Multiscale and multidisciplinary analysis of aging processes in bone.


Journal

npj aging
ISSN: 2731-6068
Titre abrégé: NPJ Aging
Pays: England
ID NLM: 9918402285106676

Informations de publication

Date de publication:
15 Jun 2024
Historique:
received: 12 12 2023
accepted: 07 05 2024
medline: 16 6 2024
pubmed: 16 6 2024
entrez: 15 6 2024
Statut: epublish

Résumé

The world population is increasingly aging, deeply affecting our society by challenging our healthcare systems and presenting an economic burden, thus turning the spotlight on aging-related diseases: exempli gratia, osteoporosis, a silent disease until you suddenly break a bone. The increase in bone fracture risk with age is generally associated with a loss of bone mass and an alteration in the skeletal architecture. However, such changes cannot fully explain increased fragility with age. To successfully tackle age-related bone diseases, it is paramount to comprehensively understand the fundamental mechanisms responsible for tissue degeneration. Aging mechanisms persist at multiple length scales within the complex hierarchical bone structure, raising the need for a multiscale and multidisciplinary approach to resolve them. This paper aims to provide an overarching analysis of aging processes in bone and to review the most prominent outcomes of bone aging. A systematic description of different length scales, highlighting the corresponding techniques adopted at each scale and motivating the need for combining diverse techniques, is provided to get a comprehensive description of the multi-physics phenomena involved.

Identifiants

pubmed: 38879533
doi: 10.1038/s41514-024-00156-2
pii: 10.1038/s41514-024-00156-2
doi:

Types de publication

Journal Article Review

Langues

eng

Pagination

28

Subventions

Organisme : Fondazione Cariplo (Cariplo Foundation)
ID : 2020-3615
Organisme : Fondazione Cariplo (Cariplo Foundation)
ID : 2020-3615
Organisme : Fondazione Cariplo (Cariplo Foundation)
ID : 2020-3615
Organisme : Fondazione Cariplo (Cariplo Foundation)
ID : 2020-3615
Organisme : Fondazione Cariplo (Cariplo Foundation)
ID : 2020-3615
Organisme : Fondazione Cariplo (Cariplo Foundation)
ID : 2020-3615

Informations de copyright

© 2024. The Author(s).

Références

United Nations, Global issue: ageing. https://www.un.org/en/global-issues/ageing .
Heede, K., Bouckaert, N. & Voorde, C. The impact of an ageing population on the required hospital capacity: results from forecast analysis on administrative data. Eur. Geriatr. Med. 10, 697–705 (2019).
pubmed: 34652701 doi: 10.1007/s41999-019-00219-8
Kanis, J. A. et al. Scope: a scorecard for osteoporosis in europe. Arch. Osteoporos. 8, 1–63 (2013).
doi: 10.1007/s11657-013-0144-1
Wu, A.-M. et al. Global, regional, and national burden of bone fractures in 204 countries and territories, 1990–2019: a systematic analysis from the global burden of disease study 2019. Lancet Healthy Longev. 2, 580–592 (2021).
doi: 10.1016/S2666-7568(21)00172-0
Acevedo, C., Stadelmann, V. A., Pioletti, D. P., Alliston, T. & Ritchie, R. O. Fatigue as the missing link between bone fragility and fracture. Nat. Biomed. Eng. 2, 62–71 (2018).
pubmed: 31015620 doi: 10.1038/s41551-017-0183-9
Burr, D. B. Changes in bone matrix properties with aging. Bone 120, 85–93 (2019).
pubmed: 30315999 doi: 10.1016/j.bone.2018.10.010
García-Aznar, J. M., Nasello, G., Hervas-Raluy, S., Pérez, M. Á. & Gómez-Benito, M. J. Multiscale modeling of bone tissue mechanobiology. Bone 151, 116032 (2021).
pubmed: 34118446 doi: 10.1016/j.bone.2021.116032
Morgan, E. F., Unnikrisnan, G. U. & Hussein, A. I. Bone mechanical properties in healthy and diseased states. Annu. Rev. Biomed. Eng. 20, 119–143 (2018).
pubmed: 29865872 pmcid: 6053074 doi: 10.1146/annurev-bioeng-062117-121139
Huang, W. et al. Multiscale toughening mechanisms in biological materials and bioinspired designs. Adv. Mater. 31, 1901561 (2019).
doi: 10.1002/adma.201901561
Kwon, Y. & Clumpner, B. Multiscale modeling of human bone. Multiscale Multidiscip. Model Exp. Des. 1, 133–143 (2018).
doi: 10.1007/s41939-018-0013-0
Wancket, L. Animal models for evaluation of bone implants and devices: comparative bone structure and common model uses. Vet. Pathol. 52, 842–850 (2015).
pubmed: 26163303 doi: 10.1177/0300985815593124
Reinwald, S. & Burr, D. Review of nonprimate, large animal models for osteoporosis research. J. Bone Miner. Res. 23, 1353–1368 (2008).
pubmed: 18505374 pmcid: 2683153 doi: 10.1359/jbmr.080516
Amson, E. & Bibi, F. Differing effects of size and lifestyle on bone structure in mammals. BMC Biol. 19, 87 (2021).
pubmed: 33926429 pmcid: 8086358 doi: 10.1186/s12915-021-01016-1
Milazzo, M., David, A., Jung, G. S., Danti, S. & Buehler, M. J. Molecular origin of viscoelasticity in mineralized collagen fibrils. Biomater. Sci. 9, 3390–3400 (2021).
pubmed: 33949363 pmcid: 8323817 doi: 10.1039/D0BM02003F
Wagermaier, W., Fratzl, P. Collagen. In: Matyjaszewski, K., Möller, M. (eds.) Polymer Science: A Comprehensive Reference, pp. 35–55. Elsevier, Amsterdam (2012).
Sroga, G.E., Karim, L., Colón, W., Vashishth, D. Biochemical characterization of major bone-matrix proteins using nanoscale-size bone samples and proteomics methodology. Molecular & Cellular Proteomics 10 (9) (2011).
Herring, G., Ashton, B. & Chipperfield, A. The isolation of soluble proteins, glycoproteins, and proteoglycans from bone. Prep. Biochem. 4, 179–200 (1974).
pubmed: 4370482
Nikel, O., Laurencin, D., McCallum, S. A., Gundberg, C. M. & Vashishth, D. Nmr investigation of the role of osteocalcin and osteopontin at the organic–inorganic interface in bone. Langmuir 29, 13873–13882 (2013).
pubmed: 24128197 pmcid: 3901427 doi: 10.1021/la403203w
Wang, Z., Vashishth, D. & Picu, R. Bone toughening through stress-induced non-collagenous protein denaturation. Biomech. Model. Mechanobiol. 17, 1093–1106 (2018).
pubmed: 29658056 doi: 10.1007/s10237-018-1016-9
Bonucci, E. Bone mineralization. Front. Biosci.-Landmark 17, 100–128 (2012).
doi: 10.2741/3918
Nair, A. K., Gautieri, A. & Buehler, M. J. Role of intrafibrillar collagen mineralization in defining the compressive properties of nascent bone. Biomacromolecules 15, 2494–2500 (2014).
pubmed: 24892376 doi: 10.1021/bm5003416
Handschin, R. & Stern, W. Crystallographic lattice refinement of human bone. Calcif. tissue Int. 51, 111–120 (1992).
pubmed: 1422949 doi: 10.1007/BF00298498
Eppell, S. J., Tong, W., Katz, J. L., Kuhn, L. & Glimcher, M. J. Shape and size of isolated bone mineralites measured using atomic force microscopy. J. Orthop. Res. 19, 1027–1034 (2001).
pubmed: 11781001 doi: 10.1016/S0736-0266(01)00034-1
Rubin, M. A. et al. Tem analysis of the nanostructure of normal and osteoporotic human trabecular bone. Bone 33, 270–282 (2003).
pubmed: 13678767 doi: 10.1016/S8756-3282(03)00194-7
Turunen, M. J. et al. Bone mineral crystal size and organization vary across mature rat bone cortex. J. Struct. Biol. 195, 337–344 (2016).
pubmed: 27417019 doi: 10.1016/j.jsb.2016.07.005
Libonati, F., Nair, A. K., Vergani, L. & Buehler, M. J. Mechanics of collagen–hydroxyapatite model nanocomposites. Mech. Res. Commun. 58, 17–23 (2014).
doi: 10.1016/j.mechrescom.2013.08.008
Qin, Z., Gautieri, A., Nair, A. K., Inbar, H. & Buehler, M. J. Thickness of hydroxyapatite nanocrystal controls mechanical properties of the collagen–hydroxyapatite interface. Langmuir 28, 1982–1992 (2012).
pubmed: 22208454 doi: 10.1021/la204052a
Libonati, F., Nair, A. K., Vergani, L. & Buehler, M. J. Fracture mechanics of hydroxyapatite single crystals under geometric confinement. J. Mech. Behav. Biomed. Mater. 20, 184–191 (2013).
pubmed: 23500480 doi: 10.1016/j.jmbbm.2012.12.005
Akkus, O., Adar, F. & Schaffler, M. B. Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone 34, 443–453 (2004).
pubmed: 15003792 doi: 10.1016/j.bone.2003.11.003
Foley, B., Greiner, M., McGlynn, G. & Schmahl, W. W. Anatomical variation of human bone bioapatite crystallography. Crystals 10, 859 (2020).
doi: 10.3390/cryst10100859
Mathavan, N., Turunen, M. J., Tägil, M. & Isaksson, H. Characterising bone material composition and structure in the ovariectomized (ovx) rat model of osteoporosis. Calcif. Tissue Int. 97, 134–144 (2015).
pubmed: 25894067 doi: 10.1007/s00223-015-9991-7
Vallet-Regi, M. & González-Calbet, J. M. Calcium phosphates as substitution of bone tissues. Prog. Solid State Chem. 32, 1–31 (2004).
doi: 10.1016/j.progsolidstchem.2004.07.001
Greenwood, C. et al. Towards new material biomarkers for fracture risk. Bone 93, 55–63 (2016).
pubmed: 27622884 doi: 10.1016/j.bone.2016.09.006
Warren, B.E. X-Ray Diffraction. Courier Corporation, North Chelmsford, Massachusetts, USA (1990).
Meneghini, C., Dalconi, M. C., Nuzzo, S., Mobilio, S. & Wenk, R. H. Rietveld refinement on x-ray diffraction patterns of bioapatite in human fetal bones. Biophys. J. 84, 2021–2029 (2003).
pubmed: 12609904 pmcid: 1302771 doi: 10.1016/S0006-3495(03)75010-3
Von Euw, S. et al. Bone mineral: new insights into its chemical composition. Sci. Rep. 9, 1–11 (2019).
Astala, R. & Stott, M. First principles investigation of mineral component of bone: Co
doi: 10.1021/cm050523b
Peroos, S., Du, Z. & Leeuw, N. H. A computer modelling study of the uptake, structure and distribution of carbonate defects in hydroxy-apatite. Biomaterials 27, 2150–2161 (2006).
pubmed: 16225917 doi: 10.1016/j.biomaterials.2005.09.025
Ren, F., Lu, X. & Leng, Y. Ab initio simulation on the crystal structure and elastic properties of carbonated apatite. J. Mech. Behav. Biomed. Mater. 26, 59–67 (2013).
pubmed: 23811277 doi: 10.1016/j.jmbbm.2013.05.030
Arnold, E.L., Keeble, D.S., Evans, J., Greenwood, C., Rogers, K.D. Investigating pair distribution function use in analysis of nanocrystalline hydroxyapatite and carbonate-substituted hydroxyapatite. Acta Crystallogr. Sect. C Struct. Chem. 78 (5) (2022).
Yasar, O. F. et al. The carbonate and sodium environments in precipitated and biomimetic calcium hydroxy-carbonate apatite contrasted with bone mineral: Structural insights from solid-state nmr. J. Phys. Chem. C. 125, 10572–10592 (2021).
doi: 10.1021/acs.jpcc.0c11389
Boskey, A. L. & Imbert, L. Bone quality changes associated with aging and disease: a review. Ann. N. Y. Acad. Sci. 1410, 93–106 (2017).
pubmed: 29265417 pmcid: 5774017 doi: 10.1111/nyas.13572
Raghavan, M., Sahar, N. D., Kohn, D. H. & Morris, M. D. Age-specific profiles of tissue-level composition and mechanical properties in murine cortical bone. Bone 50, 942–953 (2012).
pubmed: 22285889 pmcid: 3299845 doi: 10.1016/j.bone.2011.12.026
Burket, J. et al. Microstructure and nanomechanical properties in osteons relate to tissue and animal age. J. Biomech. 44, 277–284 (2011).
pubmed: 21074774 doi: 10.1016/j.jbiomech.2010.10.018
Deymier, A. C. et al. Protein-free formation of bone-like apatite: New insights into the key role of carbonation. Biomaterials 127, 75–88 (2017).
pubmed: 28279923 pmcid: 5415386 doi: 10.1016/j.biomaterials.2017.02.029
Wingender, B. et al. Carbonate substitution significantly affects the structure and mechanics of carbonated apatites. Acta Biomater. 122, 377–386 (2021).
pubmed: 33444796 doi: 10.1016/j.actbio.2021.01.002
Depalle, B. et al. The different distribution of enzymatic collagen cross-links found in adult and children bone result in different mechanical behavior of collagen. Bone 110, 107–114 (2018).
pubmed: 29414596 doi: 10.1016/j.bone.2018.01.024
Gaar, J., Naffa, R. & Brimble, M. Enzymatic and non-enzymatic crosslinks found in collagen and elastin and their chemical synthesis. Org. Chem. Front. 7, 2789–2814 (2020).
doi: 10.1039/D0QO00624F
Berteau, J.-P. et al. Ratio between mature and immature enzymatic cross-links correlates with post-yield cortical bone behavior: an insight into greenstick fractures of the child fibula. Bone 79, 190–195 (2015).
pubmed: 26079997 doi: 10.1016/j.bone.2015.05.045
Wang, X., Shen, X., Li, X. & Agrawal, C. M. Age-related changes in the collagen network and toughness of bone. Bone 31, 1–7 (2002).
pubmed: 12110404 doi: 10.1016/S8756-3282(01)00697-4
Gauthier, R. et al. Relationships between human cortical bone toughness and collagen cross-links on paired anatomical locations. Bone 112, 202–211 (2018).
pubmed: 29730278 doi: 10.1016/j.bone.2018.04.024
Baynes, J. W. The role of ages in aging: causation or correlation. Exp. Gerontol. 36, 1527–1537 (2001).
pubmed: 11525875 doi: 10.1016/S0531-5565(01)00138-3
Chaudhuri, J. et al. The role of advanced glycation end products in aging and metabolic diseases: bridging association and causality. Cell Metab. 28, 337–352 (2018).
pubmed: 30184484 pmcid: 6355252 doi: 10.1016/j.cmet.2018.08.014
Willett, T. L., Sutty, S., Gaspar, A., Avery, N. & Grynpas, M. In vitro non-enzymatic ribation reduces post-yield strain accommodation in cortical bone. Bone 52, 611–622 (2013).
pubmed: 23178516 doi: 10.1016/j.bone.2012.11.014
Giannini, C. et al. Scanning SAXS–WAXS microscopy on osteoarthritis-affected bone–an age-related study. J. Appl. Crystallogr. 47, 110–117 (2014).
doi: 10.1107/S1600576713030215
Willett, T. L., Dapaah, D. Y., Uppuganti, S., Granke, M. & Nyman, J. S. Bone collagen network integrity and transverse fracture toughness of human cortical bone. Bone 120, 187–193 (2019).
pubmed: 30394355 doi: 10.1016/j.bone.2018.10.024
Saito, M., Fujii, K., Soshi, S. & Tanaka, T. Reductions in degree of mineralization and enzymatic collagen cross-links and increases in glycation-induced pentosidine in the femoral neck cortex in cases of femoral neck fracture. Osteoporos. Int. 17, 986–995 (2006).
pubmed: 16552468 doi: 10.1007/s00198-006-0087-0
Kamml, J., Ke, C.-Y., Acevedo, C. & Kammer, D. S. The influence of ages and enzymatic cross-links on the mechanical properties of collagen fibrils. J. Mech. Behav. Biomed. Mater. 143, 105870 (2023).
pubmed: 37156073 doi: 10.1016/j.jmbbm.2023.105870
Rennekamp, B. et al. Collagen breaks at weak sacrificial bonds taming its mechanoradicals. Nat. Commun. 14, 2075 (2023).
pubmed: 37045839 pmcid: 10097693 doi: 10.1038/s41467-023-37726-z
McCarthy, A. D., Uemura, T., Etcheverry, S. B. & Cortizo, A. M. Advanced glycation endproducts interfere with integrin-mediated osteoblastic attachment to a type-i collagen matrix. Int. J. Biochem. Cell Biol. 36, 840–848 (2004).
pubmed: 15006636 doi: 10.1016/j.biocel.2003.09.006
Burla, F. et al. Connectivity and plasticity determine collagen network fracture. Proc. Natl Acad. Sci. 117, 8326–8334 (2020).
pubmed: 32238564 pmcid: 7165426 doi: 10.1073/pnas.1920062117
Panwar, P. et al. Aging-associated modifications of collagen affect its degradation by matrix metalloproteinases. Matrix Biol. 65, 30–44 (2018).
pubmed: 28634008 doi: 10.1016/j.matbio.2017.06.004
Agnieszka Obarska-Kosinska, A.Ü. Benedikt Rennekamp, Gräter, F. ColBuilder. https://colbuilder.h-its.org/ .
Obarska-Kosinska, A., Rennekamp, B., Ünal, A. & Gräter, F. Colbuilder: a server to build collagen fibril models. Biophys. J. 120, 3544–3549 (2021).
pubmed: 34265261 pmcid: 8456305 doi: 10.1016/j.bpj.2021.07.009
Davies, E. et al. Citrate bridges between mineral platelets in bone. Proc. Natl Acad. Sci. 111, 1354–1363 (2014).
doi: 10.1073/pnas.1315080111
Ninomiya, J. T. et al. Heterogeneity of human bone. J. Bone Miner. Res. 5, 933–938 (1990).
pubmed: 2281823 doi: 10.1002/jbmr.5650050906
Carvalho, M. S., Cabral, J. M., Silva, C. L. & Vashishth, D. Bone matrix non-collagenous proteins in tissue engineering: creating new bone by mimicking the extracellular matrix. Polymers 13, 1095 (2021).
pubmed: 33808184 pmcid: 8036283 doi: 10.3390/polym13071095
Boskey, A. L. Noncollagenous matrix proteins and their role in mineralization. Bone Miner. 6, 111–123 (1989).
pubmed: 2670018 doi: 10.1016/0169-6009(89)90044-5
Katsamenis, O. L., Chong, H. M., Andriotis, O. G. & Thurner, P. J. Load-bearing in cortical bone microstructure: Selective stiffening and heterogeneous strain distribution at the lamellar level. J. Mech. Behav. Biomed. Mater. 17, 152–165 (2013).
pubmed: 23131790 doi: 10.1016/j.jmbbm.2012.08.016
Poundarik, A. A. et al. Dilatational band formation in bone. Proc. Natl Acad. Sci. 109, 19178–19183 (2012).
pubmed: 23129653 pmcid: 3511118 doi: 10.1073/pnas.1201513109
Hauschka, P. V., Lian, J. B., Cole, D. & Gundberg, C. M. Osteocalcin and matrix gla protein: vitamin k-dependent proteins in bone. Physiol. Rev. 69, 990–1047 (1989).
pubmed: 2664828 doi: 10.1152/physrev.1989.69.3.990
Poser, J. W., Esch, F. S., Ling, N. C. & Price, P. A. Isolation and sequence of the vitamin k-dependent protein from human bone. undercarboxylation of the first glutamic acid residue. J. Biol. Chem. 255, 8685–8691 (1980).
pubmed: 6967872 doi: 10.1016/S0021-9258(18)43554-5
Calvo, M. S., Eyre, D. R. & Gundberg, C. M. Molecular basis and clinical application of biological markers of bone turnover. Endocr. Rev. 17, 333–368 (1996).
pubmed: 8854049
Gundberg, C. M. Biochemical markers of bone formation. Clin. Lab. Med. 20, 489–502 (2000).
pubmed: 10986617 doi: 10.1016/S0272-2712(18)30049-0
Hauschka, P. V. & Reid, M. L. Timed appearance of a calcium-binding protein containing γ-carboxyglutamic acid in developing chick bone. Dev. Biol. 65, 426–434 (1978).
pubmed: 680371 doi: 10.1016/0012-1606(78)90038-6
Ducy, P. et al. Increased bone formation in osteocalcin-deficient mice. Nature 382, 448–452 (1996).
pubmed: 8684484 doi: 10.1038/382448a0
Rammelt, S. et al. Osteocalcin enhances bone remodeling around hydroxyapatite/collagen composites. J. Biomed. Mater. 73, 284–294 (2005).
doi: 10.1002/jbm.a.30263
Chenu, C. et al. Osteocalcin induces chemotaxis, secretion of matrix proteins, and calcium-mediated intracellular signaling in human osteoclast-like cells. J. Cell Biol. 127, 1149–1158 (1994).
pubmed: 7962073 doi: 10.1083/jcb.127.4.1149
Bodine, P. & Komm, B. Evidence that conditionally immortalized human osteoblasts express an osteocalcin receptor. Bone 25, 535–543 (1999).
pubmed: 10574573 doi: 10.1016/S8756-3282(99)00213-6
Glowacki, J. & Lian, J. B. Impaired recruitment and differentiation of osteoclast progenitors by osteocalcin-deplete bone implants. Cell Differ. 21, 247–254 (1987).
pubmed: 3304665 doi: 10.1016/0045-6039(87)90479-9
Khrimian, L., Obri, A. & Karsenty, G. Modulation of cognition and anxiety-like behavior by bone remodeling. Mol. Metab. 6, 1610–1615 (2017).
pubmed: 29157601 pmcid: 5699916 doi: 10.1016/j.molmet.2017.10.001
Mera, P. et al. Osteocalcin signaling in myofibers is necessary and sufficient for optimum adaptation to exercise. Cell Metab. 23, 1078–1092 (2016).
pubmed: 27304508 pmcid: 4910629 doi: 10.1016/j.cmet.2016.05.004
Ingram, R. T. et al. Age-and gender-related changes in the distribution of osteocalcin in the extracellular matrix of normal male and female bone. possible involvement of osteocalcin in bone remodeling. J. Clin. Investig. 93, 989–997 (1994).
pubmed: 8132785 pmcid: 294016 doi: 10.1172/JCI117106
Bailey, S., Poundarik, A. A., Sroga, G. E. & Vashishth, D. Structural role of osteocalcin and its modification in bone fracture. Appl. Phys. Rev. 10, 011410 (2023).
pubmed: 36915902 pmcid: 9999293 doi: 10.1063/5.0102897
Hunter, G. K., Hauschka, P. V., Poole, R. A., Rosenberg, L. C. & Goldberg, H. A. Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins. Biochem. J. 317, 59–64 (1996).
pubmed: 8694787 pmcid: 1217486 doi: 10.1042/bj3170059
Denhardt, D. T. & Guo, X. Osteopontin: a protein with diverse functions. FASEB J. 7, 1475–1482 (1993).
pubmed: 8262332 doi: 10.1096/fasebj.7.15.8262332
Denhardt, D. T. & Noda, M. Osteopontin expression and function: role in bone remodeling. J. Cell. Biochem. 72, 92–102 (1998).
pubmed: 29345811 doi: 10.1002/(SICI)1097-4644(1998)72:30/31+<92::AID-JCB13>3.0.CO;2-A
Fantner, G. E. et al. Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat. Mater. 4, 612–616 (2005).
pubmed: 16025123 doi: 10.1038/nmat1428
Bertassoni, L. E. & Swain, M. V. The contribution of proteoglycans to the mechanical behavior of mineralized tissues. J. Mech. Behav. Biomed. Mater. 38, 91–104 (2014).
pubmed: 25043659 doi: 10.1016/j.jmbbm.2014.06.008
Sroga, G. E. & Vashishth, D. Phosphorylation of extracellular bone matrix proteins and its contribution to bone fragility. J. Bone Miner. Res. 33, 2214–2229 (2018).
pubmed: 30001467 doi: 10.1002/jbmr.3552
Everts, V. et al. The bone lining cell: its role in cleaning howship’s lacunae and initiating bone formation. J. Bone Miner. Res. 17, 77–90 (2002).
pubmed: 11771672 doi: 10.1359/jbmr.2002.17.1.77
Capulli, M., Paone, R. & Rucci, N. Osteoblast and osteocyte: games without frontiers. Arch. Biochem. Biophys. 561, 3–12 (2014).
pubmed: 24832390 doi: 10.1016/j.abb.2014.05.003
Blair, H. C. et al. Osteoblast differentiation and bone matrix formation in vivo and in vitro. Tissue Eng. Part B Rev. 23, 268–280 (2017).
pubmed: 27846781 pmcid: 5467150 doi: 10.1089/ten.teb.2016.0454
Michigami, T. & Ozono, K. Roles of phosphate in skeleton. Front. Endocrinol. 10, 180 (2019).
doi: 10.3389/fendo.2019.00180
Lin, X., Patil, S., Gao, Y.-G. & Qian, A. The bone extracellular matrix in bone formation and regeneration. Front. Pharmacol. 11, 757 (2020).
pubmed: 32528290 pmcid: 7264100 doi: 10.3389/fphar.2020.00757
Matic, I. et al. Quiescent bone lining cells are a major source of osteoblasts during adulthood. Stem Cells 34, 2930–2942 (2016).
pubmed: 27507737 doi: 10.1002/stem.2474
Uenaka, M. et al. Osteoblast-derived vesicles induce a switch from bone-formation to bone-resorption in vivo. Nat. Commun. 13, 1066 (2022).
pubmed: 35210428 pmcid: 8873258 doi: 10.1038/s41467-022-28673-2
Teitelbaum, S. L. Bone resorption by osteoclasts. Science 289, 1504–1508 (2000).
pubmed: 10968780 doi: 10.1126/science.289.5484.1504
Kearns, A. E., Khosla, S. & Kostenuik, P. J. Receptor activator of nuclear factor κb ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr. Rev. 29, 155–192 (2008).
pubmed: 18057140 doi: 10.1210/er.2007-0014
Lam, J. et al. Crystal structure of the trance/rankl cytokine reveals determinants of receptor-ligand specificity. J. Clin. Investig. 108, 971–979 (2001).
pubmed: 11581298 pmcid: 200957 doi: 10.1172/JCI13890
Hofbauer, L. C. & Heufelder, A. E. Role of receptor activator of nuclear factor-κb ligand and osteoprotegerin in bone cell biology. J. Mol. Med. 79, 243–253 (2001).
pubmed: 11485016 doi: 10.1007/s001090100226
Klein-Nulend, J., Bakker, A. D., Bacabac, R. G., Vatsa, A. & Weinbaum, S. Mechanosensation and transduction in osteocytes. Bone 54, 182–190 (2013).
pubmed: 23085083 doi: 10.1016/j.bone.2012.10.013
Starkebaum, W., Pollack, S. & Korostoff, E. Midroelectrode studies of stress-generated potentials in four-point bending of bone. J. Biomed. Mater. Res. 13, 729–751 (1979).
pubmed: 479219 doi: 10.1002/jbm.820130506
Zhang, D., Weinbaum, S. & Cowin, S. C. Electrical signal transmission in a bone cell network: the influence of a discrete gap junction. Ann. Biomed. Eng. 26, 644–659 (1998).
pubmed: 9662156 doi: 10.1114/1.123
Li, X. et al. Sclerostin binds to lrp5/6 and antagonizes canonical wnt signaling. J. Biol. Chem. 280, 19883–19887 (2005).
pubmed: 15778503 doi: 10.1074/jbc.M413274200
Martin, G. M. et al. Replicative life-span of cultivated human cells. Lab. Investig. 23, 86–92 (1970).
pubmed: 5431223
Calado, R. T. Telomeres and marrow failure. ASH Educ. Program Book 2009, 338–343 (2009).
Muller, M. Cellular senescence: molecular mechanisms, in vivo significance, and redox considerations. Antioxid. Redox Signal. 11, 59–98 (2009).
pubmed: 18976161 doi: 10.1089/ars.2008.2104
Kong, C. M., Lee, X. W. & Wang, X. Telomere shortening in human diseases. FEBS J. 280, 3180–3193 (2013).
pubmed: 23647631 doi: 10.1111/febs.12326
Vera, E., Jesus, B. B., Foronda, M., Flores, J. M. & Blasco, M. A. The rate of increase of short telomeres predicts longevity in mammals. Cell Rep. 2, 732–737 (2012).
pubmed: 23022483 doi: 10.1016/j.celrep.2012.08.023
Canela, A., Vera, E., Klatt, P. & Blasco, M. A. High-throughput telomere length quantification by fish and its application to human population studies. Proc. Natl Acad. Sci. 104, 5300–5305 (2007).
pubmed: 17369361 pmcid: 1828130 doi: 10.1073/pnas.0609367104
Blasco, M. A. Mice with bad ends: mouse models for the study of telomeres and telomerase in cancer and aging. EMBO J. 24, 1095–1103 (2005).
pubmed: 15775986 pmcid: 556402 doi: 10.1038/sj.emboj.7600598
Whittemore, K., Vera, E., Martínez-Nevado, E., Sanpera, C. & Blasco, M. A. Telomere shortening rate predicts species life span. Proc. Natl Acad. Sci. 116, 15122–15127 (2019).
pubmed: 31285335 pmcid: 6660761 doi: 10.1073/pnas.1902452116
Ye, Q. et al. Telomere length and chronological age across the human lifespan: a systematic review and meta-analysis of 414 study samples including 743,019 individuals. Ageing Res. Rev., 102031 (2023).
Wong, S. K., Ima-Nirwana, S. & Chin, K.-Y. Can telomere length predict bone health? a review of current evidence. Bosn. J. Basic Med. Sci. 20, 423 (2020).
pubmed: 32156247 pmcid: 7664788
Chen, J.-H., Liu, C., You, L. & Simmons, C. A. Boning up on Wolff’s law: mechanical regulation of the cells that make and maintain bone. J. Biomech. 43, 108–118 (2010).
pubmed: 19818443 doi: 10.1016/j.jbiomech.2009.09.016
Ma, Y. et al. Autophagy controls mesenchymal stem cell properties and senescence during bone aging. Aging Cell 17, 12709 (2018).
doi: 10.1111/acel.12709
Morgan, S., Poundarik, A. A. & Vashishth, D. Do non-collagenous proteins affect skeletal mechanical properties? Calcif.Tissue Int. 97, 281–291 (2015).
pubmed: 26048282 pmcid: 4527887 doi: 10.1007/s00223-015-0016-3
Szulc, P. & Seeman, E. Thinking inside and outside the envelopes of bone: dedicated to pdd. Osteoporos. Int. 20, 1281–1288 (2009).
pubmed: 19590836 doi: 10.1007/s00198-009-0994-y
Williams, B. O. & Insogna, K. L. Where Wnts went: the exploding field of lrp5 and lrp6 signaling in bone. J. Bone Miner. Res. 24, 171–178 (2009).
pubmed: 19072724 doi: 10.1359/jbmr.081235
Rauner, M., Sipos, W. & Pietschmann, P. Age-dependent wnt gene expression in bone and during the course of osteoblast differentiation. Age 30, 273–282 (2008).
pubmed: 19424851 pmcid: 2585653 doi: 10.1007/s11357-008-9069-9
Bennett, C. N. et al. Regulation of osteoblastogenesis and bone mass by wnt10b. Proc. Natl Acad. Sci. 102, 3324–3329 (2005).
pubmed: 15728361 pmcid: 552924 doi: 10.1073/pnas.0408742102
Almeida, M., Han, L., Martin-Millan, M., O’Brien, C. A. & Manolagas, S. C. Oxidative stress antagonizes wnt signaling in osteoblast precursors by diverting β-catenin from t cell factor-to forkhead box o-mediated transcription. J. Biol. Chem. 282, 27298–27305 (2007).
pubmed: 17623658 doi: 10.1074/jbc.M702811200
Manolagas, S. C. & Parfitt, A. M. What old means to bone. Trends Endocrinol. Metab. 21, 369–374 (2010).
pubmed: 20223679 pmcid: 2880220 doi: 10.1016/j.tem.2010.01.010
Tiede-Lewis, L. M. & Dallas, S. L. Changes in the osteocyte lacunocanalicular network with aging. Bone 122, 101–113 (2019).
pubmed: 30743014 pmcid: 6638547 doi: 10.1016/j.bone.2019.01.025
Weinbaum, S., Cowin, S. C. & Zeng, Y. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J. Biomech. 27, 339–360 (1994).
pubmed: 8051194 doi: 10.1016/0021-9290(94)90010-8
Tol, A. F. et al. The mechanoresponse of bone is closely related to the osteocyte lacunocanalicular network architecture. Proc. Natl Acad. Sci. 117, 32251–32259 (2020).
pubmed: 33288694 pmcid: 7768754 doi: 10.1073/pnas.2011504117
Hemmatian, H. et al. Age-related changes in female mouse cortical bone microporosity. Bone 113, 1–8 (2018).
pubmed: 29738854 doi: 10.1016/j.bone.2018.05.003
Rolvien, T. et al. Long-term immobilization in elderly females causes a specific pattern of cortical bone and osteocyte deterioration different from postmenopausal osteoporosis. J. Bone Miner. Res. 35, 1343–1351 (2020).
pubmed: 31999373 doi: 10.1002/jbmr.3970
Gautieri, A., Vesentini, S., Redaelli, A. & Ballarini, R. Modeling and measuring visco-elastic properties: from collagen molecules to collagen fibrils. Int. J. Non-Linear Mech. 56, 25–33 (2013). Soft Matter: a nonlinear continuum mechanics perspective.
doi: 10.1016/j.ijnonlinmec.2013.03.012
Orgel, J. P., Irving, T. C., Miller, A. & Wess, T. J. Microfibrillar structure of type i collagen in situ. Proc. Natl Acad. Sci. 103, 9001–9005 (2006).
pubmed: 16751282 pmcid: 1473175 doi: 10.1073/pnas.0502718103
Stockhausen, K. E. et al. Collagen fiber orientation is coupled with specific nano-compositional patterns in dark and bright osteons modulating their biomechanical properties. ACS Nano 15, 455–467 (2021).
pubmed: 33404232 doi: 10.1021/acsnano.0c04786
Grezzana, G. et al. Probing the role of bone lamellar patterns through collagen microarchitecture mapping, numerical modeling, and 3d-printing. Adv. Eng. Mater. 22, 2000387 (2020).
doi: 10.1002/adem.202000387
Chun, K.J. Bone densitometry. In: Seminars in Nuclear Medicine, Vol. 41, 220–228 Elsevier, (2011).
Knowles, N. K., Reeves, J. M. & Ferreira, L. M. Quantitative computed tomography (qct) derived bone mineral density (bmd) in finite element studies: a review of the literature. J. Exp. Orthop. 3, 1–16 (2016).
doi: 10.1186/s40634-016-0072-2
Mirzaali, M. J. et al. Determinants of bone damage: An ex-vivo study on porcine vertebrae. PLoS One 13, 0202210 (2018).
doi: 10.1371/journal.pone.0202210
Silva, B. C. et al. Trabecular bone score: a noninvasive analytical method based upon the dxa image. J. Bone Miner. Res. 29, 518–530 (2014).
pubmed: 24443324 doi: 10.1002/jbmr.2176
Shevroja, E., Cafarelli, F. P., Guglielmi, G. & Hans, D. Dxa parameters, trabecular bone score (tbs) and bone mineral density (bmd), in fracture risk prediction in endocrine-mediated secondary osteoporosis. Endocrine 74, 20–28 (2021).
pubmed: 34245432 pmcid: 8440280 doi: 10.1007/s12020-021-02806-x
Kanis, J. A., McCloskey, E., Johansson, H., Oden, A. & Leslie, W. D. Frax® with and without bone mineral density. Calcif. tissue Int. 90, 1–13 (2012).
pubmed: 22057815 doi: 10.1007/s00223-011-9544-7
Colombo, C. et al. A new finite element based parameter to predict bone fracture. PLoS One 14, 0225905 (2019).
doi: 10.1371/journal.pone.0225905
Shim, J., Iwaya, C., Ambrose, C. G., Suzuki, A. & Iwata, J. Micro-computed tomography assessment of bone structure in aging mice. Sci. Rep. 12, 8117 (2022).
pubmed: 35581227 pmcid: 9114112 doi: 10.1038/s41598-022-11965-4
Glatt, V., Canalis, E., Stadmeyer, L. & Bouxsein, M. L. Age-related changes in trabecular architecture differ in female and male c57bl/6j mice. J. Bone Miner. Res. 22, 1197–1207 (2007).
pubmed: 17488199 doi: 10.1359/jbmr.070507
Yadav, R. N. et al. Effect of ageing on microstructure and fracture behavior of cortical bone as determined by experiment and extended finite element method (xfem). Med. Eng. Phys. 93, 100–112 (2021).
pubmed: 34154770 doi: 10.1016/j.medengphy.2021.05.021
Bergh, J. et al. The clinical application of high-resolution peripheral computed tomography (hr-pqct) in adults: state of the art and future directions. Osteoporos. Int. 32, 1465–1485 (2021).
pubmed: 34023944 pmcid: 8376700 doi: 10.1007/s00198-021-05999-z
Hayes, W. C. & Carter, D. R. Postyield behavior of subchondral trabecular bone. J. Biomed. Mater. Res. 10, 537–544 (1976).
pubmed: 947917 doi: 10.1002/jbm.820100409
Evans, F. G. Mechanical properties and histology of cortical bone from younger and older men. Anat. Rec. 185, 1–11 (1976).
pubmed: 1267192 doi: 10.1002/ar.1091850102
Zimmermann, E. A. et al. Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales. Proc. Natl Acad. Sci. 108, 14416–14421 (2011).
pubmed: 21873221 pmcid: 3167515 doi: 10.1073/pnas.1107966108
Zimmermann, E. A. & Ritchie, R. O. Bone as a structural material. Adv. Healthc. Mater. 4, 1287–1304 (2015).
pubmed: 25865873 doi: 10.1002/adhm.201500070
Ritchie, R. et al. Measurement of the toughness of bone: a tutorial with special reference to small animal studies. Bone 43, 798–812 (2008).
pubmed: 18647665 pmcid: 3901162 doi: 10.1016/j.bone.2008.04.027
Zioupos, P. & Currey, J. Changes in the stiffness, strength, and toughness of human cortical bone with age. Bone 22, 57–66 (1998).
pubmed: 9437514 doi: 10.1016/S8756-3282(97)00228-7
Manilay, Z., Novitskaya, E., Sadovnikov, E. & McKittrick, J. A comparative study of young and mature bovine cortical bone. Acta Biomater. 9, 5280–5288 (2013).
pubmed: 22939926 doi: 10.1016/j.actbio.2012.08.040
Nalla, R. K., Kruzic, J. J., Kinney, J. H. & Ritchie, R. O. Effect of aging on the toughness of human cortical bone: evaluation by r-curves. Bone 35, 1240–1246 (2004).
pubmed: 15589205 doi: 10.1016/j.bone.2004.07.016
Torres, A. M. et al. Bone-inspired microarchitectures achieve enhanced fatigue life. Proc. Natl Acad. Sci. 116, 24457–24462 (2019).
pubmed: 31740616 pmcid: 6900498 doi: 10.1073/pnas.1905814116
Acevedo, C. et al. Contributions of material properties and structure to increased bone fragility for a given bone mass in the ucd-t2dm rat model of type 2 diabetes. J. Bone Miner. Res. 33, 1066–1075 (2018).
pubmed: 29342321 doi: 10.1002/jbmr.3393
Feynman, R.P. Plenty of room at the bottom. In: Proc. APS Annual Meeting (1959).
Mirzaali, M. J. et al. Mechanical properties of cortical bone and their relationships with age, gender, composition and microindentation properties in the elderly. Bone 93, 196–211 (2016).
pubmed: 26656135 doi: 10.1016/j.bone.2015.11.018
Kafantari, H., Kounadi, E., Fatouros, M., Milonakis, M. & Tzaphlidou, M. Structural alterations in rat skin and bone collagen fibrils induced by ovariectomy. Bone 26, 349–353 (2000).
pubmed: 10719277 doi: 10.1016/S8756-3282(99)00279-3
Milovanovic, P. et al. Osteocytic canalicular networks: morphological implications for altered mechanosensitivity. ACS Nano 7, 7542–7551 (2013).
pubmed: 23909715 doi: 10.1021/nn401360u

Auteurs

Linda Ravazzano (L)

Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy.

Graziana Colaianni (G)

Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Piazza Giulio Cesare 11, Bari, 70124, Italy.

Anna Tarakanova (A)

School of Mechanical, Aerospace, and Manufacturing Engineering, University of Connecticut, 191 Auditorium Road, Unit 3139, Storrs, 06269, CT, USA.
Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, CT, 06269, Storrs, USA.

Yu-Bai Xiao (YB)

School of Mechanical, Aerospace, and Manufacturing Engineering, University of Connecticut, 191 Auditorium Road, Unit 3139, Storrs, 06269, CT, USA.

Maria Grano (M)

Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Piazza Giulio Cesare 11, Bari, 70124, Italy.

Flavia Libonati (F)

Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy. flavia.libonati@unige.it.
Department of Mechanical, Energy, Management and Transport Engineering - DIME, University of Genova, Via all'Opera Pia 15, Genova, 16145, Italy. flavia.libonati@unige.it.

Classifications MeSH