Brain age as a biomarker for pathological versus healthy ageing - a REMEMBER study.


Journal

Alzheimer's research & therapy
ISSN: 1758-9193
Titre abrégé: Alzheimers Res Ther
Pays: England
ID NLM: 101511643

Informations de publication

Date de publication:
14 Jun 2024
Historique:
received: 02 04 2024
accepted: 04 06 2024
medline: 15 6 2024
pubmed: 15 6 2024
entrez: 14 6 2024
Statut: epublish

Résumé

This study aimed to evaluate the potential clinical value of a new brain age prediction model as a single interpretable variable representing the condition of our brain. Among many clinical use cases, brain age could be a novel outcome measure to assess the preventive effect of life-style interventions. The REMEMBER study population (N = 742) consisted of cognitively healthy (HC,N = 91), subjective cognitive decline (SCD,N = 65), mild cognitive impairment (MCI,N = 319) and AD dementia (ADD,N = 267) subjects. Automated brain volumetry of global, cortical, and subcortical brain structures computed by the CE-labeled and FDA-cleared software icobrain dm (dementia) was retrospectively extracted from T1-weighted MRI sequences that were acquired during clinical routine at participating memory clinics from the Belgian Dementia Council. The volumetric features, along with sex, were combined into a weighted sum using a linear model, and were used to predict 'brain age' and 'brain predicted age difference' (BPAD = brain age-chronological age) for every subject. MCI and ADD patients showed an increased brain age compared to their chronological age. Overall, brain age outperformed BPAD and chronological age in terms of classification accuracy across the AD spectrum. There was a weak-to-moderate correlation between total MMSE score and both brain age (r = -0.38,p < .001) and BPAD (r = -0.26,p < .001). Noticeable trends, but no significant correlations, were found between BPAD and incidence of conversion from MCI to ADD, nor between BPAD and conversion time from MCI to ADD. BPAD was increased in heavy alcohol drinkers compared to non-/sporadic (p = .014) and moderate (p = .040) drinkers. Brain age and associated BPAD have the potential to serve as indicators for, and to evaluate the impact of lifestyle modifications or interventions on, brain health.

Identifiants

pubmed: 38877568
doi: 10.1186/s13195-024-01491-y
pii: 10.1186/s13195-024-01491-y
doi:

Substances chimiques

Biomarkers 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

128

Subventions

Organisme : Flanders Innovation & Intrepreneurship (VLAIO)
ID : Baekeland, HBC.2019.2579
Organisme : Fonds Wetenschappelijk Onderzoek
ID : 1805620N

Informations de copyright

© 2024. The Author(s).

Références

Fedele E. Anti-Amyloid Therapies for Alzheimer’s disease and the amyloid cascade hypothesis. Int J Mol Sci. 2023;24(19):14499.
pubmed: 37833948 pmcid: 10578107 doi: 10.3390/ijms241914499
Kivipelto M, Mangialasche F, Ngandu T. Lifestyle interventions to prevent cognitive impairment, dementia and Alzheimer disease. Nat Rev Neurol. 2018;14(11):653–66.
pubmed: 30291317 doi: 10.1038/s41582-018-0070-3
Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020;396(10248):413–46.
pubmed: 32738937 pmcid: 7392084 doi: 10.1016/S0140-6736(20)30367-6
Habes M, Grothe MJ, Tunc B, McMillan C, Wolk DA, Davatzikos C. Disentangling heterogeneity in Alzheimer’s disease and related dementias using data-driven methods. Biol Psychiatry. 2020;88(1):70–82.
pubmed: 32201044 pmcid: 7305953 doi: 10.1016/j.biopsych.2020.01.016
Bethlehem RAI, Seidlitz J, White SR, Vogel JW, Anderson KM, Adamson C, et al. Brain charts for the human lifespan. Nature. 2022;604(7906):525–33.
pubmed: 35388223 pmcid: 9021021 doi: 10.1038/s41586-022-04554-y
Bethlehem RAI, Seidlitz J, White SR, Vogel JW, Anderson KM, Adamson C, et al. Publisher Correction: brain charts for the human lifespan. Nature. 2022;610(7931):E6.
pubmed: 36151472 pmcid: 9556297 doi: 10.1038/s41586-022-05300-0
Franz CE, Hatton SN, Elman JA, Warren T, Gillespie NA, Whitsel NA, et al. Lifestyle and the aging brain: interactive effects of modifiable lifestyle behaviors and cognitive ability in men from midlife to old age. Neurobiol Aging. 2021;108:80–9.
pubmed: 34547718 pmcid: 8862767 doi: 10.1016/j.neurobiolaging.2021.08.007
Cole JH, Franke K. Predicting age using neuroimaging: innovative brain ageing biomarkers. Trends Neurosci. 2017;40(12):681–90.
pubmed: 29074032 doi: 10.1016/j.tins.2017.10.001
de Lange AG, Anaturk M, Rokicki J, Han LKM, Franke K, Alnaes D, et al. Mind the gap: performance metric evaluation in brain-age prediction. Hum Brain Mapp. 2022;43(10):3113–29.
pubmed: 35312210 pmcid: 9188975 doi: 10.1002/hbm.25837
More S, Antonopoulos G, Hoffstaedter F, Caspers J, Eickhoff SB, Patil KR, et al. Brain-age prediction: a systematic comparison of machine learning workflows. Neuroimage. 2023;270:119947.
pubmed: 36801372 doi: 10.1016/j.neuroimage.2023.119947
Cole JH, Marioni RE, Harris SE, Deary IJ. Brain age and other bodily “ages”: implications for neuropsychiatry. Mol Psychiatry. 2019;24(2):266–81.
pubmed: 29892055 doi: 10.1038/s41380-018-0098-1
Korbmacher M, Gurholt TP, de Lange AG, van der Meer D, Beck D, Eikefjord E, et al. Bio-psycho-social factors’ associations with brain age: a large-scale UK Biobank diffusion study of 35,749 participants. Front Psychol. 2023;14:1117732.
pubmed: 37359862 pmcid: 10288151 doi: 10.3389/fpsyg.2023.1117732
Franke K, Gaser C. Ten years of BrainAGE as a neuroimaging biomarker of brain aging: what insights have we gained? Front Neurol. 2019;10:789.
pubmed: 31474922 pmcid: 6702897 doi: 10.3389/fneur.2019.00789
Cumplido-Mayoral I, Garcia-Prat M, Operto G, Falcon C, Shekari M, Cacciaglia R, et al. Biological brain age prediction using machine learning on structural neuroimaging data: Multi-cohort validation against biomarkers of Alzheimer’s disease and neurodegeneration stratified by sex. Elife. 2023;12:e81067.
pubmed: 37067031 pmcid: 10181824 doi: 10.7554/eLife.81067
Liu W, Dong Q, Sun S, Shen J, Qian K, Hu B. Risk prediction of Alzheimer’s disease conversion in mild cognitive impaired population based on brain age estimation. IEEE Trans Neural Syst Rehabil Eng. 2023;31:2468–76.
pubmed: 37027670 doi: 10.1109/TNSRE.2023.3247590
Wrigglesworth J, Ward P, Harding IH, Nilaweera D, Wu Z, Woods RL, et al. Factors associated with brain ageing - a systematic review. BMC Neurol. 2021;21(1):312.
pubmed: 34384369 pmcid: 8359541 doi: 10.1186/s12883-021-02331-4
Charisse D, Erus G, Pomponio R, Gorges M, Schmidt N, Schneider C, et al. Brain age and Alzheimer’s-like atrophy are domain-specific predictors of cognitive impairment in Parkinson’s disease. Neurobiol Aging. 2022;109:31–42.
pubmed: 34649002 doi: 10.1016/j.neurobiolaging.2021.08.020
Koutsouleris N, Davatzikos C, Borgwardt S, Gaser C, Bottlender R, Frodl T, et al. Accelerated brain aging in schizophrenia and beyond: a neuroanatomical marker of psychiatric disorders. Schizophr Bull. 2014;40(5):1140–53.
pubmed: 24126515 doi: 10.1093/schbul/sbt142
Lee WH, Antoniades M, Schnack HG, Kahn RS, Frangou S. Brain age prediction in schizophrenia: does the choice of machine learning algorithm matter? Psychiatry Res Neuroimaging. 2021;310:111270.
pubmed: 33714090 pmcid: 8056405 doi: 10.1016/j.pscychresns.2021.111270
Zhu JD, Wu YF, Tsai SJ, Lin CP, Yang AC. Investigating brain aging trajectory deviations in different brain regions of individuals with schizophrenia using multimodal magnetic resonance imaging and brain-age prediction: a multicenter study. Transl Psychiatry. 2023;13(1):82.
pubmed: 36882419 pmcid: 9992684 doi: 10.1038/s41398-023-02379-5
Denissen S, Engemann DA, De Cock A, Costers L, Baijot J, Laton J, et al. Brain age as a surrogate marker for cognitive performance in multiple sclerosis. Eur J Neurol. 2022;29(10):3039–49.
pubmed: 35737867 pmcid: 9541923 doi: 10.1111/ene.15473
Brier MR, Li Z, Ly M, Karim HT, Liang L, Du W, et al. “Brain age” predicts disability accumulation in multiple sclerosis. Ann Clin Transl Neurol. 2023;10(6):990–1001.
pubmed: 37119507 pmcid: 10270248 doi: 10.1002/acn3.51782
Cole JH, Raffel J, Friede T, Eshaghi A, Brownlee WJ, Chard D, et al. Longitudinal assessment of multiple sclerosis with the brain-age paradigm. Ann Neurol. 2020;88(1):93–105.
pubmed: 32285956 doi: 10.1002/ana.25746
Wagen AZ, Coath W, Keshavan A, James SN, Parker TD, Lane CA, et al. Life course, genetic, and neuropathological associations with brain age in the 1946 British Birth Cohort: a population-based study. Lancet Healthy Longev. 2022;3(9):e607–16.
pubmed: 36102775 pmcid: 10499760 doi: 10.1016/S2666-7568(22)00167-2
Cole JH, Franke K, Cherbuin N. Quantification of the Biological Age of the Brain Using Neuroimaging. In: Moskalev, A. (eds) Biomarkers of Human Aging. Healthy Ageing and Longevity, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-24970-0_19 .
Doering E, Antonopoulos G, Hoenig M, van Eimeren T, Daamen M, Boecker H, et al. MRI or (18)F-FDG PET for brain age gap estimation: links to cognition, pathology, and Alzheimer disease progression. J Nucl Med. 2024;65(1):147–55.
pubmed: 38050112 pmcid: 10755522 doi: 10.2967/jnumed.123.265931
Lee J, Burkett BJ, Min HK, Senjem ML, Lundt ES, Botha H, et al. Deep learning-based brain age prediction in normal aging and dementia. Nat Aging. 2022;2(5):412–24.
pubmed: 37118071 pmcid: 10154042 doi: 10.1038/s43587-022-00219-7
Taylor A, Zhang F, Niu X, Heywood A, Stocks J, Feng G, et al. Investigating the temporal pattern of neuroimaging-based brain age estimation as a biomarker for Alzheimer’s disease related neurodegeneration. Neuroimage. 2022;263:119621.
pubmed: 36089183 doi: 10.1016/j.neuroimage.2022.119621
Franke K, Ziegler G, Kloppel S, Gaser C, Alzheimer’s Disease Neuroimaging I. Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters. Neuroimage. 2010;50(3):883–92.
pubmed: 20070949 doi: 10.1016/j.neuroimage.2010.01.005
Franke K, Gaser C, Manor B, Novak V. Advanced BrainAGE in older adults with type 2 diabetes mellitus. Front Aging Neurosci. 2013;5:90.
pubmed: 24381557 pmcid: 3865444 doi: 10.3389/fnagi.2013.00090
Gaser C, Franke K, Kloppel S, Koutsouleris N, Sauer H, Alzheimer’s Disease Neuroimaging I. BrainAGE in mild cognitive impaired patients: predicting the conversion to Alzheimer’s disease. PLoS One. 2013;8(6):e67346.
pubmed: 23826273 pmcid: 3695013 doi: 10.1371/journal.pone.0067346
Millar PR, Gordon BA, Wisch JK, Schultz SA, Benzinger TL, Cruchaga C, et al. Advanced structural brain aging in preclinical autosomal dominant Alzheimer disease. Mol Neurodegener. 2023;18(1):98.
pubmed: 38111006 pmcid: 10729487 doi: 10.1186/s13024-023-00688-3
Karim HT, Aizenstein HJ, Mizuno A, Ly M, Andreescu C, Wu M, et al. Independent replication of advanced brain age in mild cognitive impairment and dementia: detection of future cognitive dysfunction. Mol Psychiatry. 2022;27(12):5235–43.
pubmed: 35974140 pmcid: 9763106 doi: 10.1038/s41380-022-01728-y
Biondo F, Jewell A, Pritchard M, Aarsland D, Steves CJ, Mueller C, et al. Brain-age is associated with progression to dementia in memory clinic patients. Neuroimage Clin. 2022;36:103175.
pubmed: 36087560 pmcid: 9467894 doi: 10.1016/j.nicl.2022.103175
Franke K, Gaser C. Longitudinal changes in individual BrainAGE in healthy aging, mild cognitive impairment, and Alzheimer’s disease. GeroPsych. 2012;25(4):235–45.
doi: 10.1024/1662-9647/a000074
Lowe LC, Gaser C, Franke K, Alzheimer’s Disease Neuroimaging I. The Effect of the APOE genotype on individual BrainAGE in normal aging, mild cognitive impairment, and Alzheimer’s disease. PLoS One. 2016;11(7):e0157514.
pubmed: 27410431 pmcid: 4943637 doi: 10.1371/journal.pone.0157514
Davatzikos C, Xu F, An Y, Fan Y, Resnick SM. Longitudinal progression of Alzheimer’s-like patterns of atrophy in normal older adults: the SPARE-AD index. Brain. 2009;132(Pt 8):2026–35.
pubmed: 19416949 pmcid: 2714059 doi: 10.1093/brain/awp091
Niemantsverdriet E, Ribbens A, Bastin C, Benoit F, Bergmans B, Bier JC, et al. A Retrospective Belgian Multi-Center MRI Biomarker Study in Alzheimer’s Disease (REMEMBER). J Alzheimers Dis. 2018;63(4):1509–22.
pubmed: 29782314 pmcid: 6004934 doi: 10.3233/JAD-171140
Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):270–9.
pubmed: 21514249 doi: 10.1016/j.jalz.2011.03.008
Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 2014;13(6):614–29.
pubmed: 24849862 doi: 10.1016/S1474-4422(14)70090-0
McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):263–9.
pubmed: 21514250 doi: 10.1016/j.jalz.2011.03.005
Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):280–92.
pubmed: 21514248 doi: 10.1016/j.jalz.2011.03.003
Jessen F, Amariglio RE, van Boxtel M, Breteler M, Ceccaldi M, Chetelat G, et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimers Dement. 2014;10(6):844–52.
pubmed: 24798886 doi: 10.1016/j.jalz.2014.01.001
Jessen F. Subjective and objective cognitive decline at the pre-dementia stage of Alzheimer’s disease. Eur Arch Psychiatry Clin Neurosci. 2014;264(Suppl 1):S3-7.
pubmed: 25238934 doi: 10.1007/s00406-014-0539-z
Wittens MMJ, Sima DM, Houbrechts R, Ribbens A, Niemantsverdriet E, Fransen E, et al. Diagnostic performance of automated MRI volumetry by icobrain dm for Alzheimer’s disease in a clinical setting: a REMEMBER study. J Alzheimers Dis. 2021;83(2):623–39.
pubmed: 34334402 pmcid: 8543261 doi: 10.3233/JAD-210450
Struyfs H, Sima DM, Wittens M, Ribbens A, de Barros Pedrosa N, Phan TV, et al. Automated MRI volumetry as a diagnostic tool for Alzheimer’s disease: validation of icobrain dm. Neuroimage Clin. 2020;26:102243.
pubmed: 32193172 pmcid: 7082216 doi: 10.1016/j.nicl.2020.102243
R Development Core Team. R: A language and environment for statistical computing. Vienna: R foundation for statistical computing; 2010.
Ethan Heinzen JS, Elizabeth Atkinson, Tina Gunderson and Gregory Dougherty. arsenal: An Arsenal of 'R' Functions for Large-Scale Statistical Summaries. R package version 3.6.3. 2021.
R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2022.
Torsten Hothorn FBaPW. Simultaneous Inference in General Parametric Models. Biom J. 2008;50(3):346–63.
doi: 10.1002/bimj.200810425
Frasco BHaM. Metrics: evaluation metrics for machine learning. 2018.
Kassambara A. ggpubr: 'ggplot2' Based Publication Ready Plots. R package version 0.4.0. 2023.  https://CRAN.R-project.org/package=ggpubr .
Schloerke B, Cook D, Larmarange J, Briatte F, Marbach M, Thoen E, Elberg A, Crowley J. GGally: Extension to 'ggplot2'. R package version 2.1.2. 2023. https://CRAN.Rproject.org/package=GGally .
Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77.
pubmed: 21414208 pmcid: 3068975 doi: 10.1186/1471-2105-12-77
Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3(1):32–5.
pubmed: 15405679 doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837–45.
pubmed: 3203132 doi: 10.2307/2531595
Kenward MG, Roger JH. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics. 1997;53(3):983–97.
pubmed: 9333350 doi: 10.2307/2533558
Dinse GE, Lagakos SW. Nonparametric estimation of lifetime and disease onset distributions from incomplete observations. Biometrics. 1982;38(4):921–32.
pubmed: 7168795 doi: 10.2307/2529872
Garcia Condado J, Cortes JM, Alzheimer’s Disease Neuroimaging I. NeuropsychBrainAge: a biomarker for conversion from mild cognitive impairment to Alzheimer’s disease. Alzheimers Dement (Amst). 2023;15(4):e12493.
pubmed: 37908437 pmcid: 10614125 doi: 10.1002/dad2.12493
Ameringer S, Serlin RC, Ward S. Simpson’s paradox and experimental research. Nurs Res. 2009;58(2):123–7.
pubmed: 19289933 pmcid: 2880329 doi: 10.1097/NNR.0b013e318199b517
Beheshti I, Maikusa N, Matsuda H. The association between “Brain-Age Score” (BAS) and traditional neuropsychological screening tools in Alzheimer’s disease. Brain Behav. 2018;8(8):e01020.
pubmed: 29931756 pmcid: 6085898 doi: 10.1002/brb3.1020
Guggenmos M, Schmack K, Sekutowicz M, Garbusow M, Sebold M, Sommer C, et al. Quantitative neurobiological evidence for accelerated brain aging in alcohol dependence. Transl Psychiatry. 2017;7(12):1279.
pubmed: 29225356 pmcid: 5802586 doi: 10.1038/s41398-017-0037-y
Bitterlich N, Schneider J, Lindner E. ROC curves–can differences in AUCs be significant? Int J Biol Markers. 2003;18(3):227–9.
pubmed: 14535595 doi: 10.1177/172460080301800312
Millar PR, Gordon BA, Luckett PH, Benzinger TLS, Cruchaga C, Fagan AM, et al. Multimodal brain age estimates relate to Alzheimer disease biomarkers and cognition in early stages: a cross-sectional observational study. Elife. 2023;12:e81869.
pubmed: 36607335 pmcid: 9988262 doi: 10.7554/eLife.81869
Elliott ML, Belsky DW, Knodt AR, Ireland D, Melzer TR, Poulton R, et al. Brain-age in midlife is associated with accelerated biological aging and cognitive decline in a longitudinal birth cohort. Mol Psychiatry. 2021;26(8):3829–38.
pubmed: 31822815 doi: 10.1038/s41380-019-0626-7
Cherubini A, Caligiuri ME, Peran P, Sabatini U, Cosentino C, Amato F. Importance of multimodal MRI in characterizing brain tissue and its potential application for individual age prediction. IEEE J Biomed Health Inform. 2016;20(5):1232–9.
pubmed: 27164612 doi: 10.1109/JBHI.2016.2559938
Petersen KJ, Strain J, Cooley S, Vaida F, Ances BM. Machine learning quantifies accelerated white-matter aging in persons with HIV. J Infect Dis. 2022;226(1):49–58.
pubmed: 35481983 pmcid: 9890925 doi: 10.1093/infdis/jiac156
Tseng WI, Hsu YC, Kao TW. Brain age difference at baseline predicts clinical dementia rating change in approximately two years. J Alzheimers Dis. 2022;86(2):613–27.
pubmed: 35094993 doi: 10.3233/JAD-215380
Dosenbach NU, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, et al. Prediction of individual brain maturity using fMRI. Science. 2010;329(5997):1358–61.
pubmed: 20829489 pmcid: 3135376 doi: 10.1126/science.1194144
Liem F, Varoquaux G, Kynast J, Beyer F, Kharabian Masouleh S, Huntenburg JM, et al. Predicting brain-age from multimodal imaging data captures cognitive impairment. Neuroimage. 2017;148:179–88.
pubmed: 27890805 doi: 10.1016/j.neuroimage.2016.11.005
Eavani H, Habes M, Satterthwaite TD, An Y, Hsieh MK, Honnorat N, et al. Heterogeneity of structural and functional imaging patterns of advanced brain aging revealed via machine learning methods. Neurobiol Aging. 2018;71:41–50.
pubmed: 30077821 pmcid: 6162110 doi: 10.1016/j.neurobiolaging.2018.06.013
Nielsen AN, Greene DJ, Gratton C, Dosenbach NUF, Petersen SE, Schlaggar BL. Evaluating the prediction of brain maturity from functional connectivity after motion artifact denoising. Cereb Cortex. 2019;29(6):2455–69.
pubmed: 29850877 doi: 10.1093/cercor/bhy117
Gonneaud J, Baria AT, Pichet Binette A, Gordon BA, Chhatwal JP, Cruchaga C, et al. Accelerated functional brain aging in pre-clinical familial Alzheimer’s disease. Nat Commun. 2021;12(1):5346.
pubmed: 34504080 pmcid: 8429427 doi: 10.1038/s41467-021-25492-9
Gao J, Liu J, Xu Y, Peng D, Wang Z. Brain age prediction using the graph neural network based on resting-state functional MRI in Alzheimer’s disease. Front Neurosci. 2023;17:1222751.
pubmed: 37457008 pmcid: 10347411 doi: 10.3389/fnins.2023.1222751
Goyal MS, Blazey TM, Su Y, Couture LE, Durbin TJ, Bateman RJ, et al. Persistent metabolic youth in the aging female brain. Proc Natl Acad Sci U S A. 2019;116(8):3251–5.
pubmed: 30718410 pmcid: 6386682 doi: 10.1073/pnas.1815917116
Smith SM, Vidaurre D, Alfaro-Almagro F, Nichols TE, Miller KL. Estimation of brain age delta from brain imaging. Neuroimage. 2019;200:528–39.
pubmed: 31201988 doi: 10.1016/j.neuroimage.2019.06.017
Wittens MMJ, Allemeersch GJ, Sima DM, Naeyaert M, Vanderhasselt T, Vanbinst AM, et al. Inter- and intra-scanner variability of automated brain volumetry on three magnetic resonance imaging systems in Alzheimer’s disease and controls. Front Aging Neurosci. 2021;13:746982.
pubmed: 34690745 pmcid: 8530224 doi: 10.3389/fnagi.2021.746982
Moqadam R, Dadar M, Zeighami Y. Investigating the impact of motion in the scanner on brain age predictions. Imaging Neurosci. 2024;2:1–21.
doi: 10.1162/imag_a_00079

Auteurs

Mandy M J Wittens (MMJ)

Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.
Neuroprotection and Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije, Universiteit Brussel (VUB), Brussels, Belgium.

Stijn Denissen (S)

icometrix, Leuven, Belgium.
AIMS lab, Center for Neurosciences (C4N), Vrije Universiteit Brussel, UZ Brussel, Brussels, Belgium.

Diana M Sima (DM)

Neuroprotection and Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije, Universiteit Brussel (VUB), Brussels, Belgium.
icometrix, Leuven, Belgium.

Erik Fransen (E)

Centre of Medical Genetics, University of Antwerp, and Antwerp University Hospital - UZA, Edegem, Belgium.

Ellis Niemantsverdriet (E)

Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.

Christine Bastin (C)

GIGA-CRC-IVI, Liège University, Allée du Six Août, 8, Liège, 4000, Belgium.

Florence Benoit (F)

Geriatrics Department, Brugmann University Hospital, Universite Libre de Bruxelles, Brussels, Belgium.

Bruno Bergmans (B)

Neurology Department, AZ St-Jan Brugge, Brugge, Belgium.
Ghent University Hospital, Ghent, Belgium.

Jean-Christophe Bier (JC)

Neurological department H. U. B. - Erasme Hospital - Vrije Universiteit Brussel (VUB), Brussels, Belgium.

Peter Paul de Deyn (PP)

Laboratory of Neurochemistry and Behavior, Experimental Neurobiology Unit, University of Antwerp, Antwerp, 2610, Belgium.
Memory Clinic, Ziekenhuisnetwerk, Antwerp, Belgium.

Olivier Deryck (O)

Neurology Department, AZ St-Jan Brugge, Brugge, Belgium.
Ghent University Hospital, Ghent, Belgium.

Bernard Hanseeuw (B)

Institute of Neuroscience, Université Catholique de Louvain, Brussels, 1200, Belgium.
Department of Neurology, Clinique Universitaires Saint-Luc, Brussels, 1200, Belgium.
WELBIO Department, WEL Research Institute, Wavre, 1300, Belgium.

Adrian Ivanoiu (A)

Department of Neurology, Cliniques Universitaires St Luc, and Institute of Neuroscience, Université Catholique de Louvain, Woluwe-Saint-Lambert (Brussels), Belgium.

Gaëtane Picard (G)

Department of Neurology, Clinique Saint-Pierre, Ottignies, Belgium.

Annemie Ribbens (A)

icometrix, Leuven, Belgium.

Eric Salmon (E)

GIGA-CRC-IVI, Liège University, Allée du Six Août, 8, Liège, 4000, Belgium.
Department of Neurology, Memory Clinic, Centre Hospitalier Universitaire (CHU) Liège, Liège, Belgium.

Kurt Segers (K)

Memory Clinic - Neurology and Geriatrics Department, CHU Brugmann, Van Gehuchtenplein 4, Brussels, 1020, Belgium.

Anne Sieben (A)

Neuropathology Lab, IBB-NeuroBiobank BB190113, Born Bunge Institute, Antwerp, Belgium.
Department of Pathology, Antwerp University Hospital - UZA, Antwerp, Belgium.
Laboratory of Neurology, Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.

Hanne Struyfs (H)

Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.
Johnson and Johnson Innovative Medicine, Beerse, Belgium.

Evert Thiery (E)

Department of Neurology, University Hospital Ghent, Ghent University, Ghent, Belgium.

Jos Tournoy (J)

Department of Chronic Diseases, Metabolism and Ageing, Geriatric Medicine and Memory Clinic, University Hospitals Leuven and KU Leuven, Louvain, Belgium.

Anne-Marie van Binst (AM)

Radiology Department, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.

Jan Versijpt (J)

Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.
Neuroprotection and Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije, Universiteit Brussel (VUB), Brussels, Belgium.

Dirk Smeets (D)

Neuroprotection and Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije, Universiteit Brussel (VUB), Brussels, Belgium.
icometrix, Leuven, Belgium.

Maria Bjerke (M)

Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
Neuroprotection and Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije, Universiteit Brussel (VUB), Brussels, Belgium.
Department of Clinical Chemistry, Laboratory of Neurochemistry, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.

Guy Nagels (G)

Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.
St. Edmund Hall, University of Oxford, Oxford, UK.
AIMS lab, Center for Neurosciences (C4N), Vrije Universiteit Brussel, UZ Brussel, Brussels, Belgium.

Sebastiaan Engelborghs (S)

Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium. sebastiaan.engelborghs@uzbrussel.be.
Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium. sebastiaan.engelborghs@uzbrussel.be.
Neuroprotection and Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije, Universiteit Brussel (VUB), Brussels, Belgium. sebastiaan.engelborghs@uzbrussel.be.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH