project D3 4 Health (PNC 0000001)
Organisme : Ministero dell'Università e della Ricerca
ID : PRIN 2022KME7RY
Organisme : Ministero dell'Università e della Ricerca
ID : Young Researchers-MSCA-PNRR-MUR (MSCA_0000023)
Organisme : Fondazione Umberto Veronesi
ID : Fondazione Umberto Veronesi
Organisme : Fondazione Italiana per la ricerca sulle Malattie del Pancreas
ID : Fondazione Italiana per la ricerca sulle Malattie del Pancreas

Informations de copyright

© 2024. The Author(s).

Références

Halbrook CJ, Lyssiotis CA, Pasca di Magliano M, Maitra A. Pancreatic cancer: advances and challenges. Cell. 2023;186:1729–54.
doi: 10.1016/j.cell.2023.02.014 pubmed: 37059070 pmcid: 10182830
Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014/05/21 ed. 2014;74:2913–21.
Global Burden of Disease, Cancer C, Fitzmaurice C, Akinyemiju TF, Al Lami FH, Alam T, Alizadeh-Navaei R et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2016: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol. 2018/06/04 ed. 2018;4:1553–68.
Gomez-Rubio P, Zock JP, Rava M, Marquez M, Sharp L, Hidalgo M, et al. Reduced risk of pancreatic cancer associated with asthma and nasal allergies. Gut. 2017;66:314–22.
doi: 10.1136/gutjnl-2015-310442 pubmed: 26628509
Hamada S, Masamune A, Shimosegawa T. Inflammation and pancreatic cancer: disease promoter and new therapeutic target. J Gastroenterol. 2014;49:605–17.
doi: 10.1007/s00535-013-0915-x pubmed: 24292163
Willey RF, Godden DJ, Carmichael J, Preston P, Frame MH, Crompton GK. Twice daily inhalation of a new corticosteroid, budesonide, in the treatment of chronic asthma. Eur J Respir Dis Suppl. 1982;122:138–42.
pubmed: 6958478
Ellul-Micallef R, Hansson E, Johansson SA. Budesonide: a new corticosteroid in bronchial asthma. Eur J Respir Dis. 1980;61:167–73.
pubmed: 7002575
O’Connell EJ. Efficacy of budesonide in moderate to severe asthma. Clin Ther. 2002;24:887–905;discussion 837.
doi: 10.1016/S0149-2918(02)80005-4 pubmed: 12117080
Claytor J, Kumar P, Ananthakrishnan AN, Colombel J-F, Agrawal M, Ungaro RC. Mild Crohn’s Disease: definition and management. Curr Gastroenterol Rep. 2023;25:45–51.
doi: 10.1007/s11894-023-00863-y pubmed: 36753033
Lichtenstein GR, Loftus EV, Isaacs KL, Regueiro MD, Gerson LB, Sands BE. ACG Clinical Guideline: management of Crohn’s disease in adults. Am J Gastroenterol. 2018;113:481–517.
doi: 10.1038/ajg.2018.27 pubmed: 29610508
Cermola F, Amoroso F, Saracino F, Ibello E, De Cesare D, Fico A, et al. Stabilization of cell-cell adhesions prevents symmetry breaking and locks in pluripotency in 3D gastruloids. Stem Cell Rep. 2022;17:2548–64.
doi: 10.1016/j.stemcr.2022.09.013
Amoroso F, Ibello E, Saracino F, Cermola F, Ponticelli G, Scalera E, et al. Budesonide Analogues preserve Stem Cell Pluripotency and Delay 3D Gastruloid Development. Pharmaceutics. 2023;15:1897.
doi: 10.3390/pharmaceutics15071897 pubmed: 37514083 pmcid: 10383393
D’Aniello C, Cermola F, Palamidessi A, Wanderlingh LG, Gagliardi M, Migliaccio A et al. Collagen prolyl hydroxylation-dependent metabolic perturbation governs epigenetic remodeling and mesenchymal transition in pluripotent and cancer cells. Cancer Res [Internet]. 2019; https://www.ncbi.nlm.nih.gov/pubmed/31061065 .
Alheim K, Corness J, Samuelsson M, Bladh L, Murata T, Nilsson T, et al. Identification of a functional glucocorticoid response element in the promoter of the cyclin-dependent kinase inhibitor p57Kip2. J Mol Endocrinol. 2003;30:359–68.
doi: 10.1677/jme.0.0300359 pubmed: 12790805
Cave DD, Di Guida M, Costa V, Sevillano M, Ferrante L, Heeschen C et al. TGF-beta1 secreted by pancreatic stellate cells promotes stemness and tumourigenicity in pancreatic cancer cells through L1CAM downregulation. Oncogene. 2020/04/16 ed. 2020;39:4271–85.
Lonardo E, Hermann PC, Mueller MT, Huber S, Balic A, Miranda-Lorenzo I et al. Nodal/Activin signaling drives self-renewal and tumorigenicity of pancreatic cancer stem cells and provides a target for combined drug therapy. Cell Stem Cell. 2011/11/08 ed. 2011;9:433–46.
Bruns CJ, Harbison MT, Kuniyasu H, Eue I, Fidler IJ. In vivo selection and characterization of metastatic variants from human pancreatic adenocarcinoma by using orthotopic implantation in nude mice. Neoplasia N Y N. 1999;1:50–62.
doi: 10.1038/sj.neo.7900005
Sorrentino G, Ruggeri N, Zannini A, Ingallina E, Bertolio R, Marotta C, et al. Glucocorticoid receptor signalling activates YAP in breast cancer. Nat Commun. 2017;8:14073. 2017/01/20 ed.
doi: 10.1038/ncomms14073 pubmed: 28102225 pmcid: 5253666
Langhans SA. Three-Dimensional in Vitro Cell Culture models in Drug Discovery and Drug Repositioning. Front Pharmacol. 2018;9:6.
doi: 10.3389/fphar.2018.00006 pubmed: 29410625 pmcid: 5787088
Cavo M, Delle Cave D, D’Amone E, Gigli G, Lonardo E, Del Mercato LL. A synergic approach to enhance long-term culture and manipulation of MiaPaCa-2 pancreatic cancer spheroids. Sci Rep. 2020;10:10192.
doi: 10.1038/s41598-020-66908-8 pubmed: 32576846 pmcid: 7311540
Kuo T, McQueen A, Chen T-C, Wang J-C. Regulation of glucose homeostasis by glucocorticoids. Adv Exp Med Biol. 2015;872:99–126.
doi: 10.1007/978-1-4939-2895-8_5 pubmed: 26215992 pmcid: 6185996
Liang H, Kowalczyk P, Junco JJ, Klug-De Santiago HL, Malik G, Wei S-J, et al. Differential effects on lung cancer cell proliferation by agonists of glucocorticoid and PPARα receptors: GR & PPARα AGONISTS INHIBIT CANCER CELL GROWTH. Mol Carcinog. 2014;53:753–63.
doi: 10.1002/mc.22029 pubmed: 23625588
Ishiguro H, Kawahara T, Zheng Y, Kashiwagi E, Li Y, Miyamoto H. Differential regulation of bladder cancer growth by various glucocorticoids: corticosterone and prednisone inhibit cell invasion without promoting cell proliferation or reducing cisplatin cytotoxicity. Cancer Chemother Pharmacol. 2014;74:249–55.
doi: 10.1007/s00280-014-2496-7 pubmed: 24880571
Sant S, Johnston PA. The production of 3D tumor spheroids for cancer drug discovery. Drug Discov Today Technol. 2017;23:27–36.
doi: 10.1016/j.ddtec.2017.03.002 pubmed: 28647083 pmcid: 5497458
Jensen C, Teng Y. Is it Time to start transitioning from 2D to 3D cell culture? Front Mol Biosci. 2020;7:33.
doi: 10.3389/fmolb.2020.00033 pubmed: 32211418 pmcid: 7067892
Hess MW, Pfaller K, Ebner HL, Beer B, Hekl D, Seppi T. 3D versus 2D cell culture implications for electron microscopy. Methods Cell Biol. 2010;96:649–70.
doi: 10.1016/S0091-679X(10)96027-5 pubmed: 20869542
Tidwell TR, Røsland GV, Tronstad KJ, Søreide K, Hagland HR. Metabolic flux analysis of 3D spheroids reveals significant differences in glucose metabolism from matched 2D cultures of colorectal cancer and pancreatic ductal adenocarcinoma cell lines. Cancer Metab. 2022;10:9.
doi: 10.1186/s40170-022-00285-w pubmed: 35578327 pmcid: 9109327
Zeng S, Pottler M, Lan B, Grutzmann R, Pilarsky C, Yang H. Chemoresistance in Pancreatic Cancer. Int J Mol Sci [Internet]. 2019/09/14 ed. 2019;20. https://www.ncbi.nlm.nih.gov/pubmed/31514451 .
Kumarasamy V, Wang J, Frangou C, Wan Y, Dynka A, Rosenheck H, et al. The Extracellular Niche and Tumor Microenvironment Enhance KRAS inhibitor efficacy in pancreatic Cancer. Cancer Res. 2024;84:1115–32.
doi: 10.1158/0008-5472.CAN-23-2504 pubmed: 38294344 pmcid: 10982648
Mayayo-Peralta I, Zwart W, Prekovic S. Duality of glucocorticoid action in cancer: tumor-suppressor or oncogene? Endocr Relat Cancer. 2021;28:R157–71.
doi: 10.1530/ERC-20-0489 pubmed: 33852423
Call TR, Pace NL, Thorup DB, Maxfield D, Chortkoff B, Christensen J, et al. Factors associated with improved survival after resection of pancreatic adenocarcinoma: a multivariable model. Anesthesiology. 2015;122:317–24.
doi: 10.1097/ALN.0000000000000489 pubmed: 25305092
Sandini M, Ruscic KJ, Ferrone CR, Warshaw AL, Qadan M, Eikermann M, et al. Intraoperative dexamethasone decreases infectious complications after Pancreaticoduodenectomy and is Associated with Long-Term Survival in Pancreatic Cancer. Ann Surg Oncol. 2018;25:4020–6.
doi: 10.1245/s10434-018-6827-5 pubmed: 30298316
Norman J, Franz M, Schiro R, Nicosia S, Docs J, Fabri PJ, et al. Functional glucocorticoid receptor modulates pancreatic carcinoma growth through an autocrine loop. J Surg Res. 1994;57:33–8.
doi: 10.1006/jsre.1994.1105 pubmed: 7518883
Egberts J-H, Schniewind B, Pätzold M, Kettler B, Tepel J, Kalthoff H, et al. Dexamethasone reduces tumor recurrence and metastasis after pancreatic tumor resection in SCID mice. Cancer Biol Ther. 2008;7:1044–50.
doi: 10.4161/cbt.7.7.6099 pubmed: 18431088
De Vitis C, Battaglia AM, Pallocca M, Santamaria G, Mimmi MC, Sacco A, et al. ALDOC- and ENO2- driven glucose metabolism sustains 3D tumor spheroids growth regardless of nutrient environmental conditions: a multi-omics analysis. J Exp Clin Cancer Res CR. 2023;42:69.
doi: 10.1186/s13046-023-02641-0 pubmed: 36945054
Blaszczak W, White B, Monterisi S, Swietach P. Dynamic IL-6R/STAT3 signaling leads to heterogeneity of metabolic phenotype in pancreatic ductal adenocarcinoma cells. Cell Rep. 2024;43:113612.
doi: 10.1016/j.celrep.2023.113612 pubmed: 38141171
Cao L, Wu J, Qu X, Sheng J, Cui M, Liu S, et al. Glycometabolic rearrangements–aerobic glycolysis in pancreatic cancer: causes, characteristics and clinical applications. J Exp Clin Cancer Res. 2020;39:267.
doi: 10.1186/s13046-020-01765-x pubmed: 33256814 pmcid: 7708116
Ashton TM, McKenna WG, Kunz-Schughart LA, Higgins GS. Oxidative phosphorylation as an emerging target in Cancer Therapy. Clin Cancer Res. 2018;24:2482–90.
doi: 10.1158/1078-0432.CCR-17-3070 pubmed: 29420223
Sancho P, Burgos-Ramos E, Tavera A, Bou Kheir T, Jagust P, Schoenhals M, et al. MYC/PGC-1α balance determines the metabolic phenotype and plasticity of pancreatic Cancer stem cells. Cell Metab. 2015;22:590–605.
doi: 10.1016/j.cmet.2015.08.015 pubmed: 26365176
Lonardo E, Cioffi M, Sancho P, Sanchez-Ripoll Y, Trabulo SM, Dorado J et al. Metformin Targets the Metabolic Achilles Heel of Human Pancreatic Cancer Stem Cells. Hjelmeland AB, editor. PLoS ONE. 2013;8:e76518.
Prekovic S, Schuurman K, Mayayo-Peralta I, Manjón AG, Buijs M, Yavuz S, et al. Glucocorticoid receptor triggers a reversible drug-tolerant dormancy state with acquired therapeutic vulnerabilities in lung cancer. Nat Commun. 2021;12:4360.
doi: 10.1038/s41467-021-24537-3 pubmed: 34272384 pmcid: 8285479
Sato N, Matsubayashi H, Abe T, Fukushima N, Goggins M. Epigenetic down-regulation of CDKN1C/p57KIP2 in pancreatic ductal neoplasms identified by Gene expression profiling. Clin Cancer Res. 2005;11:4681–8.
doi: 10.1158/1078-0432.CCR-04-2471 pubmed: 16000561
Veronesi G. Chemoprevention studies within lung cancer screening programmes. ecancermedicalscience [Internet]. 2015 [cited 2024 Apr 12];9. http://www.ecancer.org/journal/9/full/597-chemoprevention-studies-within-lung-cancer-screening-programmes.php .
Veronesi G, Szabo E, DeCensi A, Guerrieri-Gonzaga A, Bellomi M, Radice D, et al. Randomized Phase II Trial of Inhaled Budesonide versus Placebo in High-Risk individuals with CT screen–detected lung nodules. Cancer Prev Res (Phila Pa). 2011;4:34–42.
doi: 10.1158/1940-6207.CAPR-10-0182
Parimon T, Chien JW, Bryson CL, McDonell MB, Udris EM, Au DH. Inhaled corticosteroids and Risk of Lung Cancer among patients with chronic obstructive Pulmonary Disease. Am J Respir Crit Care Med. 2007;175:712–9.
doi: 10.1164/rccm.200608-1125OC pubmed: 17185647
Whatcott CJ, Diep CH, Jiang P, Watanabe A, LoBello J, Sima C, et al. Desmoplasia in primary tumors and metastatic lesions of pancreatic Cancer. Clin Cancer Res. 2015;21:3561–8.
doi: 10.1158/1078-0432.CCR-14-1051 pubmed: 25695692 pmcid: 4526394

Auteurs

Eduardo Ibello (E)

Institute of Genetics and Biophysics, 'A. Buzzati-Traverso', CNR, Naples, Italy.
Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy.

Federica Saracino (F)

Institute of Genetics and Biophysics, 'A. Buzzati-Traverso', CNR, Naples, Italy.

Donatella Delle Cave (D)

Institute of Genetics and Biophysics, 'A. Buzzati-Traverso', CNR, Naples, Italy.

Silvia Buonaiuto (S)

Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA.

Filomena Amoroso (F)

Institute of Genetics and Biophysics, 'A. Buzzati-Traverso', CNR, Naples, Italy.
Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy.

Gennaro Andolfi (G)

Institute of Genetics and Biophysics, 'A. Buzzati-Traverso', CNR, Naples, Italy.

Marco Corona (M)

Institute of Genetics and Biophysics, 'A. Buzzati-Traverso', CNR, Naples, Italy.

Ombretta Guardiola (O)

Institute of Genetics and Biophysics, 'A. Buzzati-Traverso', CNR, Naples, Italy.

Vincenza Colonna (V)

Institute of Genetics and Biophysics, 'A. Buzzati-Traverso', CNR, Naples, Italy.
Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA.

Bruno Sainz (B)

Department of Cancer, Instituto de Investigaciones Biomedicas Sols-Morreale (IIBM), CSIC- UAM, Madrid, 28029, Spain.
Cancer, Area 3-Instituto Ramon Y Cajal de Investigacion Sanitaria (IRYCIS), Madrid, 28034, Spain.
Centro de Investigación Biomédica en Red, Área Cáncer, CIBERONC, ISCIII, Madrid, 28029, Spain.

Lucia Altucci (L)

Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy.
BIOGEM, Ariano Irpino, Ariano Irpino, AV, 83031, Italy.
IEOS-CNR, Naples, 80100, Italy.
Medical Epigenetics Program, AOU Vanvitelli, Naples, Italy.

Dario De Cesare (D)

Institute of Genetics and Biophysics, 'A. Buzzati-Traverso', CNR, Naples, Italy.

Gilda Cobellis (G)

Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy.

Enza Lonardo (E)

Institute of Genetics and Biophysics, 'A. Buzzati-Traverso', CNR, Naples, Italy.

Eduardo Jorge Patriarca (EJ)

Institute of Genetics and Biophysics, 'A. Buzzati-Traverso', CNR, Naples, Italy.

Cristina D'Aniello (C)

Institute of Genetics and Biophysics, 'A. Buzzati-Traverso', CNR, Naples, Italy. cristina.daniello@igb.cnr.it.

Gabriella Minchiotti (G)

Institute of Genetics and Biophysics, 'A. Buzzati-Traverso', CNR, Naples, Italy. gabriella.minchiotti@igb.cnr.it.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH