Dirus complex species identification PCR (DiCSIP) improves the identification of Anopheles dirus complex from the Greater Mekong Subregion.
Anopheles
Allele-specific PCR
Dirus complex
ITS2
Malaria
Misidentification
Journal
Parasites & vectors
ISSN: 1756-3305
Titre abrégé: Parasit Vectors
Pays: England
ID NLM: 101462774
Informations de publication
Date de publication:
16 Jun 2024
16 Jun 2024
Historique:
received:
13
03
2024
accepted:
06
05
2024
medline:
17
6
2024
pubmed:
17
6
2024
entrez:
16
6
2024
Statut:
epublish
Résumé
The Anopheles dirus complex plays a significant role as a malaria vector in the Greater Mekong Subregion (GMS), with varying degrees of vector competence among species. Accurate identification of sibling species in this complex is essential for understanding malaria transmission dynamics and deploying effective vector control measures. However, the original molecular identification assay, Dirus allele-specific polymerase chain reaction (AS-PCR), targeting the ITS2 region, has pronounced nonspecific amplifications leading to ambiguous results and misidentification of the sibling species. This study investigates the underlying causes of these inconsistencies and develops new primers to accurately identify species within the Anopheles dirus complex. The AS-PCR reaction and thermal cycling conditions were modified to improve specificity for An. dirus member species identification. In silico analyses with Benchling and Primer-BLAST were conducted to identify problematic primers and design a new set for Dirus complex species identification PCR (DiCSIP). DiCSIP was then validated with laboratory and field samples of the An. dirus complex. Despite several optimizations by reducing primer concentration, decreasing thermal cycling time, and increasing annealing temperature, the Dirus AS-PCR continued to produce inaccurate identifications for Anopheles dirus, Anopheles scanloni, and Anopheles nemophilous. Subsequently, in silico analyses pinpointed problematic primers with high Guanine-Cytosine (GC) content and multiple off-target binding sites. Through a series of in silico analyses and laboratory validation, a new set of primers for Dirus complex species identification PCR (DiCSIP) has been developed. DiCSIP primers improve specificity, operational range, and sensitivity to identify five complex member species in the GMS accurately. Validation with laboratory and field An. dirus complex specimens demonstrated that DiCSIP could correctly identify all samples while the original Dirus AS-PCR misidentified An. dirus as other species when used with different thermocyclers. The DiCSIP assay offers a significant improvement in An. dirus complex identification, addressing challenges in specificity and efficiency of the previous ITS2-based assay. This new primer set provides a valuable tool for accurate entomological surveys, supporting effective vector control strategies to reduce transmission and prevent malaria re-introducing in the GMS.
Sections du résumé
BACKGROUND
BACKGROUND
The Anopheles dirus complex plays a significant role as a malaria vector in the Greater Mekong Subregion (GMS), with varying degrees of vector competence among species. Accurate identification of sibling species in this complex is essential for understanding malaria transmission dynamics and deploying effective vector control measures. However, the original molecular identification assay, Dirus allele-specific polymerase chain reaction (AS-PCR), targeting the ITS2 region, has pronounced nonspecific amplifications leading to ambiguous results and misidentification of the sibling species. This study investigates the underlying causes of these inconsistencies and develops new primers to accurately identify species within the Anopheles dirus complex.
METHODS
METHODS
The AS-PCR reaction and thermal cycling conditions were modified to improve specificity for An. dirus member species identification. In silico analyses with Benchling and Primer-BLAST were conducted to identify problematic primers and design a new set for Dirus complex species identification PCR (DiCSIP). DiCSIP was then validated with laboratory and field samples of the An. dirus complex.
RESULTS
RESULTS
Despite several optimizations by reducing primer concentration, decreasing thermal cycling time, and increasing annealing temperature, the Dirus AS-PCR continued to produce inaccurate identifications for Anopheles dirus, Anopheles scanloni, and Anopheles nemophilous. Subsequently, in silico analyses pinpointed problematic primers with high Guanine-Cytosine (GC) content and multiple off-target binding sites. Through a series of in silico analyses and laboratory validation, a new set of primers for Dirus complex species identification PCR (DiCSIP) has been developed. DiCSIP primers improve specificity, operational range, and sensitivity to identify five complex member species in the GMS accurately. Validation with laboratory and field An. dirus complex specimens demonstrated that DiCSIP could correctly identify all samples while the original Dirus AS-PCR misidentified An. dirus as other species when used with different thermocyclers.
CONCLUSIONS
CONCLUSIONS
The DiCSIP assay offers a significant improvement in An. dirus complex identification, addressing challenges in specificity and efficiency of the previous ITS2-based assay. This new primer set provides a valuable tool for accurate entomological surveys, supporting effective vector control strategies to reduce transmission and prevent malaria re-introducing in the GMS.
Identifiants
pubmed: 38880909
doi: 10.1186/s13071-024-06321-6
pii: 10.1186/s13071-024-06321-6
doi:
Substances chimiques
DNA Primers
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
260Subventions
Organisme : Thailand Program Management Unit for Human Resources & Institutional Development, Research and Innovation (PMU-B), NXPO
ID : B17F640002
Organisme : Kasetsart University Research and Development Institute
ID : FF (KU) 14.64
Organisme : National Research Council of Thailand (NRCT)
ID : N42A670406
Informations de copyright
© 2024. The Author(s).
Références
WHO. World malaria report. 2022. https://www.who.int/publications/i/item/9789240064898 .
Jeyaprakasam NK, Liew JWK, Low VL, Wan-Sulaiman WY, Vythilingam I. Plasmodium knowlesi infecting humans in Southeast Asia: what’s next? PLoS Negl Trop Dis. 2020;14:e0008900. https://doi.org/10.1371/journal.pntd.0008900 .
doi: 10.1371/journal.pntd.0008900
pubmed: 33382697
pmcid: 7774830
Nanfack Minkeu F, Vernick KD. A systematic review of the natural virome of Anopheles mosquitoes. Viruses. 2018;10:222. https://doi.org/10.3390/v10050222 .
doi: 10.3390/v10050222
pubmed: 29695682
pmcid: 5977215
Sinka ME, Bangs MJ, Manguin S, Rubio-Palis Y, Chareonviriyaphap T, Coetzee M, et al. A global map of dominant malaria vectors. Parasit Vectors. 2012;5:69. https://doi.org/10.1186/1756-3305-5-69 .
doi: 10.1186/1756-3305-5-69
pubmed: 22475528
pmcid: 3349467
Van Bortel W, Harbach RE, Trung HD, Roelants P, Backeljau T, Coosemans M. Confirmation of Anopheles varuna in Vietnam, previously misidentified and mistargeted as the malaria vector Anopheles minimus. Am J Trop Med Hyg. 2001;65:729–32. https://doi.org/10.4269/ajtmh.2001.65.729 .
doi: 10.4269/ajtmh.2001.65.729
pubmed: 11791965
Assa A, Eligo N, Massebo F. Anopheles mosquito diversity, entomological indicators of malaria transmission and challenges of morphological identification in southwestern Ethiopia. Trop Med Health. 2023;51:38. https://doi.org/10.1186/s41182-023-00529-5 .
doi: 10.1186/s41182-023-00529-5
pubmed: 37452392
pmcid: 10347854
Singh OP, Nanda N, Dev V, Bali P, Sohail M, Mehrunnisa A, et al. Molecular evidence of misidentification of Anopheles minimus as Anopheles fluviatilis in Assam (India). Acta Trop. 2010;113:241–4. https://doi.org/10.1016/j.actatropica.2009.11.002 .
doi: 10.1016/j.actatropica.2009.11.002
pubmed: 19913489
Sungvornyothin S, Garros C, Chareonviriyaphap T, Manguin S. How reliable is the humeral pale spot for identification of cryptic species of the minimus complex? J Am Mosq Control Assoc. 2006;22:185–91. https://doi.org/10.2987/8756-971x(2006)22[185:Hrithp]2.0.Co;2 .
doi: 10.2987/8756-971x(2006)22[185:Hrithp]2.0.Co;2
pubmed: 17014058
Walton C, Handley JM, Kuvangkadilok C, Collins FH, Harbach RE, Baimai V, et al. Identification of five species of the Anopheles dirus complex from Thailand, using allele-specific polymerase chain reaction. Med Vet Entomol. 1999;13:24–32. https://doi.org/10.1046/j.1365-2915.1999.00142.x .
doi: 10.1046/j.1365-2915.1999.00142.x
pubmed: 10194746
Brosseau L, Udom C, Sukkanon C, Chareonviriyaphap T, Bangs MJ, Saeung A, et al. A multiplex PCR assay for the identification of five species of the Anopheles barbirostris complex in Thailand. Parasit Vectors. 2019;12:223. https://doi.org/10.1186/s13071-019-3494-8 .
doi: 10.1186/s13071-019-3494-8
pubmed: 31088534
pmcid: 6515612
Pramasivan S, Liew JWK, Jeyaprakasam NK, Low VL, Ngui R, Vythilingam I. Multiplex PCR assay for the identification of four species of the Anopheles leucosphyrus sub-group in Malaysia. Insects. 2022;13:195. https://doi.org/10.3390/insects13020195 .
doi: 10.3390/insects13020195
pubmed: 35206768
pmcid: 8878329
Garros C, Koekemoer LL, Coetzee M, Coosemans M, Manguin S. A single multiplex assay to identify major malaria vectors within the African Anopheles funestus and the oriental An. minimus groups. Am J Trop Med Hyg. 2004;70:583–90.
doi: 10.4269/ajtmh.2004.70.583
pubmed: 15210996
Yao H, Song J, Liu C, Luo K, Han J, Li Y, et al. Use of ITS2 region as the universal DNA barcode for plants and animals. PLoS ONE. 2010;5:e13102. https://doi.org/10.1371/journal.pone.0013102 .
doi: 10.1371/journal.pone.0013102
pubmed: 20957043
pmcid: 2948509
Kiattibutr K, Roobsoong W, Sriwichai P, Saeseu T, Rachaphaew N, Suansomjit C, et al. Infectivity of symptomatic and asymptomatic Plasmodium vivax infections to a Southeast Asian vector, Anopheles dirus. Int J Parasitol. 2017;47:163–70. https://doi.org/10.1016/j.ijpara.2016.10.006 .
doi: 10.1016/j.ijpara.2016.10.006
pubmed: 28043858
Sukkanon C, Masangkay FR, Mala W, Kotepui KU, Wilairatana P, Chareonviriyaphap T, et al. Prevalence of Plasmodium spp. in Anopheles mosquitoes in Thailand: a systematic review and meta-analysis. Parasit Vectors. 2022;15:285. https://doi.org/10.1186/s13071-022-05397-2 .
doi: 10.1186/s13071-022-05397-2
pubmed: 35933389
pmcid: 9357324
Harbach R. Anopheles classification. Mosquito taxonomic inventory. 2023. http://www.mosquito-taxonomic-inventory.info/ . Accessed 9 Sept 2023.
Obsomer V, Defourny P, Coosemans M. The Anopheles dirus complex: spatial distribution and environmental drivers. Malar J. 2007;6:26. https://doi.org/10.1186/1475-2875-6-26 .
doi: 10.1186/1475-2875-6-26
pubmed: 17341297
pmcid: 1838916
Manguin S, Garros C, Dusfour I, Harbach RE, Coosemans M. Bionomics, taxonomy, and distribution of the major malaria vector taxa of Anopheles subgenus Cellia in Southeast Asia: an updated review. Infect Genet Evol. 2008;8:489–503. https://doi.org/10.1016/j.meegid.2007.11.004 .
doi: 10.1016/j.meegid.2007.11.004
pubmed: 18178531
Takano KT, Nguyen NT, Nguyen BT, Sunahara T, Yasunami M, Nguyen MD, et al. Partial mitochondrial DNA sequences suggest the existence of a cryptic species within the Leucosphyrus group of the genus Anopheles (Diptera: Culicidae), forest malaria vectors, in northern Vietnam. Parasit Vectors. 2010;3:41. https://doi.org/10.1186/1756-3305-3-41 .
doi: 10.1186/1756-3305-3-41
pubmed: 20433694
pmcid: 2881913
Tainchum K, Kongmee M, Manguin S, Bangs MJ, Chareonviriyaphap T. Anopheles species diversity and distribution of the malaria vectors of Thailand. Trends Parasitol. 2015;31:109–19. https://doi.org/10.1016/j.pt.2015.01.004 .
doi: 10.1016/j.pt.2015.01.004
pubmed: 25697632
Rattanarithikul R, Harrison BA, Harbach RE, Panthusiri P, Coleman RE, Panthusiri P. Illustrated keys to the mosquitoes of Thailand. IV. Anopheles. Southeast Asian J Trop Med Public Health. 2006;37:1–128.
pubmed: 17262930
Baimai V, Kijchalao U, Sawadwongporn P, Green CA. Geographic distribution and biting behaviour of four species of the Anopheles dirus complex (Diptera: Culicidae) in Thailand. Southeast Asian J Trop Med Public Health. 1988;19:151–61.
pubmed: 3406803
Rosenberg R, Andre RG, Somchit L. Highly efficient dry season transmission of malaria in Thailand. Trans R Soc Trop Med Hyg. 1990;84:22–8. https://doi.org/10.1016/0035-9203(90)90367-n .
doi: 10.1016/0035-9203(90)90367-n
pubmed: 2189240
Nakazawa S, Marchand RP, Quang NT, Culleton R, Manh ND, Maeno Y. Anopheles dirus co-infection with human and monkey malaria parasites in Vietnam. Int J Parasitol. 2009;39:1533–7. https://doi.org/10.1016/j.ijpara.2009.08.005 .
doi: 10.1016/j.ijpara.2009.08.005
pubmed: 19703460
Zaw MT, Lin Z. Human Plasmodium knowlesi infections in South-East Asian countries. J Microbiol Immunol Infect. 2019;52:679–84. https://doi.org/10.1016/j.jmii.2019.05.012 .
doi: 10.1016/j.jmii.2019.05.012
pubmed: 31320238
Monthatong M. Identification of the Anopheles dirus species complex in Thailand using rDNA ITS2 allele-specific PCR (ASPCR) and sequence characterized amplified region (SCAR) markers (Thai). Asia Pac J Sci Technol. 2017;11:180–90.
Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012;13:134. https://doi.org/10.1186/1471-2105-13-134 .
doi: 10.1186/1471-2105-13-134
Stadhouders R, Pas SD, Anber J, Voermans J, Mes THM, Schutten M. The effect of primer-template mismatches on the detection and quantification of nucleic acids using the 5′ nuclease assay. J Mol Diagn. 2010;12:109–17. https://doi.org/10.2353/jmoldx.2010.090035 .
doi: 10.2353/jmoldx.2010.090035
pubmed: 19948821
pmcid: 2797725
Dev V, Manguin S. Defeating malaria in the North-East region: the forerunner for malaria elimination in India. Acta Trop. 2021;222:106040. https://doi.org/10.1016/j.actatropica.2021.106040 .
doi: 10.1016/j.actatropica.2021.106040
pubmed: 34252384
WHO. The Mekong Malaria Elimination programme. Accelerating malaria elimination in the Greater Mekong. 2022. https://www.who.int/publications/i/item/WHO-UCN-GMP-MME-2022.01 .
Tananchai C, Tisgratog R, Juntarajumnong W, Grieco JP, Manguin S, Prabaripai A, Chareonviriyaphap T. Species diversity and biting activity of Anopheles dirus and Anopheles baimaii (Diptera: Culicidae) in a malaria prone area of western Thailand. Parasit Vectors. 2012;5:211. https://doi.org/10.1186/1756-3305-5-211 .
doi: 10.1186/1756-3305-5-211
pubmed: 23009133
pmcid: 3584673
Chaiphongpachara T, Changbunjong T, Sumruayphol S, Laojun S, Suwandittakul N, Kuntawong K. Geometric morphometrics versus DNA barcoding for the identification of malaria vectors Anopheles dirus and An. baimaii in the Thai-Cambodia border. Sci Rep. 2022;12:13236. https://doi.org/10.1038/s41598-022-17646-6 .
doi: 10.1038/s41598-022-17646-6
pubmed: 35918453
pmcid: 9345986
Tananchai C, Pattanakul M, Nararak J, Sinou V, Manguin S, Chareonviriyaphap T. Diversity and biting patterns of Anopheles species in a malaria endemic area, Umphang Valley, Tak Province, western Thailand. Acta Trop. 2019;190:183–92. https://doi.org/10.1016/j.actatropica.2018.11.009 .
doi: 10.1016/j.actatropica.2018.11.009
pubmed: 30439344
Al-Amin HM, Rodriguez I, Phru CS, Khan WA, Haque R, Nahlen BL, et al. Composition of Anopheles species and bionomic characteristics over the peak malaria transmission season in Bandarban, Bangladesh. Malar J. 2023;22:176. https://doi.org/10.1186/s12936-023-04614-2 .
doi: 10.1186/s12936-023-04614-2
pubmed: 37280591
pmcid: 10245547
Chaiphongpachara T, Laojun S, Changbunjong T, Sumruayphol S, Suwandittakul N, Chookaew S, et al. Genetic diversity, haplotype relationships, and kdr mutation of malaria Anopheles vectors in the most Plasmodium knowlesi-endemic area of Thailand. Trop Med Infect Dis. 2022;7:412. https://doi.org/10.3390/tropicalmed7120412 .
doi: 10.3390/tropicalmed7120412
pubmed: 36548667
pmcid: 9786164
Van Bortel W, Trung HD, le Thuan K, Sochantha T, Socheat D, Sumrandee C, et al. The insecticide resistance status of malaria vectors in the Mekong region. Malar J. 2008;7:102. https://doi.org/10.1186/1475-2875-7-102 .
doi: 10.1186/1475-2875-7-102
pubmed: 18534006
pmcid: 2467428
Manh CD, Beebe NW, Van VN, Quang TL, Lein CT, Nguyen DV, et al. Vectors and malaria transmission in deforested, rural communities in north-central Vietnam. Malar J. 2010;9:259. https://doi.org/10.1186/1475-2875-9-259 .
doi: 10.1186/1475-2875-9-259
pubmed: 20846447
pmcid: 2945362
Van Bortel W, Trung HD, le Hoi X, Van Ham N, Van Chut N, Luu ND, et al. Malaria transmission and vector behaviour in a forested malaria focus in central Vietnam and the implications for vector control. Malar J. 2010;9:373. https://doi.org/10.1186/1475-2875-9-373 .
doi: 10.1186/1475-2875-9-373
pubmed: 21182774
pmcid: 3224380
Jhaiaun P, Panthawong A, Saeung M, Sumarnrote A, Kongmee M, Ngoen-Klan R, et al. Comparing light-emitting-diodes light traps for catching Anopheles mosquitoes in a forest setting, western Thailand. Insects. 2021;12:1076. https://doi.org/10.3390/insects12121076 .
doi: 10.3390/insects12121076
pubmed: 34940164
pmcid: 8704415
O’Loughlin SM, Somboon P, Walton C. High levels of population structure caused by habitat islands in the malarial vector Anopheles scanloni. Heredity. 2007;99:31–40. https://doi.org/10.1038/sj.hdy.6800959 .
doi: 10.1038/sj.hdy.6800959
pubmed: 17426732