Myelination by signaling through Arf guanine nucleotide exchange factor.

Arf ArfGEF Schwann cells myelin phosphorylation

Journal

Journal of neurochemistry
ISSN: 1471-4159
Titre abrégé: J Neurochem
Pays: England
ID NLM: 2985190R

Informations de publication

Date de publication:
18 Jun 2024
Historique:
revised: 19 05 2024
received: 11 03 2024
accepted: 23 05 2024
medline: 19 6 2024
pubmed: 19 6 2024
entrez: 19 6 2024
Statut: aheadofprint

Résumé

During myelination, large quantities of proteins are synthesized and transported from the endoplasmic reticulum (ER)-trans-Golgi network (TGN) to their appropriate locations within the intracellular region and/or plasma membrane. It is widely believed that oligodendrocytes uptake neuronal signals from neurons to regulate the endocytosis- and exocytosis-mediated intracellular trafficking of major myelin proteins such as myelin-associated glycoprotein (MAG) and proteolipid protein 1 (PLP1). The small GTPases of the adenosine diphosphate (ADP) ribosylation factor (Arf) family constitute a large group of signal transduction molecules that act as regulators for intracellular signaling, vesicle sorting, or membrane trafficking in cells. Studies on mice deficient in Schwann cell-specific Arfs-related genes have revealed abnormal myelination formation in peripheral nerves, indicating that Arfs-mediated signaling transduction is required for myelination in Schwann cells. However, the complex roles in these events remain poorly understood. This review aims to provide an update on signal transduction, focusing on Arf and its activator ArfGEF (guanine nucleotide exchange factor for Arf) in oligodendrocytes and Schwann cells. Future studies are expected to provide important information regarding the cellular and physiological processes underlying the myelination of oligodendrocytes and Schwann cells and their function in modulating neural activity.

Identifiants

pubmed: 38894552
doi: 10.1111/jnc.16141
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Grant-in-Aid for Scientific Research(C)
ID : JSPS KAKENHI (JP20K06646)

Informations de copyright

© 2024 International Society for Neurochemistry.

Références

Akkermann, R., Aprico, A., Perera, A. A., Bujalka, H., Cole, A. E., Xiao, J., Field, J., Kilpatrick, T. J., & Binder, M. D. (2017). The TAM receptor Tyro3 regulates myelination in the central nervous system. Glia, 65(4), 581–591. https://doi.org/10.1002/glia.23113
Almeida, A. R., & Macklin, W. B. (2023). Early myelination involves the dynamic and repetitive ensheathment of axons which resolves through a low and consistent stabilization rate. eLife, 12, e82111. https://doi.org/10.7554/eLife.82111
Altschuler, Y., Liu, S., Katz, L., Tang, K., Hardy, S., Brodsky, F., et al. (1999). ADP‐ribosylation factor 6 and endocytosis at the apical surface of Madin‐Darby canine kidney cells. The Journal of Cell Biology, 147(1), 7–12. https://doi.org/10.1083/jcb.147.1.7
Alvarez, C., Garcia‐Mata, R., Brandon, E., & Sztul, E. (2003). COPI recruitment is modulated by a Rab1b‐dependent mechanism. Molecular Biology of the Cell, 14(5), 2116–2127. https://doi.org/10.1091/mbc.e02‐09‐0625
Bekku, Y., Zotter, B., You, C., Piehler, J., Leonard, W. J., & Salzer, J. L. (2024). Glia trigger endocytic clearance of axonal proteins to promote rodent myelination. Developmental Cell, 259(5), 627–644. https://doi.org/10.1016/j.devcel.2024.01.008
Benninger, Y., Thurnherr, T., Pereira, J. A., Krause, S., Wu, X., Chrostek‐Grashoff, A., Herzog, D., Nave, K. A., Franklin, R. J., Meijer, D., Brakebusch, C., Suter, U., & Relvas, J. B. (2007). Essential and distinct roles for cdc42 and rac1 in the regulation of Schwann cell biology during peripheral nervous system development. The Journal of Cell Biology, 177(6), 1051–1061. https://doi.org/10.1083/jcb.200610108
Binder, M. D., Xiao, J., Kemper, D., Ma, G. Z., Murray, S. S., & Kilpatrick, T. J. (2011). Gas6 increases myelination by oligodendrocytes and its deficiency delays recovery following cuprizone‐induced demyelination. PLoS One, 6(3), e17727. https://doi.org/10.1371/journal.pone.0017727
Blades, F., Aprico, A., Akkermann, R., Ellis, S., Binder, M. D., & Kilpatrick, T. J. (2018). The TAM receptor TYRO3 is a critical regulator of myelin thickness in the central nervous system. Glia, 66(10), 2209–2220. https://doi.org/10.1002/glia.23481
Bö, L., Quarles, R. H., Fujita, N., Bartoszewicz, Z., Sato, S., & Trapp, B. D. (1995). Endocytic depletion of L‐MAG from CNS myelin in quaking mice. The Journal of Cell Biology, 131(6), 1811–1820. https://doi.org/10.1083/jcb.131.6.1811
Brown, H. A., Gutowski, S., Moomaw, C. R., Slaughter, C., & Sternweis, P. C. (1993). ADP‐ribosylation factor, a small GTP‐dependent regulatory protein, stimulates phospholipase D activity. Cell, 75(6), 1137–1144. https://doi.org/10.1016/0092‐8674(93)90323‐i
Brown, J. C., Petersen, A., Zhong, L., Himelright, M. L., Murphy, J. A., Walikonis, R. S., & Gerges, N. Z. (2016). Bidirectional regulation of synaptic transmission by BRAG1/IQSEC2 and its requirement in long‐term depression. Nature Communications, 7, 11080. https://doi.org/10.1038/ncomms11080
Brown, T. L., & Macklin, W. B. (2020). The Actin cytoskeleton in myelinating cells. Neurochemical Research, 45(3), 684–693. https://doi.org/10.1007/s11064‐019‐02753‐0
Calhoun, B. C., & Goldenring, J. R. (1997). Two Rab proteins, vesicle‐associated membrane protein 2 (VAMP‐2) and secretory carrier membrane proteins (SCAMPs), are present on immunoisolated parietal cell tubulovesicles. The Biochemical Journal, 325(2), 559–564. https://doi.org/10.1042/bj3250559
Carvajal‐Gonzalez, J. M., Balmer, S., Mendoza, M., Dussert, A., Collu, G., Roman, A. C., Weber, U., Ciruna, B., & Mlodzik, M. (2015). The clathrin adaptor AP‐1 complex and Arf1 regulate planar cell polarity in vivo. Nature Communications, 6, 6751. https://doi.org/10.1038/ncomms7751
Cason, S. E., & Holzbaur, E. L. F. (2023). Axonal transport of autophagosomes is regulated by dynein activators JIP3/JIP4 and ARF/RAB GTPases. The Journal of Cell Biology, 222(12), e202301084. https://doi.org/10.1083/jcb.202301084
Chen, C. J., Shih, C. H., Chang, Y. J., Hong, S. J., Li, T. N., Wang, L. H., & Chen, L. (2015). SH2B1 and IRSp53 proteins promote the formation of dendrites and dendritic branches. The Journal of Biological Chemistry, 290(10), 6010–6021. https://doi.org/10.1074/jbc.M114.603795
Chen, P. W., Jian, X., Yoon, H. Y., & Randazzo, P. A. (2013). ARAP2 signals through Arf6 and Rac1 to control focal adhesion morphology. The Journal of Biological Chemistry, 288(8), 5849–5860. https://doi.org/10.1074/jbc.M112.415778
Cockcroft, S., Thomas, G. M., Fensome, A., Geny, B., Cunningham, E., Gout, I., Hiles, I., Totty, N. F., Truong, O., & Hsuan, J. J. (1994). Phospholipase D: A downstream effector of ARF in granulocytes. Science, 263(5146), 523–526. https://doi.org/10.1126/science.8290961
Czopka, T., Ffrench‐Constant, C., & Lyons, D. A. (2013). Individual oligodendrocytes have only a few hours in which to generate new myelin sheaths in vivo. Developmental Cell, 25(6), 599–609. https://doi.org/10.1016/j.devcel.2013.05.013
Davies, J. C., Tamaddon‐Jahromi, S., Jannoo, R., & Kanamarlapudi, V. (2014). Cytohesin 2/ARF6 regulates preadipocyte migration through the activation of ERK1/2. Biochemical Pharmacology, 92(4), 651–660. https://doi.org/10.1016/j.bcp.2014.09.023
Donaldson, J. G., & Jackson, C. L. (2011). ARF family G proteins and their regulators: Roles in membrane transport, development and disease. Nature Reviews. Molecular Cell Biology, 12(6), 362–375. https://doi.org/10.1038/nrm3117
D'Souza‐Schorey, C., & Chavrier, P. (2006). ARF proteins: Roles in membrane traffic and beyond. Nature Reviews. Molecular Cell Biology, 7(5), 347–358. https://doi.org/10.1038/nrm1910
Esteban, P. F., Yoon, H. Y., Becker, J., Dorsey, S. G., Caprari, P., Palko, M. E., Coppola, V., Saragovi, H. U., Randazzo, P. A., & Tessarollo, L. (2006). A kinase‐deficient TrkC receptor isoform activates Arf6‐Rac1 signaling through the scaffold protein tamalin. The Journal of Cell Biology, 173(2), 291–299. https://doi.org/10.1083/jcb.200512013
Fekete, C. D., & Nishiyama, A. (2022). Presentation and integration of multiple signals that modulate oligodendrocyte lineage progression and myelination. Frontiers in Cellular Neuroscience, 16, 1041853. https://doi.org/10.3389/fncel.2022.1041853
Fielding, A. B., Schonteich, E., Matheson, J., Wilson, G., Yu, X., Hickson, G. R., Srivastava, S., Baldwin, S. A., Prekeris, R., & Gould, G. W. (2005). Rab11‐FIP3 and FIP4 interact with Arf6 and the exocyst to control membrane traffic in cytokinesis. The EMBO Journal, 24(19), 3389–3399. https://doi.org/10.1038/sj.emboj.7600803
Franco, M., Peters, P. J., Boretto, J., van Donselaar, E., Neri, A., D'Souza‐Schorey, C., & Chavrier, P. (1999). EFA6, A sec7 domain‐containing exchange factor for ARF6, coordinates membrane recycling and Actin cytoskeleton organization. The EMBO Journal, 18(6), 1480–1491. https://doi.org/10.1093/emboj/18.6.1480
Frank, S. R., Hatfield, J. C., & Casanova, J. E. (1998). Remodeling of the Actin cytoskeleton is coordinately regulated by protein kinase C and the ADP‐ribosylation factor nucleotide exchange factor ARNO. Molecular Biology of the Cell, 9(11), 3133–3146. https://doi.org/10.1091/mbc.9.11.3133
Fukaya, M., Kamata, A., Hara, Y., Tamaki, H., Katsumata, O., Ito, N., Takeda, S., Hata, Y., Suzuki, T., Watanabe, M., Harvey, R. J., & Sakagami, H. (2011). SynArfGEF is a guanine nucleotide exchange factor for Arf6 and localizes preferentially at post‐synaptic specializations of inhibitory synapses. Journal of Neurochemistry, 116(6), 1122–1137. https://doi.org/10.1111/j.1471‐4159.2010.07167.x
Gaboreanu, A. M., Hrstka, R., Xu, W., Shy, M., Kamholz, J., Lilien, J., & Balsamo, J. (2007). Myelin protein zero/P0 phosphorylation and function require an adaptor protein linking it to RACK1 and PKC alpha. The Journal of Cell Biology, 177(4), 707–716. https://doi.org/10.1083/jcb.200608060
Galindo, A., Soler, N., McLaughlin, S. H., Yu, M., Williams, R. L., & Munro, S. (2016). Structural insights into Arl1‐mediated targeting of the Arf‐GEF BIG1 to the trans‐Golgi. Cell Reports, 16(3), 839–850. https://doi.org/10.1016/j.celrep.2016.06.022
Gana, S., Casella, A., Cociglio, S., Tartara, E., Rognone, E., Giorgio, E., Pichiecchio, A., Orcesi, S., & Valente, E. M. (2022). ARF1 haploinsufficiency causes periventricular nodular heterotopia with variable clinical expressivity. Journal of Medical Genetics, 59(8), 781–784. https://doi.org/10.1136/jmedgenet‐2021‐107783
Gao, Y., Li, W., & Filbin, M. T. (2000). Acylation of myelin Po protein is required for adhesion. Journal of Neuroscience Research, 60(6), 704–713. https://doi.org/10.1002/1097‐4547(20000615)60:6<704::AID‐JNR2>3.0.CO;2‐5
Ge, X., Gong, H., Dumas, K., Litwin, J., Phillips, J. J., Waisfisz, Q., Weiss, M. M., Hendriks, Y., Stuurman, K. E., Nelson, S. F., Grody, W. W., Lee, H., Kwok, P. Y., & Shieh, J. T. (2016). Missense‐depleted regions in population exomes implicate ras superfamily nucleotide‐binding protein alteration in patients with brain malformation. NPJ Genomic Medicine, 1, 16036. https://doi.org/10.1038/npjgenmed.2016
Goudarzi, S., Rivera, A., Butt, A. M., & Hafizi, S. (2016). Gas6 promotes oligodendrogenesis and myelination in the adult central nervous system and after lysolecithin‐induced demyelination. ASN Neuro, 8(5), 1759091416668430. https://doi.org/10.1177/1759091416668430
Guglietti, B., Sivasankar, S., Mustafa, S., Corrigan, F., & Collins‐Praino, L. E. (2021). Fyn kinase activity and its role in neurodegenerative disease pathology: A potential universal target? Molecular Neurobiology, 58(11), 5986–6005. https://doi.org/10.1007/s12035‐021‐02518‐3
Hara, Y., Katsuyama, T., Fukaya, M., Sugawara, T., Shiroshima, T., Sadakata, T., Osumi, N., & Sakagami, H. (2023). ADP Ribosylation Factor 4 (Arf4) Regulates radial migration through N‐cadherin trafficking during cerebral cortical development. eNeuro, 10(22), ENEURO.0125‐23.2023. https://doi.org/10.1523/ENEURO.0125‐23.2023
Hirst, J., Barlow, L. D., Francisco, G. C., Sahlender, D. A., Seaman, M. N., Dacks, J. B., & Robinson, M. S. (2011). The fifth adaptor protein complex. PLoS Biology, 9(10), e1001170. https://doi.org/10.1371/journal.pbio.1001170
Hirst, J., Itzhak, D. N., Antrobus, R., Borner, G. H. H., & Robinson, M. S. (2018). Role of the AP‐5 adaptor protein complex in late endosome‐to‐Golgi retrieval. PLoS Biology, 16(1), e2004411. https://doi.org/10.1371/journal.pbio.2004411
Honda, A., Nogami, M., Yokozeki, T., Yamazaki, M., Nakamura, H., Watanabe, H., Kawamoto, K., Nakayama, K., Morris, A. J., Frohman, M. A., & Kanaho, Y. (1999). Phosphatidylinositol 4‐phosphate 5‐kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell, 99(5), 521–532. https://doi.org/10.1016/s0092‐8674(00)81540‐8
Hosoi, N., Shibasaki, K., Hosono, M., Konno, A., Shinoda, Y., Kiyonari, H., Inoue, K., Muramatsu, S. I., Ishizaki, Y., Hirai, H., Furuichi, T., & Sadakata, T. (2019). Deletion of class II ADP‐ribosylation factors in mice causes tremor by the Nav1.6 loss in cerebellar purkinje cell axon initial segments. Journal of Neuroscience, 39(32), 6339–6353. https://doi.org/10.1523/JNEUROSCI.2002‐18.2019
Isabet, T., Montagnac, G., Regazzoni, K., Raynal, B., El Khadali, F., England, P., Franco, M., Chavrier, P., Houdusse, A., & Ménétrey, J. (2009). The structural basis of Arf effector specificity: The crystal structure of ARF6 in a complex with JIP4. The EMBO Journal, 28(18), 2835–2845. https://doi.org/10.1038/emboj.2009.209
Ishizaki, R., Shin, H. W., Mitsuhashi, H., & Nakayama, K. (2008). Redundant roles of BIG2 and BIG1, guanine‐nucleotide exchange factors for ADP‐ribosylation factors in membrane traffic between the trans‐Golgi network and endosomes. Molecular Biology of the Cell, 19(6), 2650–2660. https://doi.org/10.1091/mbc.e07‐10‐1067
Ito, A., Fukaya, M., Saegusa, S., Kobayashi, E., Sugawara, T., Hara, Y., Yamauchi, J., Okamoto, H., & Sakagami, H. (2018). Pallidin is a novel interacting protein for cytohesin‐2 and regulates the early endosomal pathway and dendritic formation in neurons. Journal of Neurochemistry, 147(2), 153–177. https://doi.org/10.1111/jnc.14579
Jaegle, M., Mandemakers, W., Broos, L., Zwart, R., Karis, A., Visser, P., Grosveld, F., & Meijer, D. (1996). The POU factor Oct‐6 and Schwann cell differentiation. Science, 273(5274), 507–510. https://doi.org/10.1126/science.273.5274.507
Jahn, O., Tenzer, S., & Werner, H. B. (2009). Myelin proteomics: Molecular anatomy of an insulating sheath. Molecular Neurobiology, 40(1), 55–72. https://doi.org/10.1007/s12035‐009‐8071‐2
Jones, H. D., Moss, J., & Vaughan, M. (2005). BIG1 and BIG2, brefeldin A‐inhibited guanine nucleotide‐exchange factors for ADP‐ribosylation factors. Methods in Enzymology, 404, 174–184. https://doi.org/10.1016/S0076‐6879(05)04017‐6
Kitano, J., Kimura, K., Yamazaki, Y., Soda, T., Shigemoto, R., Nakajima, Y., & Nakanishi, S. (2002). Tamalin, a PDZ domain‐containing protein, links a protein complex formation of group 1 metabotropic glutamate receptors and the guanine nucleotide exchange factor cytohesins. The Journal of Neuroscience, 22(4), 1280–1289. https://doi.org/10.1523/JNEUROSCI.22‐04‐01280.2002
Kobayashi, H., & Fukuda, M. (2012). Rab35 regulates Arf6 activity through centaurin‐β2 (ACAP2) during neurite outgrowth. Journal of Cell Science, 125(9), 2235–2243. https://doi.org/10.1242/jcs.098657
Lam, M., Takeo, K., Almeida, R. G., Cooper, M. H., Wu, K., Iyer, M., Kantarci, H., & Zuchero, J. B. (2022). CNS myelination requires VAMP2/3‐mediated membrane expansion in oligodendrocytes. Nature Communications, 13(1), 5583. https://doi.org/10.1038/s41467‐022‐33200‐4
Laursen, L. S., Chan, C. W., & Ffrench‐Constant, C. (2011). Translation of myelin basic protein mRNA in oligodendrocytes is regulated by integrin activation and hnRNP‐K. The Journal of Cell Biology, 192(5), 797–811. https://doi.org/10.1083/jcb.201007014
Lewis‐Saravalli, S., Campbell, S., & Claing, A. (2013). ARF1 controls Rac1 signaling to regulate migration of MDA‐MB‐231 invasive breast cancer cells. Cellular Signaling, 25(9), 1813–1819. https://doi.org/10.1016/j.cellsig.2013.05.011
Liang, X., Draghi, N. A., & Resh, M. D. (2004). Signaling from integrins to Fyn to rho family GTPases regulates morphologic differentiation of oligodendrocytes. The Journal of Neuroscience, 24(32), 7140–7149. https://doi.org/10.1523/JNEUROSCI.5319‐03.2004
Lim, J., Ritt, D. A., Zhou, M., & Morrison, D. K. (2014). The CNK2 scaffold interacts with vilse and modulates Rac cycling during spine morphogenesis in hippocampal neurons. Current Biology, 24(7), 786–792. https://doi.org/10.1016/j.cub.2014.02.036
Lim, J., Zhou, M., Veenstra, T. D., & Marrison, D. K. (2020). The CNK1 scaffold binds cytohesins and promotes insulin pathway signaling. Genes & Development, 24(14), 1496–1506. https://doi.org/10.1101/gad.1904610
Liu, L., Zhang, S., Wang, Y., Bao, W., Zhou, Y., Dang, W., Wang, X., Li, H., Cao, X., You, Y., Fang, H., & Shen, X. (2020). BIG1 controls macrophage pro‐inflammatory responses through ARF3‐mediated PI(4,5)P2 synthesis. Cell Death & Disease, 11(5), 374. https://doi.org/10.1038/s41419‐020‐2590‐1
Mansour, M., Lee, S. Y., & Pohajdak, B. (2002). The N‐terminal coiled coil domain of the cytohesin/ARNO family of guanine nucleotide exchange factors interacts with the scaffolding protein CASP. The Journal of Biological Chemistry, 277(35), 32302–32309. https://doi.org/10.1074/jbc.M202898200
Miyamoto, Y., Torii, T., Tago, K., Tanoue, A., Takashima, S., & Yamauchi, J. (2018). BIG1/Arfgef1 and Arf1 regulate the initiation of myelination by Schwann cells in mice. Science Advances, 4(4), eaar4471. https://doi.org/10.1126/sciadv.aar4471
Miyamoto, Y., Torii, T., Takada, S., Ohno, N., Saitoh, Y., Nakamura, K., Ito, A., Ogata, T., Terada, N., Tanoue, A., & Yamauchi, J. (2015). Involvement of the Tyro3 receptor and its intracellular partner Fyn signaling in Schwann cell myelination. Molecular Biology of the Cell, 26(19), 3489–3503. https://doi.org/10.1091/mbc.E14‐05‐1020
Miyamoto, Y., Yamamori, N., Torii, T., Tanoue, A., & Yamauchi, J. (2014). Rab35, acting through ACAP2 switching off Arf6, negatively regulates oligodendrocyte differentiation and myelination. Molecular Biology of the Cell, 25(9), 1532–1542. https://doi.org/10.1091/mbc.E13‐10‐0600
Miyamoto, Y., Torii, T., Homma, K., Oizumi, H., Ohbuchi, K., Mizoguchi, K., Takashima, S., & Yamauchi, J. (2022). The adaptor SH2B1 and the phosphatase PTP4A1 regulate the phosphorylation of cytohesin‐2 in myelinating Schwann cells in mice. Science Signaling, 15(718), eabi5276. https://doi.org/10.1126/scisignal.abi5276
Montagnac, G., Sibarita, J. B., Loubéry, S., Daviet, L., Romao, M., Raposo, G., & Chavrier, P. (2009). ARF6 interacts with JIP4 to control a motor switch mechanism regulating endosome traffic in cytokinesis. Current Biology, 19(3), 184–195. https://doi.org/10.1016/j.cub.2008.12.043
Nawaz, S., Kippert, A., Saab, A. S., Werner, H. B., Lang, T., Nave, K. A., & Simons, M. (2009). Phosphatidylinositol 4,5‐bisphosphate‐dependent interaction of myelin basic protein with the plasma membrane in oligodendroglial cells and its rapid perturbation by elevated calcium. The Journal of Neuroscience, 29(15), 4794–4807. https://doi.org/10.1523/JNEUROSCI.3955‐08.2009
Nevrivy, D. J., Peterson, V. J., Avram, D., Ishmael, J. E., Hansen, S. G., Dowell, P., Hruby, D. E., Dawson, M. I., & Leid, M. (2000). Interaction of GRASP, a protein encoded by a novel retinoic acid‐induced gene, with members of the cytohesin family of guanine nucleotide exchange factors. The Journal of Biological Chemistry, 275(22), 16827–16836. https://doi.org/10.1074/jbc.275.22.16827
Norman, J. C., Jones, D., Barry, S. T., Holt, M. R., Cockcroft, S., & Critchley, D. R. (1998). ARF1 mediates paxillin recruitment to focal adhesions and potentiates rho‐stimulated stress fiber formation in intact and permeabilized swiss 3T3 fibroblasts. The Journal of Cell Biology, 143(7), 1981–1995. https://doi.org/10.1083/jcb.143.7.1981
Ogasawara, M., Kim, S. C., Adamik, R., Togawa, A., Ferrans, V. J., Takeda, K., Kirby, M., Moss, J., & Vaughan, M. (2000). Similarities in function and gene structure of cytohesin‐4 and cytohesin‐1, guanine nucleotide‐exchange proteins for ADP‐ribosylation factors. The Journal of Biological Chemistry, 275(5), 3221–3230. https://doi.org/10.1074/jbc.275.5.3221
Osmani, N., Peglion, F., Chavrier, P., & Etienne‐Manneville, S. (2010). Cdc42 localization and cell polarity depend on membrane traffic. The Journal of Cell Biology, 191(7), 1261–1269. https://doi.org/10.1083/jcb.201003091
Pacheco‐Rodriguez, G., Moss, J., & Vaughan, M. (2002). BIG1 and BIG2: Brefeldin A‐inhibited guanine nucleotide‐exchange proteins for ADP ribosylation factors. Methods in Enzymology, 345, 397–404. https://doi.org/10.1016/s0076‐6879(02)45032‐x
Padilla, P. I., Pacheco‐Rodriguez, G., Moss, J., & Vaughan, M. (2004). Nuclear localization and molecular partners of BIG1, a brefeldin A‐inhibited guanine nucleotide‐exchange protein for ADP‐ribosylation factors. Proceedings of the National Academy of Sciences of the United States of America, 101(9), 2752–2757. https://doi.org/10.1073/pnas.0307345101
Padilla, P. I., Uhart, M., Pacheco‐Rodriguez, G., Peculis, B. A., Moss, J., & Vaughan, M. (2008). Association of guanine nucleotide‐exchange protein BIG1 in HepG2 cell nuclei with nucleolin, U3 snoRNA, and fibrillarin. Proceedings of the National Academy of Sciences of the United States of America, 105(9), 3357–3361. https://doi.org/10.1073/pnas.0712387105
Peckham, H., Giuffrida, L., Wood, R., Gonsalvez, D., Ferner, A., Kilpatrick, T. J., Murray, S. S., & Xiao, J. (2016). Fyn is an intermediate kinase that BDNF utilizes to promote oligodendrocyte myelination. Glia, 64(2), 255–269. https://doi.org/10.1002/glia.22927
Peotter, J., Kasberg, W., Pustova, I., & Audhya, A. (2019). COPII‐mediated trafficking at the ER/ERGIC interface. Traffic, 20(7), 491–503. https://doi.org/10.1111/tra.12654
Raasakka, A., & Kursula, P. (2020). How does protein zero assemble compact myelin? Cells, 9(8), 1832. https://doi.org/10.3390/cells9081832
Rein, U., Andag, U., Duden, R., Schmitt, H. D., & Spang, A. (2002). ARF‐GAP‐mediated interaction between the ER‐Golgi v‐SNAREs and the COPI coat. The Journal of Cell Biology, 157(3), 395–404. https://doi.org/10.1083/jcb.200112092
Sakagami, H., Katsumata, O., Hara, Y., Tamaki, H., Watanabe, M., Harvey, R. J., & Fukaya, M. (2013). Distinct synaptic localization patterns of brefeldin A‐resistant guanine nucleotide exchange factors BRAG2 and BRAG3 in the mouse retina. The Journal of Comparative Neurology, 521(4), 860–876. https://doi.org/10.1002/cne.23206
Sakagami, H., Sanda, M., Fukaya, M., Miyazaki, T., Sukegawa, J., Yanagisawa, T., Suzuki, T., Fukunaga, K., Watanabe, M., & Kondo, H. (2008). IQ‐ArfGEF/BRAG1 is a guanine nucleotide exchange factor for Arf6 that interacts with PSD‐95 at postsynaptic density of excitatory synapses. Neuroscience Research, 60(2), 199–212. https://doi.org/10.1016/j.neures.2007.10.013
Salem, J. C., Reviriego‐Mendoza, M. M., & Santy, L. C. (2015). ARF‐GEF cytohesin‐2/ARNO regulates R‐Ras and α5‐integrin recycling through an EHD1‐positive compartment. Mol Biol Chem, 26(23), 4265–4279. https://doi.org/10.1091/mbc.E15‐05‐0278
Sandilands, E., Freckmann, E. C., Cumming, E. M., Román‐Fernández, A., McGarry, L., Anand, J., Galbraith, L., Mason, S., Patel, R., Nixon, C., Cartwright, J., Leung, H. Y., Blyth, K., & Bryant, D. M. (2023). The small GTPase ARF3 controls invasion modality and metastasis by regulating N‐cadherin levels. The Journal of Cell Biology, 222(4), e202206115. https://doi.org/10.1083/jcb.202206115
Santy, L. C., Frank, S. R., Hatfield, J. C., & Casanova, J. E. (1999). Regulation of ARNO nucleotide exchange by a PH domain electrostatic switch. Current Biology, 9(20), 1173–1176. https://doi.org/10.1016/S0960‐9822(00)80019‐6
Sawade, L., Grandi, F., Mignanelli, M., Patiño‐López, G., Klinkert, K., Langa‐Vives, F., Di Guardo, R., Echard, A., Bolino, A., & Haucke, V. (2020). Rab35‐regulated lipid turnover by myotubularins represses mTORC1 activity and controls myelin growth. Nature Communications, 11(1), 2835. https://doi.org/10.1038/s41467‐020‐16696‐6
Schardt, A., Brinkmann, B. G., Mitkovski, M., Sereda, M. W., Werner, H. B., & Nave, K. A. (2009). The SNARE protein SNAP‐29 interacts with the GTPase Rab3A: Implications for membrane trafficking in myelinating glia. Journal of Neuroscience Research, 87(15), 3465–3479. https://doi.org/10.1002/jnr.22005
Schlienger, S., Ramirez, R. A., & Claing, A. (2015). ARF1 regulates adhesion of MDA‐MB‐231 invasive breast cancer cells through formation of focal adhesions. Cellular Signalling, 27(3), 403–415. https://doi.org/10.1016/j.cellsig.2014.11.032
Scholz, R., Berberich, S., Rathgeber, L., Kolleker, A., Köhr, G., & Kornau, H. C. (2010). AMPA receptor signaling through BRAG2 and Arf6 critical for long‐term synaptic depression. Neuron, 66(5), 768–780. https://doi.org/10.1016/j.neuron.2010.05.003
Shinotsuka, C., Yoshida, Y., Kawamoto, K., Takatsu, H., & Nakayama, K. (2002). Overexpression of an ADP‐ribosylation factor‐guanine nucleotide exchange factor, BIG2, uncouples brefeldin A‐induced adaptor protein‐1 coat dissociation and membrane tubulation. The Journal of Biological Chemistry, 277(11), 9468–9473. https://doi.org/10.1074/jbc.M112427200
Song, X. F., Yang, C. Y., Liu, J., & Yang, W. C. (2006). RPA, a class II ARFGAP protein, activates ARF1 and U5 and plays a role in root hair development in Arabidopsis. Plant Physiology, 141(3), 966–976. https://doi.org/10.1104/pp.106.077818
Teoh, J. J., Iwano, T., Kunii, M., Atik, N., Avriyanti, E., Yoshimura, S. I., Moriwaki, K., & Harada, A. (2017). BIG1 is required for the survival of deep layer neurons, neuronal polarity, and the formation of axonal tracts between the thalamus and neocortex in developing brain. PLoS One, 12(4), e0175888. https://doi.org/10.1371/journal.pone.0175888
Thurnherr, T., Benninger, Y., Wu, X., Chrostek, A., Krause, S. M., Nave, K. A., Franklin, R. J., Brakebusch, C., Suter, U., & Relvas, J. B. (2006). Cdc42 and Rac1 signaling are both required for and act synergistically in the correct formation of myelin sheaths in the CNS. The Journal of Neuroscience, 26(40), 10110–10119. https://doi.org/10.1523/JNEUROSCI.2158‐06.2006
Torii, T., Miyamoto, Y., Sanbe, A., Nishimura, K., Yamauchi, J., & Tanoue, A. (2010). Cytohesin‐2/ARNO, through its interaction with focal adhesion adaptor protein paxillin, regulates preadipocyte migration via the downstream activation of Arf6. The Journal of Biological Chemistry, 285(31), 24270–24281. https://doi.org/10.1074/jbc.M110.125658
Torii, T., Miyamoto, Y., Tago, K., Sango, K., Nakamura, K., Sanbe, A., Tanoue, A., & Yamauchi, J. (2014). Arf6 guanine nucleotide exchange factor cytohesin‐2 binds to CCDC120 and is transported along neurites to mediate neurite growth. The Journal of Biological Chemistry, 289(49), 33887–33903. https://doi.org/10.1074/jbc.M114.575787
Torii, T., Miyamoto, Y., Yamamoto, M., Ohbuchi, K., Tsumura, H., Kawahara, K., Tanoue, A., Sakagami, H., & Yamauchi, J. (2015). Arf6 mediates Schwann cell differentiation and myelination. Biochemical and Biophysical Research Communications, 465(3), 450–457. https://doi.org/10.1016/j.bbrc.2015.08.038
Torii, T., Ohno, N., Miyamoto, Y., Kawahara, K., Saitoh, Y., Nakamura, K., Takashima, S., Sakagami, H., Tanoue, A., & Yamauchi, J. (2015). Arf6 guanine‐nucleotide exchange factor cytohesin‐2 regulates myelination in nerves. Biochemical and Biophysical Research Communications, 460(3), 819–825. https://doi.org/10.1016/j.bbrc.2015.03.113
Umemori, H., Sato, S., Yagi, T., Aizawa, S., & Yamamoto, T. (1994). Initial events of myelination involve Fyn tyrosine kinase signalling. Nature, 367(6463), 572–576. https://doi.org/10.1038/367572a0
van den Bosch, M. T., Poole, A. W., & Hers, I. (2014). Cytohesin‐2 phosphorylation by protein kinase C relieves the constitutive suppression of platelet dense granule secretion by ADP‐ribosylation factor 6. Journal of Thrombosis and Haemostasis, 12(5), 726–735. https://doi.org/10.1111/jth.12542
Wang, J., Fresquez, T., Kandachar, V., & Deretic, D. (2017). The Arf GEF GBF1 and Arf4 synergize with the sensory receptor cargo, rhodopsin, to regulate ciliary membrane trafficking. Journal of Cell Science, 130(23), 3975–3987. https://doi.org/10.1242/jcs.205492
Wells, C. A., Saavedra, R. A., Inouye, H., & Kirschner, D. A. (1993). Myelin P0‐glycoprotein: Predicted structure and interactions of extracellular domain. Journal of Neurochemistry, 61(6), 1987–1995. https://doi.org/10.1111/j.1471‐4159.1993.tb07434.x
White, R., & Krämer‐Albers, E. M. (2014). Axon‐glia interaction and membrane traffic in myelin formation. Frontiers in Cellular Neuroscience, 7, 284. https://doi.org/10.3389/fncel.2013.00284
Winterstein, C., Trotter, J., & Krämer‐Albers, E. M. (2008). Distinct endocytic recycling of myelin proteins promotes oligodendroglial membrane remodeling. Journal of Science, 121(6), 834–842. https://doi.org/10.1242/jcs.022731
Wong‐Dilworth, L., Rodilla‐Ramirez, C., Fox, E., Restel, S. D., Stockhammer, A., Adarska, P., & Bottanelli, F. (2023). STED imaging of endogenously tagged ARF GTPases reveals their distinct nanoscale localizations. The Journal of Cell Biology, 222(7), e20220507. https://doi.org/10.1083/jcb.202205107
Yamauchi, J., Miyamoto, Y., Tanoue, A., Shooter, E. M., & Chan, J. R. (2005). Ras activation of a Rac1 exchange factor, Tiam1, mediates neurotrophin‐3‐induced Schwann cell migration. Proceedings of the National Academy of Sciences of the United States of America, 102(41), 14889–14894. https://doi.org/10.1073/pnas.0507125102
Yamauchi, J., Miyamoto, Y., Torii, T., Takashima, S., Kondo, K., Kawahara, K., Nemoto, N., Chan, J. R., Tsujimoto, G., & Tanoue, A. (2012). Phosphorylation of cytohesin‐1 by Fyn is required for initiation of myelination and the extent of myelination during development. Science Signaling, 5(243), ra69. https://doi.org/10.1126/scisignal.2002802
Yan, X., Nykänen, N. P., Brunello, C. A., Haapasalo, A., Hiltunen, M., Uronen, R. L., & Huttunen, H. J. (2016). FRMD4A‐cytohesin signaling modulates the cellular release of tau. Journal of Cell Science, 129(10), 2003–2015. https://doi.org/10.1242/jcs.180745
Yano, H., Kobayashi, I., Onodera, Y., Luton, F., Franco, M., Mazaki, Y., Hashimoto, S., Iwai, K., Ronai, Z., & Sabe, H. (2008). Fbx8 makes Arf6 refractory to function via ubiquitination. Molecular Biology of the Cell, 19(3), 822–832. https://doi.org/10.1091/mbc.e07‐08‐0763
Zhao, X., Lasell, T. K., & Melançon, P. (2002). Localization of large ADP‐ribosylation factor‐guanine nucleotide exchange factors to different Golgi compartments: Evidence for distinct functions in protein traffic. Molecular Biology of the Cell, 13(1), 119–133. https://doi.org/10.1091/mbc.01‐08‐0420
Zorick, T. S., Syroid, D. E., Arroyo, E., Scherer, S. S., & Lemke, G. (1996). The transcription factors SCIP and Krox‐20 mark distinct stages and cell fates in Schwann cell differentiation. Molecular and Cellular Neurosciences, 8(2–3), 129–145. https://doi.org/10.1006/mcne.1996.0052
Zuchero, J. B., Fu, M. M., Sloan, S. A., Ibrahim, A., Olson, A., Zaremba, A., Dugas, J. C., Wienbar, S., Caprariello, A. V., Kantor, C., Leonoudakis, D., Lariosa‐Willingham, K., Kronenberg, G., Gertz, K., Soderling, S. H., Miller, R. H., & Barres, B. A. (2015). CNS myelin wrapping is driven by Actin disassembly. Developmental Cell, 34(2), 152–167. https://doi.org/10.1016/j.devcel.2015.06.011

Auteurs

Tomohiro Torii (T)

Department of Biochemistry, Kitasato University School of Medicine, Sagamihara-shi, Kanagawa, Japan.

Yuki Miyamoto (Y)

Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan.

Junji Yamauchi (J)

Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan.

Classifications MeSH