Inhibition of WNT/β-catenin signalling during sex-specific gonadal differentiation is essential for normal human fetal testis development.
Ex vivo culture
Germ cell development
Human fetal gonads
Ovarian and testicular differentiation
Sex-specific development
Supporting cell lineages
WNT/β-catenin signalling
Journal
Cell communication and signaling : CCS
ISSN: 1478-811X
Titre abrégé: Cell Commun Signal
Pays: England
ID NLM: 101170464
Informations de publication
Date de publication:
15 Jun 2024
15 Jun 2024
Historique:
received:
14
12
2023
accepted:
06
06
2024
medline:
16
6
2024
pubmed:
16
6
2024
entrez:
15
6
2024
Statut:
epublish
Résumé
Sex-specific gonadal differentiation is directed by complex signalling promoting development in either male or female direction, while simultaneously inhibiting the opposite pathway. In mice, the WNT/β-catenin pathway promotes ovarian development and the importance of actively inhibiting this pathway to ensure normal testis development has been recognised. However, the implications of alterations in the tightly regulated WNT/β-catenin signalling during human fetal gonad development has not yet been examined in detail. Thus, the aim of this study was to examine the consequences of dysregulating the WNT/β-catenin signalling pathway in the supporting cell lineage during sex-specific human fetal gonad development using an established and extensively validated ex vivo culture model. Inhibition of WNT/β-catenin signalling in human fetal ovary cultures resulted in only minor effects, including reduced secretion of RSPO1 and reduced cell proliferation although this was not consistently found in all treatment groups. In contrast, promotion of WNT/β-catenin signalling in testes severely affected development and function. This included disrupted seminiferous cord structures, reduced cell proliferation, reduced expression of SOX9/AMH, reduced secretion of Inhibin B and AMH as well as loss of the germ cell population. Additionally, Leydig cell function was markedly impaired with reduced secretion of testosterone, androstenedione and INSL3. Together, this study suggests that dysregulated WNT/β-catenin signalling during human fetal gonad development severely impairs testicular development and function. Importantly, our study highlights the notion that sufficient inhibition of the opposite pathway during sex-specific gonadal differentiation is essential to ensure normal development and function also applies to human fetal gonads.
Identifiants
pubmed: 38879537
doi: 10.1186/s12964-024-01704-9
pii: 10.1186/s12964-024-01704-9
doi:
Substances chimiques
beta Catenin
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
330Informations de copyright
© 2024. The Author(s).
Références
Byskov AG. Differentiation of mammalian embryonic gonad. Physiol Rev. 1986;66:71–117.
pubmed: 3511481
doi: 10.1152/physrev.1986.66.1.71
Lin Y-T, Capel B. Cell fate commitment during mammalian sex determination. Curr Opin Genet Dev. 2015;32:144–52.
pubmed: 25841206
pmcid: 4470863
doi: 10.1016/j.gde.2015.03.003
Capel B. WOMEN IN REPRODUCTIVE SCIENCE: to be or not to be a testis. Reproduction. 2019;158:F101–11.
pubmed: 31265995
pmcid: 9945370
doi: 10.1530/REP-19-0151
Rotgers E, Jørgensen A, Yao HH-C. At the crossroads of fate-somatic cell lineage specification in the fetal gonad. Endocr Rev. 2018;39:739–59.
pubmed: 29771299
pmcid: 6173476
doi: 10.1210/er.2018-00010
Lundgaard Riis M, Jørgensen A. Deciphering sex-specific differentiation of human fetal gonads: insight from experimental models. Front Cell Dev Biol. 2022.
Mamsen LS, Brochner CB, Byskov AG, Mollgard K. The migration and loss of human primordial germ stem cells from the Hind gut epithelium towards the gonadal ridge. Int J Dev Biol. 2012;56:771–8.
pubmed: 23417399
doi: 10.1387/ijdb.120202lm
Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths BL, Smith MJ, et al. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature. 1990;346:240–4.
pubmed: 1695712
doi: 10.1038/346240a0
Hanley NA, Hagan DM, Clement-Jones M, Ball SG, Strachan T, Salas-Cortés L, et al. SRY, SOX9, and DAX1 expression patterns during human sex determination and gonadal development. Mech Dev. 2000;91:403–7.
pubmed: 10704874
doi: 10.1016/S0925-4773(99)00307-X
Schmahl J, Kim Y, Colvin JS, Ornitz DM, Capel B. Fgf9 induces proliferation and nuclear localization of FGFR2 in sertoli precursors during male sex determination. Development. 2004;131:3627–36.
pubmed: 15229180
doi: 10.1242/dev.01239
Kim Y, Bingham N, Sekido R, Parker KL, Lovell-Badge R, Capel B. Fibroblast growth factor receptor 2 regulates proliferation and sertoli differentiation during male sex determination. Proc Natl Acad Sci U S A. 2007;104:16558–63.
pubmed: 17940049
pmcid: 2034251
doi: 10.1073/pnas.0702581104
Bagheri-Fam S, Ono M, Li L, Zhao L, Ryan J, Lai R, et al. FGFR2 mutation in 46,XY sex reversal with craniosynostosis. Hum Mol Genet. 2015;24:6699–710.
pubmed: 26362256
pmcid: 4634374
doi: 10.1093/hmg/ddv374
Jørgensen A, Rajpert-De Meyts E. Regulation of meiotic entry and gonadal sex differentiation in the human: normal and disrupted signaling. Biomol Concepts. 2014;5:331–41.
pubmed: 25372763
doi: 10.1515/bmc-2014-0014
Mäkelä J-A, Koskenniemi JJ, Virtanen HE, Toppari J. Testis Development. Endocr Rev. 2019;40:857–905.
pubmed: 30590466
doi: 10.1210/er.2018-00140
Maatouk DM, DiNapoli L, Alvers A, Parker KL, Taketo MM, Capel B. Stabilization of beta-catenin in XY gonads causes male-to-female sex-reversal. Hum Mol Genet. 2008;17:2949–55.
pubmed: 18617533
pmcid: 2536503
doi: 10.1093/hmg/ddn193
Bernard P, Ryan J, Sim H, Czech DP, Sinclair AH, Koopman P, et al. Wnt signaling in ovarian development inhibits Sf1 activation of Sox9 via the Tesco enhancer. Endocrinology. 2012;153:901–12.
pubmed: 22128028
doi: 10.1210/en.2011-1347
Chassot A-A, Ranc F, Gregoire EP, Roepers-Gajadien HL, Taketo MM, Camerino G, et al. Activation of beta-catenin signaling by Rspo1 controls differentiation of the mammalian ovary. Hum Mol Genet. 2008;17:1264–77.
pubmed: 18250098
doi: 10.1093/hmg/ddn016
Chassot A-A, Gregoire EP, Lavery R, Taketo MM, de Rooij DG, Adams IR, et al. RSPO1/β-catenin signaling pathway regulates oogonia differentiation and entry into meiosis in the mouse fetal ovary. PLoS ONE. 2011;6:e25641.
pubmed: 21991325
pmcid: 3185015
doi: 10.1371/journal.pone.0025641
Tomizuka K, Horikoshi K, Kitada R, Sugawara Y, Iba Y, Kojima A, et al. R-spondin1 plays an essential role in ovarian development through positively regulating Wnt-4 signaling. Hum Mol Genet. 2008;17:1278–91.
pubmed: 18250097
doi: 10.1093/hmg/ddn036
Gustin SE, Hogg K, Stringer JM, Rastetter RH, Pelosi E, Miles DC, et al. WNT/β-catenin and p27/FOXL2 differentially regulate supporting cell proliferation in the developing ovary. Dev Biol. 2016;412:250–60.
pubmed: 26939755
doi: 10.1016/j.ydbio.2016.02.024
Tang F, Richardson N, Albina A, Chaboissier M-C, Perea-Gomez A. Mouse Gonad Development in the absence of the Pro-ovary factor WNT4 and the Pro-testis factor SOX9. Cells. 2020;9.
Gregoire EP, De Cian M-C, Migale R, Perea-Gomez A, Schaub S, Bellido-Carreras N, et al. The -KTS splice variant of WT1 is essential for ovarian determination in mice. Science. 2023;382:600–6.
pubmed: 37917714
pmcid: 7615308
doi: 10.1126/science.add8831
Stamos JL, Weis WI. The β-catenin destruction complex. Cold Spring Harb Perspect Biol. 2013;5:a007898–007898.
pubmed: 23169527
pmcid: 3579403
doi: 10.1101/cshperspect.a007898
Gomes NL, Chetty T, Jorgensen A, Mitchell RT. Disorders of Sex Development-Novel regulators, impacts on fertility, and options for Fertility Preservation. Int J Mol Sci. 2020;21.
Parma P, Radi O, Vidal V, Chaboissier MC, Dellambra E, Valentini S, et al. R-spondin1 is essential in sex determination, skin differentiation and malignancy. Nat Genet. 2006;38:1304–9.
pubmed: 17041600
doi: 10.1038/ng1907
Biason-Lauber A, Konrad D, Navratil F, Schoenle EJ. A WNT4 mutation associated with Müllerian-duct regression and virilization in a 46,XX woman. N Engl J Med. 2004;351:792–8.
pubmed: 15317892
doi: 10.1056/NEJMoa040533
Philibert P, Biason-Lauber A, Gueorguieva I, Stuckens C, Pienkowski C, Lebon-Labich B, et al. Molecular analysis of WNT4 gene in four adolescent girls with mullerian duct abnormality and hyperandrogenism (atypical Mayer-Rokitansky-Küster-Hauser syndrome). Fertil Steril. 2011;95:2683–6.
pubmed: 21377155
doi: 10.1016/j.fertnstert.2011.01.152
Harris A, Siggers P, Corrochano S, Warr N, Sagar D, Grimes DT, et al. ZNRF3 functions in mammalian sex determination by inhibiting canonical WNT signaling. Proc Natl Acad Sci U S A. 2018;115:5474–9.
pubmed: 29735715
pmcid: 6003506
doi: 10.1073/pnas.1801223115
Jørgensen A, Macdonald J, Nielsen JE, Kilcoyne KR, Perlman S, Lundvall L, et al. Nodal signaling regulates germ cell development and establishment of Seminiferous Cords in the human fetal testis. Cell Rep. 2018;25:1924–e19374.
pubmed: 30428358
doi: 10.1016/j.celrep.2018.10.064
Harpelunde Poulsen K, Nielsen JE, Frederiksen H, Melau C, Juul Hare K, Langhoff Thuesen L, et al. Dysregulation of FGFR signalling by a selective inhibitor reduces germ cell survival in human fetal gonads of both sexes and alters the somatic niche in fetal testes. Hum Reprod. 2019;34:2228–43.
pubmed: 31734698
pmcid: 6994936
doi: 10.1093/humrep/dez191
Jorgensen A, Nielsen JE, Perlman S, Lundvall L, Mitchell RT, Juul A, et al. Ex vivo culture of human fetal gonads: manipulation of meiosis signalling by retinoic acid treatment disrupts testis development. Hum Reprod. 2015;30:2351–63.
pubmed: 26251460
doi: 10.1093/humrep/dev194
Evtouchenko L, Studer L, Spenger C, Dreher E, Seiler RW. A mathematical model for the estimation of human embryonic and fetal age. Cell Transpl. 1996;5:453–64.
doi: 10.1177/096368979600500404
Gustin SE, Stringer JM, Hogg K, Sinclair AH, Western PS. FGF9, activin and TGFβ promote testicular characteristics in an XX gonad organ culture model. Reproduction. 2016;152:529–43.
pubmed: 27495231
doi: 10.1530/REP-16-0293
Lundgaard Riis M, Nielsen JE, Hagen CP, Rajpert-De Meyts E, Græm N, Jørgensen A, et al. Accelerated loss of oogonia and impaired folliculogenesis in females with Turner syndrome start during early fetal development. Hum Reprod. 2021;36:2992–3002.
pubmed: 34568940
doi: 10.1093/humrep/deab210
Renier N, Adams EL, Kirst C, Wu Z, Azevedo R, Kohl J, et al. Mapping of brain activity by automated volume analysis of Immediate Early genes. Cell. 2016;165:1789–802.
pubmed: 27238021
pmcid: 4912438
doi: 10.1016/j.cell.2016.05.007
Renier N, Wu Z, Simon DJ, Yang J, Ariel P, Tessier-Lavigne M. iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell. 2014;159:896–910.
pubmed: 25417164
doi: 10.1016/j.cell.2014.10.010
Belle M, Godefroy D, Dominici C, Heitz-Marchaland C, Zelina P, Hellal F, et al. A simple method for 3D analysis of immunolabeled axonal tracts in a transparent nervous system. Cell Rep. 2014;9:1191–201.
pubmed: 25456121
doi: 10.1016/j.celrep.2014.10.037
Belle M, Godefroy D, Couly G, Malone SA, Collier F, Giacobini P, et al. Tridimensional Visualization and analysis of Early Human Development. Cell. 2017;169:161–e17312.
pubmed: 28340341
doi: 10.1016/j.cell.2017.03.008
Søeborg T, Frederiksen H, Johannsen TH, Andersson A-M, Juul A. Isotope-dilution TurboFlow-LC-MS/MS method for simultaneous quantification of ten steroid metabolites in serum. Clin Chim Acta. 2017;468:180–6.
pubmed: 28263736
doi: 10.1016/j.cca.2017.03.002
Albrethsen J, Frederiksen H, Andersson A-M, Anand-Ivell R, Nordkap L, Bang AK, et al. Development and validation of a mass spectrometry-based assay for quantification of insulin-like factor 3 in human serum. Clin Chem Lab Med. 2018;56:1913–20.
pubmed: 29847312
doi: 10.1515/cclm-2018-0171
Vainio S, Heikkilä M, Kispert A, Chin N, McMahon AP. Female development in mammals is regulated by Wnt-4 signalling. Nature. 1999;397:405–9.
pubmed: 9989404
doi: 10.1038/17068
Clark AM, Garland KK, Russell LD. Desert Hedgehog (dhh) gene is required in the mouse testis for formation of adult-type Leydig cells and normal development of Peritubular cells and Seminiferous Tubules. Biol Reprod. 2000;63:1825–38.
pubmed: 11090455
doi: 10.1095/biolreprod63.6.1825
Yao HH-C, Capel B. Disruption of testis cords by cyclopamine or forskolin reveals independent cellular pathways in testis organogenesis. Dev Biol. 2002;246:356–65.
pubmed: 12051821
pmcid: 4073602
doi: 10.1006/dbio.2002.0663
Rothacker KM, Ayers KL, Tang D, Joshi K, van den Bergen JA, Robevska G et al. A novel, homozygous mutation in desert hedgehog (DHH) in a 46, XY patient with dysgenetic testes presenting with primary amenorrhoea: a case report. Int J Pediatr Endocrinol. 2018. p. 2.
Hakkarainen J, Zhang F-P, Jokela H, Mayerhofer A, Behr R, Cisneros-Montalvo S, et al. Hydroxysteroid (17β) dehydrogenase 1 expressed by sertoli cells contributes to steroid synthesis and is required for male fertility. FASEB J. 2018;32:3229–41.
pubmed: 29401623
doi: 10.1096/fj.201700921R
Shima Y, Miyabayashi K, Haraguchi S, Arakawa T, Otake H, Baba T, et al. Contribution of Leydig and sertoli cells to testosterone production in mouse fetal testes. Mol Endocrinol. 2013;27:63–73.
pubmed: 23125070
doi: 10.1210/me.2012-1256
O’Shaughnessy PJ, Baker PJ, Heikkilä M, Vainio S, McMahon AP. Localization of 17β-Hydroxysteroid Dehydrogenase/17-Ketosteroid reductase isoform expression in the developing mouse Testis—Androstenedione is the major androgen secreted by Fetal/Neonatal Leydig Cells*. Endocrinology. 2000;141:2631–7.
pubmed: 10875268
doi: 10.1210/endo.141.7.7545
Tang F, Wang R, Liu X, Li L, Yang M, Yong J, et al. Dissecting gonadal cell lineage specification and sex determination during human development using a single-cell transcriptomics approach. Research Square; 2020.
Bay K, Virtanen HE, Hartung S, Ivell R, Main KM, Skakkebaek NE, et al. Insulin-like factor 3 levels in cord blood and serum from children: effects of age, postnatal hypothalamic-pituitary-gonadal axis activation, and cryptorchidism. J Clin Endocrinol Metab. 2007;92:4020–7.
pubmed: 17666478
doi: 10.1210/jc.2007-0974
Mandel H, Shemer R, Borochowitz ZU, Okopnik M, Knopf C, Indelman M, et al. SERKAL syndrome: an autosomal-recessive disorder caused by a loss-of-function mutation in WNT4. Am J Hum Genet. 2008;82:39–47.
pubmed: 18179883
pmcid: 2253972
doi: 10.1016/j.ajhg.2007.08.005
Tomaselli S, Megiorni F, De Bernardo C, Felici A, Marrocco G, Maggiulli G, et al. Syndromic true hermaphroditism due to an R-spondin1 (RSPO1) homozygous mutation. Hum Mutat. 2008;29:220–6.
pubmed: 18085567
doi: 10.1002/humu.20665
Harris SE, Chand AL, Winship IM, Gersak K, Aittomäki K, Shelling AN. Identification of novel mutations in FOXL2 associated with premature ovarian failure. Mol Hum Reprod. 2002;8:729–33.
pubmed: 12149404
doi: 10.1093/molehr/8.8.729
Garcia-Alonso L, Lorenzi V, Mazzeo CI, Alves-Lopes JP, Roberts K, Sancho-Serra C, et al. Single-cell roadmap of human gonadal development. Nature. 2022;607:540–7.
pubmed: 35794482
pmcid: 9300467
doi: 10.1038/s41586-022-04918-4
Philibert P, Biason-Lauber A, Rouzier R, Pienkowski C, Paris F, Konrad D, et al. Identification and functional analysis of a new WNT4 gene mutation among 28 adolescent girls with primary amenorrhea and müllerian duct abnormalities: a French collaborative study. J Clin Endocrinol Metab. 2008;93:895–900.
pubmed: 18182450
doi: 10.1210/jc.2007-2023
Biason-Lauber A, De Filippo G, Konrad D, Scarano G, Nazzaro A, Schoenle EJ. WNT4 deficiency–a clinical phenotype distinct from the classic Mayer-Rokitansky-Kuster-Hauser syndrome: a case report. Hum Reprod. 2007;22:224–9.
pubmed: 16959810
doi: 10.1093/humrep/del360