Population pharmacokinetics of mycophenolate in patients treated for interstitial lung disease (EVER-ILD study).

interstitial lung disease mycophenolate pharmacokinetics

Journal

Fundamental & clinical pharmacology
ISSN: 1472-8206
Titre abrégé: Fundam Clin Pharmacol
Pays: England
ID NLM: 8710411

Informations de publication

Date de publication:
16 Jun 2024
Historique:
revised: 13 03 2024
received: 12 10 2023
accepted: 27 05 2024
medline: 17 6 2024
pubmed: 17 6 2024
entrez: 17 6 2024
Statut: aheadofprint

Résumé

Mycophenolate mofetil (MMF) has been used to treat interstitial lung disease (ILD), but mycophenolate (MPA) pharmacokinetics was not reported for this use. This ancillary study of the EVER-ILD protocol aimed at describing the pharmacokinetic variability of MPA using population modelling in ILD. Concentrations of MPA were measured during an 8-h course for 27 ILD patients treated with 1000 mg MMF b.i.d. Absorption, distribution and elimination of MPA were described using population compartment models with first-order transfer and elimination rate constants, while accounting for both absorption peaks using gamma absorption models. The pharmacokinetics of MPA was best described using a two-compartment model and two gamma absorption models, model performances of this model were still similar to those of a one gamma absorption model. This pharmacokinetics seemed to be notably influenced by body weight, renal function and inflammatory status. The distribubtion value area under the concentration curve between two administrations of MMF was AUC This is the first study reporting MPA pharmacokinetics in ILD. This pharmacokinetics appears to be similar to other indications and should be further investigated in future studies.

Sections du résumé

BACKGROUND BACKGROUND
Mycophenolate mofetil (MMF) has been used to treat interstitial lung disease (ILD), but mycophenolate (MPA) pharmacokinetics was not reported for this use. This ancillary study of the EVER-ILD protocol aimed at describing the pharmacokinetic variability of MPA using population modelling in ILD.
METHODS METHODS
Concentrations of MPA were measured during an 8-h course for 27 ILD patients treated with 1000 mg MMF b.i.d. Absorption, distribution and elimination of MPA were described using population compartment models with first-order transfer and elimination rate constants, while accounting for both absorption peaks using gamma absorption models.
RESULTS RESULTS
The pharmacokinetics of MPA was best described using a two-compartment model and two gamma absorption models, model performances of this model were still similar to those of a one gamma absorption model. This pharmacokinetics seemed to be notably influenced by body weight, renal function and inflammatory status. The distribubtion value area under the concentration curve between two administrations of MMF was AUC
CONCLUSION CONCLUSIONS
This is the first study reporting MPA pharmacokinetics in ILD. This pharmacokinetics appears to be similar to other indications and should be further investigated in future studies.

Identifiants

pubmed: 38880975
doi: 10.1111/fcp.13021
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024 The Author(s). Fundamental & Clinical Pharmacology published by John Wiley & Sons Ltd on behalf of Société Française de Pharmacologie et de Thérapeutique.

Références

Allison AC, Eugui EM. Mycophenolate mofetil and its mechanisms of action. Immunopharmacology. 2000;47(2‐3):85‐118. doi:10.1016/s0162‐3109(00)00188‐0
Fulton B, Markham A. Mycophenolate mofetil. A review of its pharmacodynamic and pharmacokinetic properties and clinical efficacy in renal transplantation. Drugs. 1996;51(2):278‐298. doi:10.2165/00003495‐199651020‐00007
Kiang TKL, Ensom MHH. Population pharmacokinetics of mycophenolic acid: an update. Clin Pharmacokinet. 2018;57(5):547‐558. doi:10.1007/s40262‐017‐0593‐6
Zhang HX, Sheng CC, Liu LS, et al. Systematic external evaluation of published population pharmacokinetic models of mycophenolate mofetil in adult kidney transplant recipients co‐administered with tacrolimus. Br J Clin Pharmacol. 2019;85(4):746‐761. doi:10.1111/bcp.13850
Chen B, Shao K, An HM, et al. Population pharmacokinetics and Bayesian estimation of mycophenolic acid exposure in Chinese renal allograft recipients after administration of EC‐MPS. J Clin Pharmacol. 2019;59(4):578‐589. doi:10.1002/jcph.1352
Colom H, Andreu F, van Gelder T, et al. Prediction of free from total mycophenolic acid concentrations in stable renal transplant patients: a population‐based approach. Clin Pharmacokinet. 2018;57(7):877‐893. doi:10.1007/s40262‐017‐0603‐8
Cremers S, Schoemaker R, Scholten E, et al. Characterizing the role of enterohepatic recycling in the interactions between mycophenolate mofetil and calcineurin inhibitors in renal transplant patients by pharmacokinetic modelling. Br J Clin Pharmacol. 2005;60(3):249‐256. doi:10.1111/j.365‐2125.005.02398.x
Prémaud A, Debord J, Rousseau A, et al. A double absorption‐phase model adequately describes mycophenolic acid plasma profiles in de novo renal transplant recipients given oral mycophenolate mofetil. Clin Pharmacokinet. 2005;44(8):837‐847. doi:10.2165/00003088‐200544080‐00005
Prémaud A, le Meur Y, Debord J, et al. Maximum a posteriori bayesian estimation of mycophenolic acid pharmacokinetics in renal transplant recipients at different postgrafting periods. Ther Drug Monit. 2005;27(3):354‐361. doi:10.1097/01.ftd.0000162231.90811.38
Reséndiz‐Galván JE, Romano‐Aguilar M, Medellín‐Garibay SE, et al. Population pharmacokinetics of mycophenolic acid in adult kidney transplant patients under prednisone and tacrolimus regimen. Eur J Pharm Sci. 2020;150:105370. doi:10.1016/j.ejps.2020.105370
Riglet F, Bertrand J, Barrail‐Tran A, et al. Population pharmacokinetic model of plasma and cellular mycophenolic acid in kidney transplant patients from the CIMTRE study. Drugs R D. 2020;20(4):331‐342. doi:10.1007/s40268‐020‐00319‐y
Staatz CE, Duffull SB, Kiberd B, Fraser AD, Tett SE. Population pharmacokinetics of mycophenolic acid during the first week after renal transplantation. Eur J Clin Pharmacol. 2005;61(7):507‐516. doi:10.1007/s00228‐005‐0927‐4. Epub 2005 Jul 28
Wang G, Ye Q, Huang Y, Xu H, Li Z. Population pharmacokinetics of enteric‐coated mycophenolate sodium in children after renal transplantation and initial dosage recommendation based on body surface area. Comput Math Methods Med. 2022;2022:1881176. doi:10.1155/2022/1881176
Labriffe M, Vaidie J, Monchaud C, et al. Population pharmacokinetics and Bayesian estimators for intravenous mycophenolate mofetil in haematopoietic stem cell transplant patients. Br J Clin Pharmacol. 2020;86(8):1550‐1559. doi:10.1111/bcp.14261
Saint‐Marcoux F, Royer B, Debord J, et al. Pharmacokinetic modelling and development of Bayesian estimators for therapeutic drug monitoring of mycophenolate mofetil in reduced‐intensity haematopoietic stem cell transplantation. Clin Pharmacokinet. 2009;48(10):667‐675. doi:10.2165/11317140‐000000000‐00000
Barau C, Furlan V, Debray D, Taburet AM, Barrail‐Tran A. Population pharmacokinetics of mycophenolic acid and dose optimization with limited sampling strategy in liver transplant children. Br J Clin Pharmacol. 2012;74(3):515‐524. doi:10.1111/j.1365‐2125.2012.04213.x
Wei Y, Wu D, Chen Y, et al. Population pharmacokinetics of mycophenolate mofetil in pediatric patients early after liver transplantation. Front Pharmacol. 2022;13:1002628. doi:10.3389/fphar.2022.1002628
Wang X, Wu Y, Huang J, et al. Estimation of mycophenolic acid exposure in heart transplant recipients by population pharmacokinetic and limited sampling strategies. Front Pharmacol. 2021;12:748609. doi:10.3389/fphar.2021.748609
de Winter BC, Monchaud C, Prémaud A, et al. Bayesian estimation of mycophenolate mofetil in lung transplantation, using a population pharmacokinetic model developed in kidney and lung transplant recipients. Clin Pharmacokinet. 2012;51(1):29‐39. doi:10.2165/11594050‐000000000‐00000
de Winter BC, Neumann I, van Hest RM, van Gelder T, Mathot RA. Limited sampling strategies for therapeutic drug monitoring of mycophenolate mofetil therapy in patients with autoimmune disease. Ther Drug Monit. 2009;31(3):382‐390. doi:10.1097/FTD.0b013e3181a23f1a
Li Z, Huang Y, Xu H. Population pharmacokinetic and dose optimization of mycophenolic acid in children with anti‐neutrophilic cytoplasmic antibody‐associated nephritis. Eur J Clin Pharmacol. 2022;78(5):831‐838. doi:10.1007/s00228‐021‐03265‐z
Mizaki T, Nobata H, Banno S, et al. Population pharmacokinetics and limited sampling strategy for therapeutic drug monitoring of mycophenolate mofetil in Japanese patients with lupus nephritis. J Pharm Health Care Sci. 2023;9(1):1. doi:10.1186/s40780‐022‐00271‐w
Nanga TM, Woillard JB, Rousseau A, Marquet P, Prémaud A. Population pharmacokinetics and Bayesian estimation of mycophenolate mofetil in patients with autoimmune hepatitis. Br J Clin Pharmacol. 2022;88(11):4732‐4741. doi:10.1111/bcp.15389
Zahr N, Amoura Z, Debord J, et al. Pharmacokinetic study of mycophenolate mofetil in patients with systemic lupus erythematosus and design of Bayesian estimator using limited sampling strategies. Clin Pharmacokinet. 2008;47(4):277‐284. doi:10.2165/00003088‐200847040‐00005
de Winter BC, Mathot RA, Sombogaard F, et al. Differences in clearance of mycophenolic acid among renal transplant recipients, hematopoietic stem cell transplant recipients, and patients with autoimmune disease. Ther Drug Monit. 2010;32(5):606‐614. doi:10.1097/FTD.0b013e3181efd715
Ling J, Shi J, Jiang Q, Jiao Z. Population pharmacokinetics of mycophenolic acid and its main glucuronide metabolite: a comparison between healthy Chinese and Caucasian subjects receiving mycophenolate mofetil. Eur J Clin Pharmacol. 2015;71(1):95‐106. doi:10.1007/s00228‐014‐1771‐1
Zeng L, Blair EY, Nath CE, et al. Population pharmacokinetics of mycophenolic acid in children and young people undergoing blood or marrow and solid organ transplantation. Br J Clin Pharmacol. 2010;70(4):567‐579. doi:10.1111/j.1365‐2125.2010.03734.x
Bullingham RE, Nicholls AJ, Kamm BR. Clinical pharmacokinetics of mycophenolate mofetil. Clin Pharmacokinet. 1998;34(6):429‐455. doi:10.2165/00003088‐199834060‐00002
Langers P, Press RR, Inderson A, et al. Limited sampling model for advanced mycophenolic acid therapeutic drug monitoring after liver transplantation. Ther Drug Monit. 2014;36(2):141‐147. doi:10.1097/FTD.0b013e3182a37a1e
le Meur Y, Borrows R, Pescovitz MD, et al. Therapeutic drug monitoring of mycophenolates in kidney transplantation: report of The Transplantation Society consensus meeting. Transplant Rev. 2011;25(2):58‐64. doi:10.1016/j.trre.2011.01.002
Bejan‐Angoulvant T, Naccache JM, Caille A, et al. Evaluation of efficacy and safety of rituximab in combination with mycophenolate mofetil in patients with nonspecific interstitial pneumonia non‐responding to a first‐line immunosuppressive treatment (EVER‐ILD): a double‐blind placebo‐controlled randomized trial. Respir Med Res. 2020;78:100770. doi:10.1016/j.resmer.2020.100770
Mankikian J, Caille A, Reynaud‐Gaubert M, et al. Rituximab and mycophenolate mofetil combination in patients with interstitial lung disease (EVER‐ILD): a double‐blind, randomised, placebo‐controlled trial. Eur Respir J. 2023;61(6):2202071. doi:10.1183/13993003.02071‐2022
Bennani Rtel M, Ternant D, Büchler M, et al. Food and lipid intake alters the pharmacokinetics of cyclosporine in kidney transplants. Fundam Clin Pharmacol. 2021;35(2):446‐454. doi:10.1111/fcp.12591
Chadet S, Ternant D, Roubille F, et al. Kinetic modelling of myocardial necrosis biomarkers offers an easier, reliable and more acceptable assessment of infarct size. Sci Rep. 2020;10(1):13597. doi:10.1038/s41598‐020‐70501‐4
Ternant D, Ivanes F, Prunier F, et al. Revisiting myocardial necrosis biomarkers: assessment of the effect of conditioning therapies on infarct size by kinetic modelling. Sci Rep. 2017;7(1):10709.
Savic RM, Jonker DM, Kerbusch T, Karlsson MO. Implementation of a transit compartment model for describing drug absorption in pharmacokinetic studies. J Pharmacokinet Pharmacodyn. 2007;34(5):711‐726. doi:10.1007/s10928‐007‐9066‐0. Epub 2007 Jul 26

Auteurs

Yan-Min Xu (YM)

CHRU de Tours, Service de Pneumologie et d'Explorations Fonctionnelles Respiratoires, Tours, France.

David Ternant (D)

INSERM UMR1327 ISCHEMIA, Université de Tours, Tours, France.
CHRU de Tours, Service de Pharmacologie Médicale, Tours, France.

Martine Reynaud-Gaubert (M)

Service de Pneumologie, Centre de Compétences des Maladies Pulmonaires Rares, APHM, CHU Nord, Aix Marseille Université, Marseille, France.

Théodora Bejan-Angoulvant (T)

INSERM UMR1327 ISCHEMIA, Université de Tours, Tours, France.
CHRU de Tours, Service de Pharmacologie Médicale, Tours, France.

Sylvain Marchand-Adam (S)

CHRU de Tours, Service de Pneumologie et d'Explorations Fonctionnelles Respiratoires, Tours, France.
Centre d'Etude des Pathologies Respiratoires (CEPR) INSERM U1100 Faculté de Médecine, Université de Tours, Tours, France.

Classifications MeSH