Wearable-Based Integrated System for In-Home Monitoring and Analysis of Nocturnal Enuresis.
convolutional–LSTM–attention model
feature engineering
in-home monitoring
nocturnal enuresis
wearable sensor
Journal
Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366
Informations de publication
Date de publication:
23 May 2024
23 May 2024
Historique:
received:
24
03
2024
revised:
03
05
2024
accepted:
07
05
2024
medline:
19
6
2024
pubmed:
19
6
2024
entrez:
19
6
2024
Statut:
epublish
Résumé
Nocturnal enuresis (NE) is involuntary bedwetting during sleep, typically appearing in young children. Despite the potential benefits of the long-term home monitoring of NE patients for research and treatment enhancement, this area remains underexplored. To address this, we propose NEcare, an in-home monitoring system that utilizes wearable devices and machine learning techniques. NEcare collects sensor data from an electrocardiogram, body impedance (BI), a three-axis accelerometer, and a three-axis gyroscope to examine bladder volume (BV), heart rate (HR), and periodic limb movements in sleep (PLMS). Additionally, it analyzes the collected NE patient data and supports NE moment estimation using heuristic rules and deep learning techniques. To demonstrate the feasibility of in-home monitoring for NE patients using our wearable system, we used our datasets from 30 in-hospital patients and 4 in-home patients. The results show that NEcare captures expected trends associated with NE occurrences, including BV increase, HR increase, and PLMS appearance. In addition, we studied the machine learning-based NE moment estimation, which could help relieve the burdens of NE patients and their families. Finally, we address the limitations and outline future research directions for the development of wearable systems for NE patients.
Identifiants
pubmed: 38894140
pii: s24113330
doi: 10.3390/s24113330
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM