Brain age as a biomarker for pathological versus healthy ageing - a REMEMBER study.
Alzheimer’s disease
Automated volumetry
Biomarker
Brain age
Brain predicted age difference
Magnetic resonance imaging
Journal
Alzheimer's research & therapy
ISSN: 1758-9193
Titre abrégé: Alzheimers Res Ther
Pays: England
ID NLM: 101511643
Informations de publication
Date de publication:
14 Jun 2024
14 Jun 2024
Historique:
received:
02
04
2024
accepted:
04
06
2024
medline:
15
6
2024
pubmed:
15
6
2024
entrez:
14
6
2024
Statut:
epublish
Résumé
This study aimed to evaluate the potential clinical value of a new brain age prediction model as a single interpretable variable representing the condition of our brain. Among many clinical use cases, brain age could be a novel outcome measure to assess the preventive effect of life-style interventions. The REMEMBER study population (N = 742) consisted of cognitively healthy (HC,N = 91), subjective cognitive decline (SCD,N = 65), mild cognitive impairment (MCI,N = 319) and AD dementia (ADD,N = 267) subjects. Automated brain volumetry of global, cortical, and subcortical brain structures computed by the CE-labeled and FDA-cleared software icobrain dm (dementia) was retrospectively extracted from T1-weighted MRI sequences that were acquired during clinical routine at participating memory clinics from the Belgian Dementia Council. The volumetric features, along with sex, were combined into a weighted sum using a linear model, and were used to predict 'brain age' and 'brain predicted age difference' (BPAD = brain age-chronological age) for every subject. MCI and ADD patients showed an increased brain age compared to their chronological age. Overall, brain age outperformed BPAD and chronological age in terms of classification accuracy across the AD spectrum. There was a weak-to-moderate correlation between total MMSE score and both brain age (r = -0.38,p < .001) and BPAD (r = -0.26,p < .001). Noticeable trends, but no significant correlations, were found between BPAD and incidence of conversion from MCI to ADD, nor between BPAD and conversion time from MCI to ADD. BPAD was increased in heavy alcohol drinkers compared to non-/sporadic (p = .014) and moderate (p = .040) drinkers. Brain age and associated BPAD have the potential to serve as indicators for, and to evaluate the impact of lifestyle modifications or interventions on, brain health.
Identifiants
pubmed: 38877568
doi: 10.1186/s13195-024-01491-y
pii: 10.1186/s13195-024-01491-y
doi:
Substances chimiques
Biomarkers
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
128Subventions
Organisme : Flanders Innovation & Intrepreneurship (VLAIO)
ID : Baekeland, HBC.2019.2579
Organisme : Fonds Wetenschappelijk Onderzoek
ID : 1805620N
Informations de copyright
© 2024. The Author(s).
Références
Fedele E. Anti-Amyloid Therapies for Alzheimer’s disease and the amyloid cascade hypothesis. Int J Mol Sci. 2023;24(19):14499.
pubmed: 37833948
pmcid: 10578107
doi: 10.3390/ijms241914499
Kivipelto M, Mangialasche F, Ngandu T. Lifestyle interventions to prevent cognitive impairment, dementia and Alzheimer disease. Nat Rev Neurol. 2018;14(11):653–66.
pubmed: 30291317
doi: 10.1038/s41582-018-0070-3
Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020;396(10248):413–46.
pubmed: 32738937
pmcid: 7392084
doi: 10.1016/S0140-6736(20)30367-6
Habes M, Grothe MJ, Tunc B, McMillan C, Wolk DA, Davatzikos C. Disentangling heterogeneity in Alzheimer’s disease and related dementias using data-driven methods. Biol Psychiatry. 2020;88(1):70–82.
pubmed: 32201044
pmcid: 7305953
doi: 10.1016/j.biopsych.2020.01.016
Bethlehem RAI, Seidlitz J, White SR, Vogel JW, Anderson KM, Adamson C, et al. Brain charts for the human lifespan. Nature. 2022;604(7906):525–33.
pubmed: 35388223
pmcid: 9021021
doi: 10.1038/s41586-022-04554-y
Bethlehem RAI, Seidlitz J, White SR, Vogel JW, Anderson KM, Adamson C, et al. Publisher Correction: brain charts for the human lifespan. Nature. 2022;610(7931):E6.
pubmed: 36151472
pmcid: 9556297
doi: 10.1038/s41586-022-05300-0
Franz CE, Hatton SN, Elman JA, Warren T, Gillespie NA, Whitsel NA, et al. Lifestyle and the aging brain: interactive effects of modifiable lifestyle behaviors and cognitive ability in men from midlife to old age. Neurobiol Aging. 2021;108:80–9.
pubmed: 34547718
pmcid: 8862767
doi: 10.1016/j.neurobiolaging.2021.08.007
Cole JH, Franke K. Predicting age using neuroimaging: innovative brain ageing biomarkers. Trends Neurosci. 2017;40(12):681–90.
pubmed: 29074032
doi: 10.1016/j.tins.2017.10.001
de Lange AG, Anaturk M, Rokicki J, Han LKM, Franke K, Alnaes D, et al. Mind the gap: performance metric evaluation in brain-age prediction. Hum Brain Mapp. 2022;43(10):3113–29.
pubmed: 35312210
pmcid: 9188975
doi: 10.1002/hbm.25837
More S, Antonopoulos G, Hoffstaedter F, Caspers J, Eickhoff SB, Patil KR, et al. Brain-age prediction: a systematic comparison of machine learning workflows. Neuroimage. 2023;270:119947.
pubmed: 36801372
doi: 10.1016/j.neuroimage.2023.119947
Cole JH, Marioni RE, Harris SE, Deary IJ. Brain age and other bodily “ages”: implications for neuropsychiatry. Mol Psychiatry. 2019;24(2):266–81.
pubmed: 29892055
doi: 10.1038/s41380-018-0098-1
Korbmacher M, Gurholt TP, de Lange AG, van der Meer D, Beck D, Eikefjord E, et al. Bio-psycho-social factors’ associations with brain age: a large-scale UK Biobank diffusion study of 35,749 participants. Front Psychol. 2023;14:1117732.
pubmed: 37359862
pmcid: 10288151
doi: 10.3389/fpsyg.2023.1117732
Franke K, Gaser C. Ten years of BrainAGE as a neuroimaging biomarker of brain aging: what insights have we gained? Front Neurol. 2019;10:789.
pubmed: 31474922
pmcid: 6702897
doi: 10.3389/fneur.2019.00789
Cumplido-Mayoral I, Garcia-Prat M, Operto G, Falcon C, Shekari M, Cacciaglia R, et al. Biological brain age prediction using machine learning on structural neuroimaging data: Multi-cohort validation against biomarkers of Alzheimer’s disease and neurodegeneration stratified by sex. Elife. 2023;12:e81067.
pubmed: 37067031
pmcid: 10181824
doi: 10.7554/eLife.81067
Liu W, Dong Q, Sun S, Shen J, Qian K, Hu B. Risk prediction of Alzheimer’s disease conversion in mild cognitive impaired population based on brain age estimation. IEEE Trans Neural Syst Rehabil Eng. 2023;31:2468–76.
pubmed: 37027670
doi: 10.1109/TNSRE.2023.3247590
Wrigglesworth J, Ward P, Harding IH, Nilaweera D, Wu Z, Woods RL, et al. Factors associated with brain ageing - a systematic review. BMC Neurol. 2021;21(1):312.
pubmed: 34384369
pmcid: 8359541
doi: 10.1186/s12883-021-02331-4
Charisse D, Erus G, Pomponio R, Gorges M, Schmidt N, Schneider C, et al. Brain age and Alzheimer’s-like atrophy are domain-specific predictors of cognitive impairment in Parkinson’s disease. Neurobiol Aging. 2022;109:31–42.
pubmed: 34649002
doi: 10.1016/j.neurobiolaging.2021.08.020
Koutsouleris N, Davatzikos C, Borgwardt S, Gaser C, Bottlender R, Frodl T, et al. Accelerated brain aging in schizophrenia and beyond: a neuroanatomical marker of psychiatric disorders. Schizophr Bull. 2014;40(5):1140–53.
pubmed: 24126515
doi: 10.1093/schbul/sbt142
Lee WH, Antoniades M, Schnack HG, Kahn RS, Frangou S. Brain age prediction in schizophrenia: does the choice of machine learning algorithm matter? Psychiatry Res Neuroimaging. 2021;310:111270.
pubmed: 33714090
pmcid: 8056405
doi: 10.1016/j.pscychresns.2021.111270
Zhu JD, Wu YF, Tsai SJ, Lin CP, Yang AC. Investigating brain aging trajectory deviations in different brain regions of individuals with schizophrenia using multimodal magnetic resonance imaging and brain-age prediction: a multicenter study. Transl Psychiatry. 2023;13(1):82.
pubmed: 36882419
pmcid: 9992684
doi: 10.1038/s41398-023-02379-5
Denissen S, Engemann DA, De Cock A, Costers L, Baijot J, Laton J, et al. Brain age as a surrogate marker for cognitive performance in multiple sclerosis. Eur J Neurol. 2022;29(10):3039–49.
pubmed: 35737867
pmcid: 9541923
doi: 10.1111/ene.15473
Brier MR, Li Z, Ly M, Karim HT, Liang L, Du W, et al. “Brain age” predicts disability accumulation in multiple sclerosis. Ann Clin Transl Neurol. 2023;10(6):990–1001.
pubmed: 37119507
pmcid: 10270248
doi: 10.1002/acn3.51782
Cole JH, Raffel J, Friede T, Eshaghi A, Brownlee WJ, Chard D, et al. Longitudinal assessment of multiple sclerosis with the brain-age paradigm. Ann Neurol. 2020;88(1):93–105.
pubmed: 32285956
doi: 10.1002/ana.25746
Wagen AZ, Coath W, Keshavan A, James SN, Parker TD, Lane CA, et al. Life course, genetic, and neuropathological associations with brain age in the 1946 British Birth Cohort: a population-based study. Lancet Healthy Longev. 2022;3(9):e607–16.
pubmed: 36102775
pmcid: 10499760
doi: 10.1016/S2666-7568(22)00167-2
Cole JH, Franke K, Cherbuin N. Quantification of the Biological Age of the Brain Using Neuroimaging. In: Moskalev, A. (eds) Biomarkers of Human Aging. Healthy Ageing and Longevity, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-24970-0_19 .
Doering E, Antonopoulos G, Hoenig M, van Eimeren T, Daamen M, Boecker H, et al. MRI or (18)F-FDG PET for brain age gap estimation: links to cognition, pathology, and Alzheimer disease progression. J Nucl Med. 2024;65(1):147–55.
pubmed: 38050112
pmcid: 10755522
doi: 10.2967/jnumed.123.265931
Lee J, Burkett BJ, Min HK, Senjem ML, Lundt ES, Botha H, et al. Deep learning-based brain age prediction in normal aging and dementia. Nat Aging. 2022;2(5):412–24.
pubmed: 37118071
pmcid: 10154042
doi: 10.1038/s43587-022-00219-7
Taylor A, Zhang F, Niu X, Heywood A, Stocks J, Feng G, et al. Investigating the temporal pattern of neuroimaging-based brain age estimation as a biomarker for Alzheimer’s disease related neurodegeneration. Neuroimage. 2022;263:119621.
pubmed: 36089183
doi: 10.1016/j.neuroimage.2022.119621
Franke K, Ziegler G, Kloppel S, Gaser C, Alzheimer’s Disease Neuroimaging I. Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters. Neuroimage. 2010;50(3):883–92.
pubmed: 20070949
doi: 10.1016/j.neuroimage.2010.01.005
Franke K, Gaser C, Manor B, Novak V. Advanced BrainAGE in older adults with type 2 diabetes mellitus. Front Aging Neurosci. 2013;5:90.
pubmed: 24381557
pmcid: 3865444
doi: 10.3389/fnagi.2013.00090
Gaser C, Franke K, Kloppel S, Koutsouleris N, Sauer H, Alzheimer’s Disease Neuroimaging I. BrainAGE in mild cognitive impaired patients: predicting the conversion to Alzheimer’s disease. PLoS One. 2013;8(6):e67346.
pubmed: 23826273
pmcid: 3695013
doi: 10.1371/journal.pone.0067346
Millar PR, Gordon BA, Wisch JK, Schultz SA, Benzinger TL, Cruchaga C, et al. Advanced structural brain aging in preclinical autosomal dominant Alzheimer disease. Mol Neurodegener. 2023;18(1):98.
pubmed: 38111006
pmcid: 10729487
doi: 10.1186/s13024-023-00688-3
Karim HT, Aizenstein HJ, Mizuno A, Ly M, Andreescu C, Wu M, et al. Independent replication of advanced brain age in mild cognitive impairment and dementia: detection of future cognitive dysfunction. Mol Psychiatry. 2022;27(12):5235–43.
pubmed: 35974140
pmcid: 9763106
doi: 10.1038/s41380-022-01728-y
Biondo F, Jewell A, Pritchard M, Aarsland D, Steves CJ, Mueller C, et al. Brain-age is associated with progression to dementia in memory clinic patients. Neuroimage Clin. 2022;36:103175.
pubmed: 36087560
pmcid: 9467894
doi: 10.1016/j.nicl.2022.103175
Franke K, Gaser C. Longitudinal changes in individual BrainAGE in healthy aging, mild cognitive impairment, and Alzheimer’s disease. GeroPsych. 2012;25(4):235–45.
doi: 10.1024/1662-9647/a000074
Lowe LC, Gaser C, Franke K, Alzheimer’s Disease Neuroimaging I. The Effect of the APOE genotype on individual BrainAGE in normal aging, mild cognitive impairment, and Alzheimer’s disease. PLoS One. 2016;11(7):e0157514.
pubmed: 27410431
pmcid: 4943637
doi: 10.1371/journal.pone.0157514
Davatzikos C, Xu F, An Y, Fan Y, Resnick SM. Longitudinal progression of Alzheimer’s-like patterns of atrophy in normal older adults: the SPARE-AD index. Brain. 2009;132(Pt 8):2026–35.
pubmed: 19416949
pmcid: 2714059
doi: 10.1093/brain/awp091
Niemantsverdriet E, Ribbens A, Bastin C, Benoit F, Bergmans B, Bier JC, et al. A Retrospective Belgian Multi-Center MRI Biomarker Study in Alzheimer’s Disease (REMEMBER). J Alzheimers Dis. 2018;63(4):1509–22.
pubmed: 29782314
pmcid: 6004934
doi: 10.3233/JAD-171140
Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):270–9.
pubmed: 21514249
doi: 10.1016/j.jalz.2011.03.008
Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 2014;13(6):614–29.
pubmed: 24849862
doi: 10.1016/S1474-4422(14)70090-0
McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):263–9.
pubmed: 21514250
doi: 10.1016/j.jalz.2011.03.005
Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):280–92.
pubmed: 21514248
doi: 10.1016/j.jalz.2011.03.003
Jessen F, Amariglio RE, van Boxtel M, Breteler M, Ceccaldi M, Chetelat G, et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimers Dement. 2014;10(6):844–52.
pubmed: 24798886
doi: 10.1016/j.jalz.2014.01.001
Jessen F. Subjective and objective cognitive decline at the pre-dementia stage of Alzheimer’s disease. Eur Arch Psychiatry Clin Neurosci. 2014;264(Suppl 1):S3-7.
pubmed: 25238934
doi: 10.1007/s00406-014-0539-z
Wittens MMJ, Sima DM, Houbrechts R, Ribbens A, Niemantsverdriet E, Fransen E, et al. Diagnostic performance of automated MRI volumetry by icobrain dm for Alzheimer’s disease in a clinical setting: a REMEMBER study. J Alzheimers Dis. 2021;83(2):623–39.
pubmed: 34334402
pmcid: 8543261
doi: 10.3233/JAD-210450
Struyfs H, Sima DM, Wittens M, Ribbens A, de Barros Pedrosa N, Phan TV, et al. Automated MRI volumetry as a diagnostic tool for Alzheimer’s disease: validation of icobrain dm. Neuroimage Clin. 2020;26:102243.
pubmed: 32193172
pmcid: 7082216
doi: 10.1016/j.nicl.2020.102243
R Development Core Team. R: A language and environment for statistical computing. Vienna: R foundation for statistical computing; 2010.
Ethan Heinzen JS, Elizabeth Atkinson, Tina Gunderson and Gregory Dougherty. arsenal: An Arsenal of 'R' Functions for Large-Scale Statistical Summaries. R package version 3.6.3. 2021.
R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2022.
Torsten Hothorn FBaPW. Simultaneous Inference in General Parametric Models. Biom J. 2008;50(3):346–63.
doi: 10.1002/bimj.200810425
Frasco BHaM. Metrics: evaluation metrics for machine learning. 2018.
Kassambara A. ggpubr: 'ggplot2' Based Publication Ready Plots. R package version 0.4.0. 2023. https://CRAN.R-project.org/package=ggpubr .
Schloerke B, Cook D, Larmarange J, Briatte F, Marbach M, Thoen E, Elberg A, Crowley J. GGally: Extension to 'ggplot2'. R package version 2.1.2. 2023. https://CRAN.Rproject.org/package=GGally .
Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77.
pubmed: 21414208
pmcid: 3068975
doi: 10.1186/1471-2105-12-77
Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3(1):32–5.
pubmed: 15405679
doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837–45.
pubmed: 3203132
doi: 10.2307/2531595
Kenward MG, Roger JH. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics. 1997;53(3):983–97.
pubmed: 9333350
doi: 10.2307/2533558
Dinse GE, Lagakos SW. Nonparametric estimation of lifetime and disease onset distributions from incomplete observations. Biometrics. 1982;38(4):921–32.
pubmed: 7168795
doi: 10.2307/2529872
Garcia Condado J, Cortes JM, Alzheimer’s Disease Neuroimaging I. NeuropsychBrainAge: a biomarker for conversion from mild cognitive impairment to Alzheimer’s disease. Alzheimers Dement (Amst). 2023;15(4):e12493.
pubmed: 37908437
pmcid: 10614125
doi: 10.1002/dad2.12493
Ameringer S, Serlin RC, Ward S. Simpson’s paradox and experimental research. Nurs Res. 2009;58(2):123–7.
pubmed: 19289933
pmcid: 2880329
doi: 10.1097/NNR.0b013e318199b517
Beheshti I, Maikusa N, Matsuda H. The association between “Brain-Age Score” (BAS) and traditional neuropsychological screening tools in Alzheimer’s disease. Brain Behav. 2018;8(8):e01020.
pubmed: 29931756
pmcid: 6085898
doi: 10.1002/brb3.1020
Guggenmos M, Schmack K, Sekutowicz M, Garbusow M, Sebold M, Sommer C, et al. Quantitative neurobiological evidence for accelerated brain aging in alcohol dependence. Transl Psychiatry. 2017;7(12):1279.
pubmed: 29225356
pmcid: 5802586
doi: 10.1038/s41398-017-0037-y
Bitterlich N, Schneider J, Lindner E. ROC curves–can differences in AUCs be significant? Int J Biol Markers. 2003;18(3):227–9.
pubmed: 14535595
doi: 10.1177/172460080301800312
Millar PR, Gordon BA, Luckett PH, Benzinger TLS, Cruchaga C, Fagan AM, et al. Multimodal brain age estimates relate to Alzheimer disease biomarkers and cognition in early stages: a cross-sectional observational study. Elife. 2023;12:e81869.
pubmed: 36607335
pmcid: 9988262
doi: 10.7554/eLife.81869
Elliott ML, Belsky DW, Knodt AR, Ireland D, Melzer TR, Poulton R, et al. Brain-age in midlife is associated with accelerated biological aging and cognitive decline in a longitudinal birth cohort. Mol Psychiatry. 2021;26(8):3829–38.
pubmed: 31822815
doi: 10.1038/s41380-019-0626-7
Cherubini A, Caligiuri ME, Peran P, Sabatini U, Cosentino C, Amato F. Importance of multimodal MRI in characterizing brain tissue and its potential application for individual age prediction. IEEE J Biomed Health Inform. 2016;20(5):1232–9.
pubmed: 27164612
doi: 10.1109/JBHI.2016.2559938
Petersen KJ, Strain J, Cooley S, Vaida F, Ances BM. Machine learning quantifies accelerated white-matter aging in persons with HIV. J Infect Dis. 2022;226(1):49–58.
pubmed: 35481983
pmcid: 9890925
doi: 10.1093/infdis/jiac156
Tseng WI, Hsu YC, Kao TW. Brain age difference at baseline predicts clinical dementia rating change in approximately two years. J Alzheimers Dis. 2022;86(2):613–27.
pubmed: 35094993
doi: 10.3233/JAD-215380
Dosenbach NU, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, et al. Prediction of individual brain maturity using fMRI. Science. 2010;329(5997):1358–61.
pubmed: 20829489
pmcid: 3135376
doi: 10.1126/science.1194144
Liem F, Varoquaux G, Kynast J, Beyer F, Kharabian Masouleh S, Huntenburg JM, et al. Predicting brain-age from multimodal imaging data captures cognitive impairment. Neuroimage. 2017;148:179–88.
pubmed: 27890805
doi: 10.1016/j.neuroimage.2016.11.005
Eavani H, Habes M, Satterthwaite TD, An Y, Hsieh MK, Honnorat N, et al. Heterogeneity of structural and functional imaging patterns of advanced brain aging revealed via machine learning methods. Neurobiol Aging. 2018;71:41–50.
pubmed: 30077821
pmcid: 6162110
doi: 10.1016/j.neurobiolaging.2018.06.013
Nielsen AN, Greene DJ, Gratton C, Dosenbach NUF, Petersen SE, Schlaggar BL. Evaluating the prediction of brain maturity from functional connectivity after motion artifact denoising. Cereb Cortex. 2019;29(6):2455–69.
pubmed: 29850877
doi: 10.1093/cercor/bhy117
Gonneaud J, Baria AT, Pichet Binette A, Gordon BA, Chhatwal JP, Cruchaga C, et al. Accelerated functional brain aging in pre-clinical familial Alzheimer’s disease. Nat Commun. 2021;12(1):5346.
pubmed: 34504080
pmcid: 8429427
doi: 10.1038/s41467-021-25492-9
Gao J, Liu J, Xu Y, Peng D, Wang Z. Brain age prediction using the graph neural network based on resting-state functional MRI in Alzheimer’s disease. Front Neurosci. 2023;17:1222751.
pubmed: 37457008
pmcid: 10347411
doi: 10.3389/fnins.2023.1222751
Goyal MS, Blazey TM, Su Y, Couture LE, Durbin TJ, Bateman RJ, et al. Persistent metabolic youth in the aging female brain. Proc Natl Acad Sci U S A. 2019;116(8):3251–5.
pubmed: 30718410
pmcid: 6386682
doi: 10.1073/pnas.1815917116
Smith SM, Vidaurre D, Alfaro-Almagro F, Nichols TE, Miller KL. Estimation of brain age delta from brain imaging. Neuroimage. 2019;200:528–39.
pubmed: 31201988
doi: 10.1016/j.neuroimage.2019.06.017
Wittens MMJ, Allemeersch GJ, Sima DM, Naeyaert M, Vanderhasselt T, Vanbinst AM, et al. Inter- and intra-scanner variability of automated brain volumetry on three magnetic resonance imaging systems in Alzheimer’s disease and controls. Front Aging Neurosci. 2021;13:746982.
pubmed: 34690745
pmcid: 8530224
doi: 10.3389/fnagi.2021.746982
Moqadam R, Dadar M, Zeighami Y. Investigating the impact of motion in the scanner on brain age predictions. Imaging Neurosci. 2024;2:1–21.
doi: 10.1162/imag_a_00079