Inhibition of WNT/β-catenin signalling during sex-specific gonadal differentiation is essential for normal human fetal testis development.

Ex vivo culture Germ cell development Human fetal gonads Ovarian and testicular differentiation Sex-specific development Supporting cell lineages WNT/β-catenin signalling

Journal

Cell communication and signaling : CCS
ISSN: 1478-811X
Titre abrégé: Cell Commun Signal
Pays: England
ID NLM: 101170464

Informations de publication

Date de publication:
15 Jun 2024
Historique:
received: 14 12 2023
accepted: 06 06 2024
medline: 16 6 2024
pubmed: 16 6 2024
entrez: 15 6 2024
Statut: epublish

Résumé

Sex-specific gonadal differentiation is directed by complex signalling promoting development in either male or female direction, while simultaneously inhibiting the opposite pathway. In mice, the WNT/β-catenin pathway promotes ovarian development and the importance of actively inhibiting this pathway to ensure normal testis development has been recognised. However, the implications of alterations in the tightly regulated WNT/β-catenin signalling during human fetal gonad development has not yet been examined in detail. Thus, the aim of this study was to examine the consequences of dysregulating the WNT/β-catenin signalling pathway in the supporting cell lineage during sex-specific human fetal gonad development using an established and extensively validated ex vivo culture model. Inhibition of WNT/β-catenin signalling in human fetal ovary cultures resulted in only minor effects, including reduced secretion of RSPO1 and reduced cell proliferation although this was not consistently found in all treatment groups. In contrast, promotion of WNT/β-catenin signalling in testes severely affected development and function. This included disrupted seminiferous cord structures, reduced cell proliferation, reduced expression of SOX9/AMH, reduced secretion of Inhibin B and AMH as well as loss of the germ cell population. Additionally, Leydig cell function was markedly impaired with reduced secretion of testosterone, androstenedione and INSL3. Together, this study suggests that dysregulated WNT/β-catenin signalling during human fetal gonad development severely impairs testicular development and function. Importantly, our study highlights the notion that sufficient inhibition of the opposite pathway during sex-specific gonadal differentiation is essential to ensure normal development and function also applies to human fetal gonads.

Identifiants

pubmed: 38879537
doi: 10.1186/s12964-024-01704-9
pii: 10.1186/s12964-024-01704-9
doi:

Substances chimiques

beta Catenin 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

330

Informations de copyright

© 2024. The Author(s).

Références

Byskov AG. Differentiation of mammalian embryonic gonad. Physiol Rev. 1986;66:71–117.
pubmed: 3511481 doi: 10.1152/physrev.1986.66.1.71
Lin Y-T, Capel B. Cell fate commitment during mammalian sex determination. Curr Opin Genet Dev. 2015;32:144–52.
pubmed: 25841206 pmcid: 4470863 doi: 10.1016/j.gde.2015.03.003
Capel B. WOMEN IN REPRODUCTIVE SCIENCE: to be or not to be a testis. Reproduction. 2019;158:F101–11.
pubmed: 31265995 pmcid: 9945370 doi: 10.1530/REP-19-0151
Rotgers E, Jørgensen A, Yao HH-C. At the crossroads of fate-somatic cell lineage specification in the fetal gonad. Endocr Rev. 2018;39:739–59.
pubmed: 29771299 pmcid: 6173476 doi: 10.1210/er.2018-00010
Lundgaard Riis M, Jørgensen A. Deciphering sex-specific differentiation of human fetal gonads: insight from experimental models. Front Cell Dev Biol. 2022.
Mamsen LS, Brochner CB, Byskov AG, Mollgard K. The migration and loss of human primordial germ stem cells from the Hind gut epithelium towards the gonadal ridge. Int J Dev Biol. 2012;56:771–8.
pubmed: 23417399 doi: 10.1387/ijdb.120202lm
Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths BL, Smith MJ, et al. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature. 1990;346:240–4.
pubmed: 1695712 doi: 10.1038/346240a0
Hanley NA, Hagan DM, Clement-Jones M, Ball SG, Strachan T, Salas-Cortés L, et al. SRY, SOX9, and DAX1 expression patterns during human sex determination and gonadal development. Mech Dev. 2000;91:403–7.
pubmed: 10704874 doi: 10.1016/S0925-4773(99)00307-X
Schmahl J, Kim Y, Colvin JS, Ornitz DM, Capel B. Fgf9 induces proliferation and nuclear localization of FGFR2 in sertoli precursors during male sex determination. Development. 2004;131:3627–36.
pubmed: 15229180 doi: 10.1242/dev.01239
Kim Y, Bingham N, Sekido R, Parker KL, Lovell-Badge R, Capel B. Fibroblast growth factor receptor 2 regulates proliferation and sertoli differentiation during male sex determination. Proc Natl Acad Sci U S A. 2007;104:16558–63.
pubmed: 17940049 pmcid: 2034251 doi: 10.1073/pnas.0702581104
Bagheri-Fam S, Ono M, Li L, Zhao L, Ryan J, Lai R, et al. FGFR2 mutation in 46,XY sex reversal with craniosynostosis. Hum Mol Genet. 2015;24:6699–710.
pubmed: 26362256 pmcid: 4634374 doi: 10.1093/hmg/ddv374
Jørgensen A, Rajpert-De Meyts E. Regulation of meiotic entry and gonadal sex differentiation in the human: normal and disrupted signaling. Biomol Concepts. 2014;5:331–41.
pubmed: 25372763 doi: 10.1515/bmc-2014-0014
Mäkelä J-A, Koskenniemi JJ, Virtanen HE, Toppari J. Testis Development. Endocr Rev. 2019;40:857–905.
pubmed: 30590466 doi: 10.1210/er.2018-00140
Maatouk DM, DiNapoli L, Alvers A, Parker KL, Taketo MM, Capel B. Stabilization of beta-catenin in XY gonads causes male-to-female sex-reversal. Hum Mol Genet. 2008;17:2949–55.
pubmed: 18617533 pmcid: 2536503 doi: 10.1093/hmg/ddn193
Bernard P, Ryan J, Sim H, Czech DP, Sinclair AH, Koopman P, et al. Wnt signaling in ovarian development inhibits Sf1 activation of Sox9 via the Tesco enhancer. Endocrinology. 2012;153:901–12.
pubmed: 22128028 doi: 10.1210/en.2011-1347
Chassot A-A, Ranc F, Gregoire EP, Roepers-Gajadien HL, Taketo MM, Camerino G, et al. Activation of beta-catenin signaling by Rspo1 controls differentiation of the mammalian ovary. Hum Mol Genet. 2008;17:1264–77.
pubmed: 18250098 doi: 10.1093/hmg/ddn016
Chassot A-A, Gregoire EP, Lavery R, Taketo MM, de Rooij DG, Adams IR, et al. RSPO1/β-catenin signaling pathway regulates oogonia differentiation and entry into meiosis in the mouse fetal ovary. PLoS ONE. 2011;6:e25641.
pubmed: 21991325 pmcid: 3185015 doi: 10.1371/journal.pone.0025641
Tomizuka K, Horikoshi K, Kitada R, Sugawara Y, Iba Y, Kojima A, et al. R-spondin1 plays an essential role in ovarian development through positively regulating Wnt-4 signaling. Hum Mol Genet. 2008;17:1278–91.
pubmed: 18250097 doi: 10.1093/hmg/ddn036
Gustin SE, Hogg K, Stringer JM, Rastetter RH, Pelosi E, Miles DC, et al. WNT/β-catenin and p27/FOXL2 differentially regulate supporting cell proliferation in the developing ovary. Dev Biol. 2016;412:250–60.
pubmed: 26939755 doi: 10.1016/j.ydbio.2016.02.024
Tang F, Richardson N, Albina A, Chaboissier M-C, Perea-Gomez A. Mouse Gonad Development in the absence of the Pro-ovary factor WNT4 and the Pro-testis factor SOX9. Cells. 2020;9.
Gregoire EP, De Cian M-C, Migale R, Perea-Gomez A, Schaub S, Bellido-Carreras N, et al. The -KTS splice variant of WT1 is essential for ovarian determination in mice. Science. 2023;382:600–6.
pubmed: 37917714 pmcid: 7615308 doi: 10.1126/science.add8831
Stamos JL, Weis WI. The β-catenin destruction complex. Cold Spring Harb Perspect Biol. 2013;5:a007898–007898.
pubmed: 23169527 pmcid: 3579403 doi: 10.1101/cshperspect.a007898
Gomes NL, Chetty T, Jorgensen A, Mitchell RT. Disorders of Sex Development-Novel regulators, impacts on fertility, and options for Fertility Preservation. Int J Mol Sci. 2020;21.
Parma P, Radi O, Vidal V, Chaboissier MC, Dellambra E, Valentini S, et al. R-spondin1 is essential in sex determination, skin differentiation and malignancy. Nat Genet. 2006;38:1304–9.
pubmed: 17041600 doi: 10.1038/ng1907
Biason-Lauber A, Konrad D, Navratil F, Schoenle EJ. A WNT4 mutation associated with Müllerian-duct regression and virilization in a 46,XX woman. N Engl J Med. 2004;351:792–8.
pubmed: 15317892 doi: 10.1056/NEJMoa040533
Philibert P, Biason-Lauber A, Gueorguieva I, Stuckens C, Pienkowski C, Lebon-Labich B, et al. Molecular analysis of WNT4 gene in four adolescent girls with mullerian duct abnormality and hyperandrogenism (atypical Mayer-Rokitansky-Küster-Hauser syndrome). Fertil Steril. 2011;95:2683–6.
pubmed: 21377155 doi: 10.1016/j.fertnstert.2011.01.152
Harris A, Siggers P, Corrochano S, Warr N, Sagar D, Grimes DT, et al. ZNRF3 functions in mammalian sex determination by inhibiting canonical WNT signaling. Proc Natl Acad Sci U S A. 2018;115:5474–9.
pubmed: 29735715 pmcid: 6003506 doi: 10.1073/pnas.1801223115
Jørgensen A, Macdonald J, Nielsen JE, Kilcoyne KR, Perlman S, Lundvall L, et al. Nodal signaling regulates germ cell development and establishment of Seminiferous Cords in the human fetal testis. Cell Rep. 2018;25:1924–e19374.
pubmed: 30428358 doi: 10.1016/j.celrep.2018.10.064
Harpelunde Poulsen K, Nielsen JE, Frederiksen H, Melau C, Juul Hare K, Langhoff Thuesen L, et al. Dysregulation of FGFR signalling by a selective inhibitor reduces germ cell survival in human fetal gonads of both sexes and alters the somatic niche in fetal testes. Hum Reprod. 2019;34:2228–43.
pubmed: 31734698 pmcid: 6994936 doi: 10.1093/humrep/dez191
Jorgensen A, Nielsen JE, Perlman S, Lundvall L, Mitchell RT, Juul A, et al. Ex vivo culture of human fetal gonads: manipulation of meiosis signalling by retinoic acid treatment disrupts testis development. Hum Reprod. 2015;30:2351–63.
pubmed: 26251460 doi: 10.1093/humrep/dev194
Evtouchenko L, Studer L, Spenger C, Dreher E, Seiler RW. A mathematical model for the estimation of human embryonic and fetal age. Cell Transpl. 1996;5:453–64.
doi: 10.1177/096368979600500404
Gustin SE, Stringer JM, Hogg K, Sinclair AH, Western PS. FGF9, activin and TGFβ promote testicular characteristics in an XX gonad organ culture model. Reproduction. 2016;152:529–43.
pubmed: 27495231 doi: 10.1530/REP-16-0293
Lundgaard Riis M, Nielsen JE, Hagen CP, Rajpert-De Meyts E, Græm N, Jørgensen A, et al. Accelerated loss of oogonia and impaired folliculogenesis in females with Turner syndrome start during early fetal development. Hum Reprod. 2021;36:2992–3002.
pubmed: 34568940 doi: 10.1093/humrep/deab210
Renier N, Adams EL, Kirst C, Wu Z, Azevedo R, Kohl J, et al. Mapping of brain activity by automated volume analysis of Immediate Early genes. Cell. 2016;165:1789–802.
pubmed: 27238021 pmcid: 4912438 doi: 10.1016/j.cell.2016.05.007
Renier N, Wu Z, Simon DJ, Yang J, Ariel P, Tessier-Lavigne M. iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell. 2014;159:896–910.
pubmed: 25417164 doi: 10.1016/j.cell.2014.10.010
Belle M, Godefroy D, Dominici C, Heitz-Marchaland C, Zelina P, Hellal F, et al. A simple method for 3D analysis of immunolabeled axonal tracts in a transparent nervous system. Cell Rep. 2014;9:1191–201.
pubmed: 25456121 doi: 10.1016/j.celrep.2014.10.037
Belle M, Godefroy D, Couly G, Malone SA, Collier F, Giacobini P, et al. Tridimensional Visualization and analysis of Early Human Development. Cell. 2017;169:161–e17312.
pubmed: 28340341 doi: 10.1016/j.cell.2017.03.008
Søeborg T, Frederiksen H, Johannsen TH, Andersson A-M, Juul A. Isotope-dilution TurboFlow-LC-MS/MS method for simultaneous quantification of ten steroid metabolites in serum. Clin Chim Acta. 2017;468:180–6.
pubmed: 28263736 doi: 10.1016/j.cca.2017.03.002
Albrethsen J, Frederiksen H, Andersson A-M, Anand-Ivell R, Nordkap L, Bang AK, et al. Development and validation of a mass spectrometry-based assay for quantification of insulin-like factor 3 in human serum. Clin Chem Lab Med. 2018;56:1913–20.
pubmed: 29847312 doi: 10.1515/cclm-2018-0171
Vainio S, Heikkilä M, Kispert A, Chin N, McMahon AP. Female development in mammals is regulated by Wnt-4 signalling. Nature. 1999;397:405–9.
pubmed: 9989404 doi: 10.1038/17068
Clark AM, Garland KK, Russell LD. Desert Hedgehog (dhh) gene is required in the mouse testis for formation of adult-type Leydig cells and normal development of Peritubular cells and Seminiferous Tubules. Biol Reprod. 2000;63:1825–38.
pubmed: 11090455 doi: 10.1095/biolreprod63.6.1825
Yao HH-C, Capel B. Disruption of testis cords by cyclopamine or forskolin reveals independent cellular pathways in testis organogenesis. Dev Biol. 2002;246:356–65.
pubmed: 12051821 pmcid: 4073602 doi: 10.1006/dbio.2002.0663
Rothacker KM, Ayers KL, Tang D, Joshi K, van den Bergen JA, Robevska G et al. A novel, homozygous mutation in desert hedgehog (DHH) in a 46, XY patient with dysgenetic testes presenting with primary amenorrhoea: a case report. Int J Pediatr Endocrinol. 2018. p. 2.
Hakkarainen J, Zhang F-P, Jokela H, Mayerhofer A, Behr R, Cisneros-Montalvo S, et al. Hydroxysteroid (17β) dehydrogenase 1 expressed by sertoli cells contributes to steroid synthesis and is required for male fertility. FASEB J. 2018;32:3229–41.
pubmed: 29401623 doi: 10.1096/fj.201700921R
Shima Y, Miyabayashi K, Haraguchi S, Arakawa T, Otake H, Baba T, et al. Contribution of Leydig and sertoli cells to testosterone production in mouse fetal testes. Mol Endocrinol. 2013;27:63–73.
pubmed: 23125070 doi: 10.1210/me.2012-1256
O’Shaughnessy PJ, Baker PJ, Heikkilä M, Vainio S, McMahon AP. Localization of 17β-Hydroxysteroid Dehydrogenase/17-Ketosteroid reductase isoform expression in the developing mouse Testis—Androstenedione is the major androgen secreted by Fetal/Neonatal Leydig Cells*. Endocrinology. 2000;141:2631–7.
pubmed: 10875268 doi: 10.1210/endo.141.7.7545
Tang F, Wang R, Liu X, Li L, Yang M, Yong J, et al. Dissecting gonadal cell lineage specification and sex determination during human development using a single-cell transcriptomics approach. Research Square; 2020.
Bay K, Virtanen HE, Hartung S, Ivell R, Main KM, Skakkebaek NE, et al. Insulin-like factor 3 levels in cord blood and serum from children: effects of age, postnatal hypothalamic-pituitary-gonadal axis activation, and cryptorchidism. J Clin Endocrinol Metab. 2007;92:4020–7.
pubmed: 17666478 doi: 10.1210/jc.2007-0974
Mandel H, Shemer R, Borochowitz ZU, Okopnik M, Knopf C, Indelman M, et al. SERKAL syndrome: an autosomal-recessive disorder caused by a loss-of-function mutation in WNT4. Am J Hum Genet. 2008;82:39–47.
pubmed: 18179883 pmcid: 2253972 doi: 10.1016/j.ajhg.2007.08.005
Tomaselli S, Megiorni F, De Bernardo C, Felici A, Marrocco G, Maggiulli G, et al. Syndromic true hermaphroditism due to an R-spondin1 (RSPO1) homozygous mutation. Hum Mutat. 2008;29:220–6.
pubmed: 18085567 doi: 10.1002/humu.20665
Harris SE, Chand AL, Winship IM, Gersak K, Aittomäki K, Shelling AN. Identification of novel mutations in FOXL2 associated with premature ovarian failure. Mol Hum Reprod. 2002;8:729–33.
pubmed: 12149404 doi: 10.1093/molehr/8.8.729
Garcia-Alonso L, Lorenzi V, Mazzeo CI, Alves-Lopes JP, Roberts K, Sancho-Serra C, et al. Single-cell roadmap of human gonadal development. Nature. 2022;607:540–7.
pubmed: 35794482 pmcid: 9300467 doi: 10.1038/s41586-022-04918-4
Philibert P, Biason-Lauber A, Rouzier R, Pienkowski C, Paris F, Konrad D, et al. Identification and functional analysis of a new WNT4 gene mutation among 28 adolescent girls with primary amenorrhea and müllerian duct abnormalities: a French collaborative study. J Clin Endocrinol Metab. 2008;93:895–900.
pubmed: 18182450 doi: 10.1210/jc.2007-2023
Biason-Lauber A, De Filippo G, Konrad D, Scarano G, Nazzaro A, Schoenle EJ. WNT4 deficiency–a clinical phenotype distinct from the classic Mayer-Rokitansky-Kuster-Hauser syndrome: a case report. Hum Reprod. 2007;22:224–9.
pubmed: 16959810 doi: 10.1093/humrep/del360

Auteurs

Malene Lundgaard Riis (M)

Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
International centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.

Gaspard Delpouve (G)

Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, University of Lille, CHU Lille, UMR-S 1172, FHU 1000 days for health, Inserm, Lille, France.

John E Nielsen (JE)

Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
International centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.

Cecilie Melau (C)

Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
International centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.

Lea Langhoff Thuesen (L)

Department of Obstetrics and Gynaecology, Hvidovre University Hospital, Hvidovre, Denmark.

Kristine Juul Hare (K)

Department of Obstetrics and Gynaecology, Hvidovre University Hospital, Hvidovre, Denmark.

Eva Dreisler (E)

Department of Gynaecology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.

Kasper Aaboe (K)

Department of Gynaecology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.

Pia Tutein Brenøe (P)

Department of Obstetrics and Gynaecology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark.

Jakob Albrethsen (J)

Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
International centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.

Hanne Frederiksen (H)

Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
International centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.

Anders Juul (A)

Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
International centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.

Paolo Giacobini (P)

Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, University of Lille, CHU Lille, UMR-S 1172, FHU 1000 days for health, Inserm, Lille, France.

Anne Jørgensen (A)

Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark. Anne.Joergensen.02@regionh.dk.
International centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark. Anne.Joergensen.02@regionh.dk.
Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark. Anne.Joergensen.02@regionh.dk.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH