Head-to-Head Comparison of Tau and Amyloid Positron Emission Tomography Visual Reads for Differential Diagnosis of Neurodegenerative Disorders: An International, Multicenter Study.


Journal

Annals of neurology
ISSN: 1531-8249
Titre abrégé: Ann Neurol
Pays: United States
ID NLM: 7707449

Informations de publication

Date de publication:
18 Jun 2024
Historique:
revised: 29 05 2024
received: 22 02 2024
accepted: 29 05 2024
medline: 18 6 2024
pubmed: 18 6 2024
entrez: 18 6 2024
Statut: aheadofprint

Résumé

We compared the accuracy of amyloid and [ Participants with FTP-PET, amyloid-PET, and diagnosis of dementia-AD (n = 102), MCI-AD (n = 41), non-AD diseases (n = 76), and controls (n = 20) were included. AD status was determined independent of PET by cerebrospinal fluid or plasma biomarkers. The mean age was 66.9 years, and 44.8% were women. Three readers interpreted scans blindly and independently. Amyloid-PET was classified as positive/negative using tracer-specific criteria. FTP-PET was classified as positive with medial temporal lobe (MTL) binding as the minimum uptake indicating AD tau (tau-MTL+), positive with posterolateral temporal or extratemporal cortical binding in an AD-like pattern (tau-CTX+), or negative. The majority of scan interpretations were used to calculate diagnostic accuracy of visual reads in detecting MCI/dementia with fluid biomarker support for AD (MCI/dementia-AD). Sensitivity of amyloid-PET for MCI/dementia-AD was 95.8% (95% confidence interval 91.1-98.4%), which was comparable to tau-CTX+ 92.3% (86.7-96.1%, p = 0.67) and tau-MTL+ 97.2% (93.0-99.2%, p = 0.27). Specificity of amyloid-PET for biomarker-negative healthy and disease controls was 84.4% (75.5-91.0%), which was like tau-CTX+ 88.5% (80.4-94.1%, p = 0.34), and trended toward being higher than tau-MTL+ 75.0% (65.1-83.3%, p = 0.08). Tau-CTX+ had higher specificity than tau-MTL+ (p = 0.0002), but sensitivity was lower (p = 0.02), driven by decreased sensitivity for MCI-AD (80.5% [65.1-91.2] vs. 95.1% [83.5-99.4], p = 0.03). Amyloid- and tau-PET visual reads have similar sensitivity/specificity for detecting AD in cognitively impaired patients. Visual tau-PET interpretations requiring cortical binding outside MTL increase specificity, but lower sensitivity for MCI-AD. ANN NEUROL 2024.

Identifiants

pubmed: 38888212
doi: 10.1002/ana.27008
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Vetenskapsrådet
ID : 2022-00775
Organisme : Swedish Alzheimer Foundation
ID : AF-980907
Organisme : Swedish Brain Foundation
ID : FO2021-0293
Organisme : The Parkinson Foundation of Sweden
ID : 1412/22
Organisme : Alzheimer's Association
ID : AACSF-19-617663
Pays : United States
Organisme : Alzheimer's Association
ID : SG-23-1061717
Pays : United States
Organisme : Alzheimer's Association
ID : ZEN-21-848216
Pays : United States
Organisme : Korea Health Technology R&D Project
ID : HU20C0164
Organisme : Swedish Federal Government under the ALF Agreement
ID : 2022-Projekt0080
Organisme : Knut och Alice Wallenbergs Stiftelse
ID : 2017-0383
Organisme : NIA NIH HHS
ID : K23-AG059888
Pays : United States
Organisme : NIA NIH HHS
ID : K23-AG076960
Pays : United States
Organisme : NIA NIH HHS
ID : K99-AG065501
Pays : United States
Organisme : NIA NIH HHS
ID : P01-AG019724
Pays : United States
Organisme : NIA NIH HHS
ID : P30-AG062422
Pays : United States
Organisme : NIA NIH HHS
ID : R01-AG038791
Pays : United States
Organisme : NIA NIH HHS
ID : R35-AG072362
Pays : United States
Organisme : NINDS NIH HHS
ID : R01-NS050915
Pays : United States
Organisme : ERA PerMed
ID : ERAPERMED2021-184
Organisme : Regionalt Forskningsstöd
ID : 2022-1259
Organisme : Skåne University Hospital Foundation
ID : 2020-O000028

Informations de copyright

© 2024 American Neurological Association.

Références

Abner EL, Kryscio RJ, Schmitt FA, et al. Outcomes after diagnosis of mild cognitive impairment in a large autopsy series: outcomes of MCI. Ann Neurol 2017;81:549–559.
Beach TG, Monsell SE, Phillips LE, Kukull W. Accuracy of the clinical diagnosis of Alzheimer disease at National Institute on Aging Alzheimer disease centers, 2005–2010. J Neuropathol Exp Neurol 2012;71:266–273.
Cummings J, Apostolova L, Rabinovici GD, et al. Lecanemab: Appropriate Use Recommendations. J Prev Alzheimers Dis 2023;10:362–377. https://doi.org/10.14283/jpad.2023.30.
Villemagne VL, Doré V, Burnham SC, et al. Imaging tau and amyloid‐β proteinopathies in Alzheimer disease and other conditions. Nat Rev Neurol 2018;14:225–236.
Jansen WJ, Ossenkoppele R, Knol DL, et al. Prevalence of cerebral amyloid pathology in persons without dementia: a meta‐analysis. JAMA 2015;313:1924–1938.
Ossenkoppele R, Jansen WJ, Rabinovici GD, et al. Prevalence of amyloid PET positivity in dementia syndromes: a meta‐analysis. JAMA 2015;313:1939–1949.
Crary JF, Trojanowski JQ, Schneider JA, et al. Primary age‐related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol 2014;128:755–766.
Braak H, Braak E. Neuropathological stageing of Alzheimer‐related changes. Acta Neuropathol 1991;82:239–259.
Leuzy A, Chiotis K, Lemoine L, et al. Tau PET imaging in neurodegenerative tauopathies—still a challenge. Mol Psychiatry 2019;24:1112–1134.
Schöll M, Lockhart SN, Schonhaut DR, et al. PET imaging of tau deposition in the aging human brain. Neuron 2016;89:971–982.
Yoon B, Guo T, Provost K, et al. Abnormal tau in amyloid PET negative individuals. Neurobiol Aging 2022;109:125–134.
Jack CR, Wiste HJ, Weigand SD, et al. Age‐specific and sex‐specific prevalence of cerebral β‐amyloidosis, tauopathy, and neurodegeneration in cognitively unimpaired individuals aged 50–95 years: a cross‐sectional study. Lancet Neurol 2017;16:435–444.
Ossenkoppele R, Hansson O. Towards clinical application of tau PET tracers for diagnosing dementia due to Alzheimer's disease. Alzheimers Dement 2021;17:1998–2008.
Baker SL, Harrison TM, Maass A, et al. Effect of off‐target binding on 18F‐Flortaucipir variability in healthy controls across the life span. J Nucl Med 2019;60:1444–1451.
Soleimani‐Meigooni DN, Iaccarino L, La Joie R, et al. 18F‐flortaucipir PET to autopsy comparisons in Alzheimer's disease and other neurodegenerative diseases. Brain 2020;143:3477–3494.
Ossenkoppele R, Rabinovici GD, Smith R, et al. Discriminative accuracy of [18F]flortaucipir positron emission tomography for Alzheimer disease vs other neurodegenerative disorders. JAMA 2018;320:1151–1162.
Sonni I, Lesman Segev OH, Baker SL, et al. Evaluation of a visual interpretation method for tau‐PET with 18F‐flortaucipir. Alzheimer's Dement: Diagn Assess Dis Monit 2020;12:e12133‐e12144. https://doi.org/10.1002/dad2.12133.
Fleisher AS, Pontecorvo MJ, Devous MD, et al. Positron emission tomography imaging with [18F]flortaucipir and postmortem assessment of Alzheimer disease Neuropathologic changes. JAMA Neurol 2020;77:829–839.
Tauvid (Flortaucipir F 18 Injection) [Package Insert]. Philadelphia (PA): Eli Lilly and Company, Avid Radiopharmaceuticals, 2020.
Cho H, Choi JY, Hwang MS, et al. Tau PET in Alzheimer disease and mild cognitive impairment. Neurology 2016;87:375–383.
Mielke MM, Dage JL, Frank RD, et al. Performance of plasma phosphorylated tau 181 and 217 in the community. Nat Med 2022;28:1398–1405.
Thijssen EH, La Joie R, Strom A, et al. Plasma phosphorylated tau 217 and phosphorylated tau 181 as biomarkers in Alzheimer's disease and frontotemporal lobar degeneration: a retrospective diagnostic performance study. Lancet Neurol 2021;20:739–752.
Janelidze S, Bali D, Ashton NJ, et al. Head‐to‐head comparison of 10 plasma phospho‐tau assays in prodromal Alzheimer's disease. Brain 2023;146:1592–1601.
Ashton NJ, Puig‐Pijoan A, Milà‐Alomà M, et al. Plasma and CSF biomarkers in a memory clinic: head‐to‐head comparison of phosphorylated tau immunoassays. Alzheimer's Dement 2023;19:1913–1924.
Mattsson‐Carlgren N, Grinberg LT, Boxer A, et al. Cerebrospinal fluid biomarkers in autopsy‐confirmed Alzheimer disease and frontotemporal lobar degeneration. Neurology 2022;98:e1137–e1150.
Mattsson‐Carlgren N, Andersson E, Janelidze S, et al. Aβ deposition is associated with increases in soluble and phosphorylated tau that precede a positive tau PET in Alzheimer's disease. Sci Adv 2020;6:eaaz2387.
Roldán‐Nofuentes JA. Compbdt: an R program to compare two binary diagnostic tests subject to a paired design. BMC Med Res Methodol 2020;20:143.
Gwet KL. Testing the difference of correlated agreement coefficients for statistical significance. Educ Psychol Meas 2016;76:609–637.
Costoya‐Sánchez A, Moscoso A, Silva‐Rodríguez J, et al. Increased medial temporal tau positron emission tomography uptake in the absence of amyloid‐β positivity. JAMA Neurol 2023;80:1051–1061. https://doi.org/10.1001/jamaneurol.2023.2560.
Gomperts SN, Locascio JJ, Makaretz SJ, et al. Tau positron emission tomographic imaging in the Lewy body diseases. JAMA Neurol 2016;73:1334–1341.
Papathanasiou ND, Boutsiadis A, Dickson J, Bomanji JB. Diagnostic accuracy of 123I‐FP‐CIT (DaTSCAN) in dementia with Lewy bodies: a meta‐analysis of published studies. Parkinsonism Relat Disord 2012;18:225–229.
McCleery J, Morgan S, Bradley KM, et al. Dopamine transporter imaging for the diagnosis of dementia with Lewy bodies. Cochrane Database Syst Rev 2015;1:CD010633.
Quadalti C, Palmqvist S, Hall S, et al. Clinical effects of Lewy body pathology in cognitively impaired individuals. Nat Med 2023;29:1964–1970.
Gibbons CH, Levine T, Adler C, et al. Skin biopsy detection of phosphorylated α‐Synuclein in patients with Synucleinopathies. JAMA 2024;331:1298–1306.
Sims JR, Zimmer JA, Evans CD, et al. Donanemab in early symptomatic Alzheimer disease: the TRAILBLAZER‐ALZ 2 randomized clinical trial. JAMA 2023;330:512–527.
Zhu X‐C, Tan L, Wang H‐F, et al. Rate of early onset Alzheimer's disease: a systematic review and meta‐analysis. Ann Transl Med 2015;3:38.
Cho H, Mundada NS, Apostolova LG, et al. Amyloid and tau‐PET in early‐onset AD: baseline data from the longitudinal early‐onset Alzheimer's disease study (LEADS). Alzheimer's Dement 2023;19:S98–S114.
Seibyl JP, DuBois JM, Racine A, et al. A visual interpretation algorithm for assessing brain tauopathy with 18F‐MK‐6240 PET. J Nucl Med 2023;64:444–451.
Shuping JL, Matthews DC, Adamczuk K, et al. Development, initial validation, and application of a visual read method for [18F]MK‐6240 tau PET. Alzheimer's Dement: Transl Res Clin Interventions 2023;9:e12372.
Iaccarino L, La Joie R, Koeppe R, et al. rPOP: robust PET‐only processing of community acquired heterogeneous amyloid‐PET data. Neuroimage 2022;246:118775.

Auteurs

David N Soleimani-Meigooni (DN)

Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA.
Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.

Ruben Smith (R)

Clinical Memory Research Unit, Lund University, Lund, Sweden.

Karine Provost (K)

Department of Nuclear Medicine, University of Montreal Hospital Center, Montréal, Canada.

Orit H Lesman-Segev (OH)

Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.

Isabel Elaine Allen (IE)

Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA.

Miranda K Chen (MK)

Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA.

Hanna Cho (H)

Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.

Lauren Edwards (L)

Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA.
Clinical Psychology, San Diego State University & University of California, San Diego, CA, USA.

Shorena Janelidze (S)

Clinical Memory Research Unit, Lund University, Lund, Sweden.

Renaud La Joie (R)

Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA.

Nidhi Mundada (N)

Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA.

Rik Ossenkoppele (R)

Clinical Memory Research Unit, Lund University, Lund, Sweden.
Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands.

Erik Stomrud (E)

Clinical Memory Research Unit, Lund University, Lund, Sweden.
Memory Clinic, Skåne University Hospital, Lund, Sweden.

Olof Strandberg (O)

Clinical Memory Research Unit, Lund University, Lund, Sweden.

Amelia Strom (A)

Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA.
Health Sciences and Technology, Harvard & Massachusetts Institute of Technology, Cambridge, MA, USA.

Adam L Boxer (AL)

Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA.

Jeffrey L Dage (JL)

Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.

Maria Luisa Gorno-Tempini (ML)

Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA.

Joel H Kramer (JH)

Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA.

Bruce L Miller (BL)

Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA.

Julio C Rojas (JC)

Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA.

Howard J Rosen (HJ)

Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA.

Chul H Lyoo (CH)

Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.

Oskar Hansson (O)

Clinical Memory Research Unit, Lund University, Lund, Sweden.
Memory Clinic, Skåne University Hospital, Lund, Sweden.

Gil D Rabinovici (GD)

Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA.
Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.

Classifications MeSH