Mechanisms of cerebrospinal fluid secretion by the choroid plexus epithelium: Application to various intracranial pathologies.
blood‐cerebrospinal fluid barrier
cerebrospinal fluid composition
cerebrospinal fluid pH
cerebrospinal fluid secretion
choroid plexus epithelium
ion transporters
Journal
Clinical anatomy (New York, N.Y.)
ISSN: 1098-2353
Titre abrégé: Clin Anat
Pays: United States
ID NLM: 8809128
Informations de publication
Date de publication:
19 Jun 2024
19 Jun 2024
Historique:
revised:
02
06
2024
received:
31
05
2024
accepted:
06
06
2024
medline:
19
6
2024
pubmed:
19
6
2024
entrez:
19
6
2024
Statut:
aheadofprint
Résumé
The choroid plexus (CP) is a small yet highly active epithelial tissue located in the ventricles of the brain. It secretes most of the CSF that envelops the brain and spinal cord. The epithelial cells of the CP have a high fluid secretion rate and differ from many other secretory epithelia in the organization of several key ion transporters. One striking difference is the luminal location of, for example, the vital Na
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Novo Nordisk Foundation
Informations de copyright
© 2024 The Author(s). Clinical Anatomy published by Wiley Periodicals LLC on behalf of American Association of Clinical Anatomists and British Association of Clinical Anatomists.
Références
Adragna, N. C., Di Fulvio, M., & Lauf, P. K. (2004). Regulation of K‐Cl cotransport: From function to genes. The Journal of Membrane Biology, 201, 109–137.
Alper, S. L. (2009). Molecular physiology and genetics of Na+−independent SLC4 anion exchangers. The Journal of Experimental Biology, 212, 1672–1683.
Ames, A., 3rd, Higashi, K., & Nesbett, F. B. (1965). Effects of Pco2 acetazolamide and ouabain on volume and composition of choroid‐plexus fluid. The Journal of Physiology, 181, 516–524.
Amin, M. S., Reza, E., Wang, H., & Leenen, F. H. (2009). Sodium transport in the choroid plexus and salt‐sensitive hypertension. Hypertension, 54, 860–867.
Amin, M. S., Wang, H. W., Reza, E., Whitman, S. C., Tuana, B. S., & Leenen, F. H. (2005). Distribution of epithelial sodium channels and mineralocorticoid receptors in cardiovascular regulatory centers in rat brain. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 289, R1787–R1797.
Bairamian, D., Johanson, C. E., Parmelee, J. T., & Epstein, M. H. (1991). Potassium cotransport with sodium and chloride in the choroid plexus. Journal of Neurochemistry, 56, 1623–1629.
Banizs, B., Komlosi, P., Bevensee, M. O., Schwiebert, E. M., Bell, P. D., & Yoder, B. K. (2007). Altered pH(i) regulation and Na(+)/HCO3(−) transporter activity in choroid plexus of cilia‐defective Tg737(orpk) mutant mouse. American Journal of Physiology. Cell Physiology, 292, C1409–C1416.
Euerle, B. D. (2019). Spinal puncture and cerebrospinal fluid examination. In J. R. Roberts, C. B. Custalow, & T. W. Thomsen (Eds.), Roberts and Hedges' clinical procedures in emergency medicine and acute care (7th ed.). Elsevier.
Becker, N. H., Novikoff, A. B., & Zimmerman, H. M. (1967). Fine structure observations of the uptake of intravenously injected peroxidase by the rat choroid plexus. The Journal of Histochemistry and Cytochemistry, 15, 160–165.
Boron, W. F. (2010). Evaluating the role of carbonic anhydrases in the transport of Hco3—related species. Biochimica et Biophysica Acta, 1804, 410–421.
Bouzinova, E., Praetorius, J., Virkki, L., Nielsen, S., Boron, W., & Aalkjaer, C. (2005a). Na+‐dependent HCO3− uptake into the rat choroid plexus epithelium is partially DIDS sensitive. American Journal of Physiology. Cell Physiology, 289, C1448–C1456.
Christensen, H. L., Barbuskaite, D., Rojek, A., Malte, H., Christensen, I. B., Fuchtbauer, A. C., Fuchtbauer, E. M., Wang, T., Praetorius, J., & Damkier, H. H. (2018). The choroid plexus sodium‐bicarbonate cotransporter Nbce2 regulates mouse cerebrospinal fluid pH. The Journal of Physiology, 596, 4709–4728.
Christensen, H. L., Paunescu, T. G., Matchkov, V., Barbuskaite, D., Brown, D., Damkier, H. H., & Praetorius, J. (2017). The V‐ATPase is expressed in the choroid plexus and mediates cAMP‐induced intracellular pH alterations. Physiological Reports, 5, e13072.
Christensen, I. B., Gyldenholm, T., Damkier, H. H., & Praetorius, J. (2013). Polarization of membrane associated proteins in the choroid plexus epithelium from normal and slc4a10 knockout mice. Frontiers in Physiology, 4, 344.
Cserr, H. F. (1971). Physiology of the choroid plexus. Physiological Reviews, 51, 273–311.
Cutler, R. W., Page, L., Galicich, J., & Watters, G. V. (1968). Formation and absorption of cerebrospinal fluid in man. Brain, 91, 707–720.
Damkier, H. H., Brown, P. D., & Praetorius, J. (2013). Cerebrospinal fluid secretion by the choroid plexus. Physiological Reviews, 93, 1847–1892.
Damkier, H. H., Christensen, H. L., Christensen, I. B., Wu, Q., Fenton, R. A., & Praetorius, J. (2018). The murine choroid plexus epithelium expresses the 2Cl(−)/H(+) exchanger ClC‐7 and Na(+)/H(+) exchanger NHE6 in the luminal membrane domain. American Journal of Physiology. Cell Physiology, 314, C439–C448.
Damkier, H. H., Nielsen, S., & Praetorius, J. (2007). Molecular expression of SLC4‐derived Na+−dependent anion transporters in selected human tissues. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 293, R2136–R2146.
Damkier, H. H., & Praetorius, J. (2012). Genetic ablation of Slc4a10 alters the expression pattern of transporters involved in solute movement in the mouse choroid plexus. American Journal of Physiology. Cell Physiology, 302, C1452–C1459.
Damkier, H. H., & Praetorius, J. (2024). Cerebrospinal fluid pH regulation. Pflügers Archiv, 476, 467–478.
Damkier, H. H., Prasad, V., Hubner, C. A., & Praetorius, J. (2009). Nhe1 is a luminal Na+/H+ exchanger in mouse choroid plexus and is targeted to the basolateral membrane in Ncbe/Nbcn2‐null mice. American Journal of Physiology. Cell Physiology, 296, C1291–C1300.
Davson, H., & Segal, M. B. (1970). The effects of some inhibitors and accelerators of sodium transport on the turnover of 22Na in the cerebrospinal fluid and the brain. The Journal of Physiology, 209, 131–153.
Deng, Q. S., & Johanson, C. E. (1989). Stilbenes inhibit exchange of chloride between blood, choroid plexus and cerebrospinal fluid. Brain Research, 501, 183–187.
Doring, F., Derst, C., Wischmeyer, E., Karschin, C., Schneggenburger, R., Daut, J., & Karschin, A. (1998). The epithelial inward rectifier channel Kir7.1 displays unusual K+ permeation properties. The Journal of Neuroscience, 18, 8625–8636.
Eriksson, L., & Westermark, P. (1986). Intracellular neurofibrillary tangle‐like aggregations. A constantly present amyloid alteration in the aging choroid plexus. The American Journal of Pathology, 125, 124–129.
Fame, R. M., Xu, H., Pragana, A., & Lehtinen, M. (2023). Age‐appropriate potassium clearance from perinatal cerebrospinal fluid depends on choroid plexus NKCC1. Fluids and Barriers of the CNS, 20, 45.
Farrell, C. L., Yang, J., & Pardridge, W. M. (1992). GLUT‐1 glucose transporter is present within apical and basolateral membranes of brain epithelial interfaces and in microvascular endothelia with and without tight junctions. The Journal of Histochemistry and Cytochemistry, 40, 193–199.
Feschenko, M. S., Donnet, C., Wetzel, R. K., Asinovski, N. K., Jones, L. R., & Sweadner, K. J. (2003). Phospholemman, a single‐span membrane protein, is an accessory protein of Na,K‐ATPase in cerebellum and choroid plexus. The Journal of Neuroscience, 23, 2161–2169.
Frankel, H., & Kazemi, H. (1983). Regulation of CSF composition—blocking chloride‐bicarbonate exchange. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 55, 177–182.
Furuse, M., Fujita, K., Hiiragi, T., Fujimoto, K., & Tsukita, S. (1998). Claudin‐1 and ‐2: Novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. The Journal of Cell Biology, 141, 1539–1550.
Gazzin, S., Strazielle, N., Schmitt, C., Fevre‐Montange, M., Ostrow, J. D., Tiribelli, C., & Ghersi‐Egea, J. F. (2008). Differential expression of the multidrug resistance‐related proteins ABCb1 and ABCc1 between blood‐brain interfaces. The Journal of Comparative Neurology, 510, 497–507.
Gazzin, S., Strazielle, N., Tiribelli, C., & Ghersi‐Egea, J. F. (2012). Transport and metabolism at blood‐brain interfaces and in neural cells: Relevance to bilirubin‐induced encephalopathy. Frontiers in Pharmacology, 3, 89.
Ghersi‐Egea, J. F., Leninger‐Muller, B., Suleman, G., Siest, G., & Minn, A. (1994). Localization of drug‐metabolizing enzyme activities to blood‐brain interfaces and circumventricular organs. Journal of Neurochemistry, 62, 1089–1096.
Ghersi‐Egea, J. F., Strazielle, N., Catala, M., Silva‐Vargas, V., Doetsch, F., & Engelhardt, B. (2018). Molecular anatomy and functions of the choroidal blood‐cerebrospinal fluid barrier in health and disease. Acta Neuropathologica, 135, 337–361.
Ghersi‐Egea, J. F., Strazielle, N., Murat, A., Jouvet, A., Buenerd, A., & Belin, M. F. (2006). Brain protection at the blood‐cerebrospinal fluid interface involves a glutathione‐dependent metabolic barrier mechanism. Journal of Cerebral Blood Flow and Metabolism, 26, 1165–1175.
Gonzalez‐Gomez, M., & Meyer, G. (2014). Dynamic expression of calretinin in embryonic and early fetal human cortex. Frontiers in Neuroanatomy, 8, 41.
Gonzalez‐Marrero, I., Gimenez‐Llort, L., Johanson, C. E., Carmona‐Calero, E. M., Castaneyra‐Ruiz, L., Brito‐Armas, J. M., Castaneyra‐Perdomo, A., & Castro‐Fuentes, R. (2015). Choroid plexus dysfunction impairs beta‐amyloid clearance in a triple transgenic mouse model of Alzheimer's disease. Frontiers in Cellular Neuroscience, 9, 17.
Gorle, N., Van Cauwenberghe, C., Libert, C., & Vandenbroucke, R. E. (2016). The effect of aging on brain barriers and the consequences for Alzheimer's disease development. Mammalian Genome, 27, 407–420.
Gradinaru, D., Minn, A. L., Artur, Y., Minn, A., & Heydel, J. M. (2009). Drug metabolizing enzyme expression in rat choroid plexus: Effects of in vivo xenobiotics treatment. Archives of Toxicology, 83, 581–586.
Gray, H., & Williams, P. L. (1989). Gray's anatomy. Elsevier.
Gregoriades, J. M. C., Madaris, A., Alvarez, F. J., & Alvarez‐Leefmans, F. J. (2019). Genetic and pharmacological inactivation of apical Na(+)‐K(+)‐2Cl(−) cotransporter 1 in choroid plexus epithelial cells reveals the physiological function of the cotransporter. American Journal of Physiology. Cell Physiology, 316, C525–C544.
Hacker, H. J., Thorens, B., & Grobholz, R. (1991). Expression of facilitative glucose transporter in rat liver and choroid plexus. A histochemical study in native cryostat sections. Histochemistry, 96, 435–439.
Harik, S. I., Kalaria, R. N., Andersson, L., Lundahl, P., & Perry, G. (1990). Immunocytochemical localization of the erythroid glucose transporter: Abundance in tissues with barrier functions. The Journal of Neuroscience, 10, 3862–3872.
Hasan, F. M., & Kazemi, H. (1976). Dual contribution theory of regulation of CSF HCO3 in respiratory acidosis. Journal of Applied Physiology, 40, 559–567.
Haselbach, M., Wegener, J., Decker, S., Engelbertz, C., & Galla, H. J. (2001). Porcine choroid plexus epithelial cells in culture: Regulation of barrier properties and transport processes. Microscopy Research and Technique, 52, 137–152.
Hochstetler, A. E., Smith, H. M., Preston, D. C., Reed, M. M., Territo, P. R., Shim, J. W., Fulkerson, D., & Blazer‐Yost, B. L. (2020). TRPV4 antagonists ameliorate ventriculomegaly in a rat model of hydrocephalus. JCI Insight, 5(18), e137646.
Hugh, D., & Malcolm Beverley, S. (1996). Physiology of the CSF and blood‐brain barriers.
Hulme, L., Hochstetler, A., Schwerk, C., Schroten, H., Ishikawa, H., Tung, C. Y., Perrin, B., & Blazer‐Yost, B. (2022). Characterization of TRPV4‐mediated signaling pathways in an optimized human choroid plexus epithelial cell line. American Journal of Physiology. Cell Physiology, 323, C1823–C1842.
Imura, A., Tsuji, Y., Murata, M., Maeda, R., Kubota, K., Iwano, A., Obuse, C., Togashi, K., Tominaga, M., Kita, N., Tomiyama, K., Iijima, J., Nabeshima, Y., Fujioka, M., Asato, R., Tanaka, S., Kojima, K., Ito, J., Nozaki, K., … Fujimori, T. (2007). Alpha‐klotho as a regulator of calcium homeostasis. Science, 316, 1615–1618.
Jacobs, S., Ruusuvuori, E., Sipila, S. T., Haapanen, A., Damkier, H. H., Kurth, I., Hentschke, M., Schweizer, M., Rudhard, Y., Laatikainen, L. M., Tyynela, J., Praetorius, J., Voipio, J., & Hubner, C. A. (2008). Mice with targeted Slc4a10 gene disruption have small brain ventricles and show reduced neuronal excitability. Proceedings of the National Academy of Sciences of the United States of America, 105, 311–316.
Javaheri, S., & Wagner, K. R. (1993). Bumetanide decreases canine cerebrospinal fluid production. In vivo evidence for NaCl cotransport in the central nervous system. The Journal of Clinical Investigation, 92, 2257–2261.
Johanson, C. E., & Murphy, V. A. (1990). Acetazolamide and insulin alter choroid plexus epithelial cell [Na+], pH, and volume. The American Journal of Physiology, 258, F1538–F1546.
Johanson, C. E., Murphy, V. A., & Dyas, M. (1992). Ethacrynic acid and furosemide alter Cl, K, and Na distribution between blood, choroid plexus, CSF, and brain. Neurochemical Research, 17, 1079–1085.
Johansson, P. A., Dziegielewska, K. M., Ek, C. J., Habgood, M. D., Mollgard, K., Potter, A., Schuliga, M., & Saunders, N. R. (2005). Aquaporin‐1 in the choroid plexuses of developing mammalian brain. Cell and Tissue Research, 322, 353–364.
Kajita, H., & Brown, P. D. (1997). Inhibition of the inward‐rectifying Cl− channel in rat choroid plexus by a decrease in extracellular pH. The Journal of Physiology, 498(Pt 3), 703–707.
Kajita, H., Omori, K., & Matsuda, H. (2000). The chloride channel ClC‐2 contributes to the inwardly rectifying Cl‐ conductance in cultured porcine choroid plexus epithelial cells. The Journal of Physiology, 523(Pt 2), 313–324.
Kallio, H., Pastorekova, S., Pastorek, J., Waheed, A., Sly, W. S., Mannisto, S., Heikinheimo, M., & Parkkila, S. (2006). Expression of carbonic anhydrases ix and xii during mouse embryonic development. BMC Developmental Biology, 6, 22.
Kanaka, C., Ohno, K., Okabe, A., Kuriyama, K., Itoh, T., Fukuda, A., & Sato, K. (2001). The differential expression patterns of messenger RNAs encoding K‐Cl cotransporters (KCC1,2) and Na‐K‐2Cl cotransporter (NKCC1) in the rat nervous system. Neuroscience, 104, 933–946.
Kao, L., Kurtz, L. M., Shao, X., Papadopoulos, M. C., Liu, L., Bok, D., Nusinowitz, S., Chen, B., Stella, S. L., Andre, M., Weinreb, J., Luong, S. S., Piri, N., Kwong, J. M., Newman, D., & Kurtz, I. (2011). Severe neurologic impairment in mice with targeted disruption of the electrogenic sodium bicarbonate cotransporter NBCe2 (Slc4a5 gene). The Journal of Biological Chemistry, 286, 32563–32574.
Karadsheh, M. F., Byun, N., Mount, D. B., & Delpire, E. (2004). Localization of the Kcc4 potassium‐chloride cotransporter in the nervous system. Neuroscience, 123, 381–391.
Kazemi, H., Shannon, D. C., & Carvallo‐Gil, E. (1967). Brain CO2 buffering capacity in respiratory acidosis and alkalosis. Journal of Applied Physiology, 22, 241–246.
Keep, R. F., Xiang, J., & Betz, A. L. (1994). Potassium cotransport at the rat choroid plexus. The American Journal of Physiology, 267, C1616–C1622.
Kibble, J. D., Garner, C., Colledge, W. H., Brown, S., Kajita, H., Evans, M., & Brown, P. D. (1997). Whole cell Cl‐ conductances in mouse choroid plexus epithelial cells do not require CFTR expression. The American Journal of Physiology, 272, C1899–C1907.
Kibble, J. D., Trezise, A. E., & Brown, P. D. (1996). Properties of the cAMP‐activated C1− current in choroid plexus epithelial cells isolated from the rat. The Journal of Physiology, 496(Pt 1), 69–80.
Kiktenko, A. I. (1986). Biondi bodies in the choroid plexus epithelium of the human brain. A scanning electron‐microscopic study. Cell and Tissue Research, 244, 239–240.
Klarr, S. A., Ulanski, L. J., 2nd, Stummer, W., Xiang, J., Betz, A. L., & Keep, R. F. (1997). The effects of hypo‐ and hyperkalemia on choroid plexus potassium transport. Brain Research, 758, 39–44.
Kotera, T., & Brown, P. D. (1994). Evidence for two types of potassium current in rat choroid plexus epithelial cells. Pflügers Archiv, 427, 317–324.
Kratzer, I., Vasiljevic, A., Rey, C., Fevre‐Montange, M., Saunders, N., Strazielle, N., & Ghersi‐Egea, J. F. (2012). Complexity and developmental changes in the expression pattern of claudins at the blood‐CSF barrier. Histochemistry and Cell Biology, 138, 861–879.
Kusuhara, H., & Sugiyama, Y. (2004). Efflux transport systems for organic anions and cations at the blood‐CSF barrier. Advanced Drug Delivery Reviews, 56, 1741–1763.
Langer, T., Zadek, F., Carbonara, M., Caccioppola, A., Brusatori, S., Zoerle, T., Bottazzini, F., Ferraris Fusarini, C., Di Modugno, A., Zanella, A., Zanier, E. R., Fumagalli, R., Pesenti, A., & Stocchetti, N. (2022). Cerebrospinal fluid and arterial Acid‐Base equilibrium of spontaneously breathing patients with aneurismal subarachnoid hemorrhage. Neurocritical Care, 37, 102–110.
Leenen, F. H. (2010). The central role of the brain aldosterone‐“ouabain” pathway in salt‐sensitive hypertension. Biochimica et Biophysica Acta, 1802, 1132–1139.
Leusen, I. (1972). Regulation of cerebrospinal fluid composition with reference to breathing. Physiological Reviews, 52, 1–56.
Liedtke, W., Choe, Y., Marti‐Renom, M. A., Bell, A. M., Denis, C. S., Sali, A., Hudspeth, A. J., Friedman, J. M., & Heller, S. (2000). Vanilloid receptor‐related osmotically activated channel (VR‐OAC), a candidate vertebrate osmoreceptor. Cell, 103, 525–535.
Lindsey, A. E., Schneider, K., Simmons, D. M., Baron, R., Lee, B. S., & Kopito, R. R. (1990). Functional expression and subcellular localization of an anion exchanger cloned from choroid plexus. Proceedings of the National Academy of Sciences of the United States of America, 87, 5278–5282.
Loffing, J., Loffing‐Cueni, D., Macher, A., Hebert, S. C., Olson, B., Knepper, M. A., Rossier, B. C., & Kaissling, B. (2000). Localization of epithelial sodium channel and aquaporin‐2 in rabbit kidney cortex. American Journal of Physiology. Renal Physiology, 278, F530–F539.
Lun, M. P., Monuki, E. S., & Lehtinen, M. K. (2015). Development and functions of the choroid plexus‐cerebrospinal fluid system. Nature Reviews. Neuroscience, 16, 445–457.
Macaulay, N., & Zeuthen, T. (2010). Water transport between CNS compartments: Contributions of aquaporins and cotransporters. Neuroscience, 168, 941–956.
Masuzawa, T., Ohta, T., Kawamura, M., Nakahara, N., & Sato, F. (1984). Immunohistochemical localization of Na+, K+‐ATPase in the choroid plexus. Brain Research, 302, 357–362.
Mcmurtrie, H. L., Cleary, H. J., Alvarez, B. V., Loiselle, F. B., Sterling, D., Morgan, P. E., Johnson, D. E., & Casey, J. R. (2004). The bicarbonate transport metabolon. Journal of Enzyme Inhibition and Medicinal Chemistry, 19, 231–236.
Millar, I. D., & Brown, P. D. (2008). NBCe2 exhibits a 3 HCO3(−):1 Na+ stoichiometry in mouse choroid plexus epithelial cells. Biochemical and Biophysical Research Communications, 373, 550–554.
Millar, I. D., Bruce, J., & Brown, P. D. (2007). Ion channel diversity, channel expression and function in the choroid plexuses. Cerebrospinal Fluid Research, 4, 8.
Murphy, V., Smith, Q., & Rapoport, S. (1988). Regulation of brain and cerebrospinal fluid calcium by brain barrier membranes following vitamin D‐related chronic hypo‐ and hypercalcemia in rats. Journal of Neurochemistry, 51, 1777–1782.
Murphy, V. A., & Johanson, C. E. (1989). Alteration of sodium transport by the choroid plexus with amiloride. Biochimica et Biophysica Acta, 979, 187–192.
Nakamura, N., Suzuki, Y., Sakuta, H., Ookata, K., Kawahara, K., & Hirose, S. (1999). Inwardly rectifying K+ channel Kir7.1 is highly expressed in thyroid follicular cells, intestinal epithelial cells and choroid plexus epithelial cells: Implication for a functional coupling with Na+,K+‐ATPase. The Biochemical Journal, 342(Pt 2), 329–336.
Netter, F. H. (2014). Atlas of human anatomy. PA, Saunders/Elsevier.
Neumann, C., Rosenbaek, L. L., Flygaard, R. K., Habeck, M., Karlsen, J. L., Wang, Y., Lindorff‐Larsen, K., Gad, H. H., Hartmann, R., Lyons, J. A., Fenton, R. A., & Nissen, P. (2022). Cryo‐EM structure of the human NKCC1 transporter reveals mechanisms of ion coupling and specificity. The EMBO Journal, 41, e110169.
Nielsen, S., Smith, B. L., Christensen, E. I., & Agre, P. (1993). Distribution of the aquaporin Chip in secretory and resorptive epithelia and capillary endothelia. Proceedings of the National Academy of Sciences of the United States of America, 90, 7275–7279.
O'kane, R. L., Martinez‐Lopez, I., Dejoseph, M. R., Vina, J. R., & Hawkins, R. A. (1999). Na(+)‐dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) of the blood‐brain barrier. A mechanism for glutamate removal. The Journal of Biological Chemistry, 274, 31891–31895.
Oshio, K., Watanabe, H., Song, Y., Verkman, A. S., & Manley, G. T. (2005). Reduced cerebrospinal fluid production and intracranial pressure in mice lacking choroid plexus water channel Aquaporin‐1. The FASEB Journal, 19, 76–78.
Pearson, M. M., Lu, J., Mount, D. B., & Delpire, E. (2001). Localization of the K(+)‐Cl(−) cotransporter, KCC3, in the central and peripheral nervous systems: Expression in the choroid plexus, large neurons and white matter tracts. Neuroscience, 103, 481–491.
Plotkin, M. D., Kaplan, M. R., Peterson, L. N., Gullans, S. R., Hebert, S. C., & Delpire, E. (1997). Expression of the Na(+)‐K(+)‐2Cl− cotransporter BSC2 in the nervous system. The American Journal of Physiology, 272, C173–C183.
Pollay, M., & Curl, F. (1967). Secretion of cerebrospinal fluid by the ventricular ependyma of the rabbit. The American Journal of Physiology, 213, 1031–1038.
Praetorius, J., Nejsum, L., & Nielsen, S. (2004a). A SLC4A10 gene product maps selectively to the basolateral membrane of choroid plexus epithelial cells. The American Journal of Physiology, 286, C601–C610.
Praetorius, J., Nejsum, L. N., & Nielsen, S. (2004b). A SCL4A10 gene product maps selectively to the basolateral plasma membrane of choroid plexus epithelial cells. American Journal of Physiology. Cell Physiology, 286, C601–C610.
Praetorius, J., & Nielsen, S. (2006). Distribution of sodium transporters and aquaporin‐1 in the human choroid plexus. American Journal of Physiology. Cell Physiology, 291, C59–C67.
Preston, D., Simpson, S., Halm, D., Hochstetler, A., Schwerk, C., Schroten, H., & Blazer‐Yost, B. L. (2018). Activation of TRPV4 stimulates transepithelial ion flux in a porcine choroid plexus cell line. American Journal of Physiology. Cell Physiology, 315, C357–C366.
Redzic, Z. (2011). Molecular biology of the blood‐brain and the blood‐cerebrospinal fluid barriers: Similarities and differences. Fluids and Barriers of the CNS, 8, 3.
Roepke, T. K., Kanda, V. A., Purtell, K., King, E. C., Lerner, D. J., & Abbott, G. W. (2011). Kcne2 forms potassium channels with Kcna3 and Kcnq1 in the choroid plexus epithelium. The FASEB Journal, 25, 4264–4273.
Sa, L., Watanabe, M., Yamada, H., Nagai, A., Kinuta, M., & Takei, K. (2004). Immunohistochemical localization of klotho protein in brain, kidney, and reproductive organs of mice. Cell Structure and Function, 29, 91–99.
Sadegh, C., Xu, H., Sutin, J., Fatou, B., Gupta, S., Pragana, A., Taylor, M., Kalugin, P. N., Zawadzki, M. E., Alturkistani, O., Shipley, F. B., Dani, N., Fame, R. M., Wurie, Z., Talati, P., Schleicher, R. L., Klein, E. M., Zhang, Y., Holtzman, M. J., … Lehtinen, M. K. (2023). Choroid plexus‐targeted NKCC1 overexpression to treat post‐hemorrhagic hydrocephalus. Neuron, 111(10), 1591–1608.
Saito, Y., & Wright, E. M. (1984). Regulation of bicarbonate transport across the brush border membrane of the bull‐frog choroid plexus. The Journal of Physiology, 350, 327–342.
Saunders, N. R., Daneman, R., Dziegielewska, K. M., & Liddelow, S. A. (2013). Transporters of the blood‐brain and blood‐CSF interfaces in development and in the adult. Molecular Aspects of Medicine, 34, 742–752.
Saunders, N. R., Dziegielewska, K. M., Fame, R. M., Lehtinen, M. K., & Liddelow, S. A. (2023). The choroid plexus: A missing link in our understanding of brain development and function. Physiological Reviews, 103, 919–956.
Saunders, N. R., Ek, C. J., Habgood, M. D., & Dziegielewska, K. M. (2008). Barriers in the brain: A renaissance? Trends in Neurosciences, 31, 279–286.
Serot, J. M., Bene, M. C., Foliguet, B., & Faure, G. C. (2000). Morphological alterations of the choroid plexus in late‐onset Alzheimer's disease. Acta Neuropathologica, 99, 105–108.
Shuangshoti, S., & Netsky, M. G. (1970). Human choroid plexus: Morphologic and histochemical alterations with age. The American Journal of Anatomy, 128, 73–95.
Siegel, G. J., Holm, C., Schreiber, J. H., Desmond, T., & Ernst, S. A. (1984). Purification of mouse brain (Na+ + K+)‐ATPase catalytic unit, characterization of antiserum, and immunocytochemical localization in cerebellum, choroid plexus, and kidney. The Journal of Histochemistry and Cytochemistry, 32, 1309–1318.
Smith, D. E., Johanson, C. E., & Keep, R. F. (2004). Peptide and peptide analog transport systems at the blood‐CSF barrier. Advanced Drug Delivery Reviews, 56, 1765–1791.
Speake, T., & Brown, P. D. (2004). Ion channels in epithelial cells of the choroid plexus isolated from the lateral ventricle of rat brain. Brain Research, 1005, 60–66.
Speake, T., Freeman, L. J., & Brown, P. D. (2003). Expression of aquaporin 1 and aquaporin 4 water channels in rat choroid plexus. Biochimica et Biophysica Acta, 1609, 80–86.
Speake, T., Kibble, J. D., & Brown, P. D. (2004). Kv1.1 and Kv1.3 channels contribute to the delayed‐rectifying K+ conductance in rat choroid plexus epithelial cells. American Journal of Physiology. Cell Physiology, 286, C611–C620.
Steffensen, A. B., Oernbo, E. K., Stoica, A., Gerkau, N. J., Barbuskaite, D., Tritsaris, K., Rose, C. R., & Macaulay, N. (2018). Cotransporter‐mediated water transport underlying cerebrospinal fluid formation. Nature Communications, 9, 2167.
Strazielle, N., & Ghersi‐Egea, J. F. (1999). Demonstration of a coupled metabolism‐efflux process at the choroid plexus as a mechanism of brain protection toward xenobiotics. The Journal of Neuroscience, 19, 6275–6289.
Strazielle, N., & Ghersi‐Egea, J. F. (2013). Physiology of blood‐brain interfaces in relation to brain disposition of small compounds and macromolecules. Molecular Pharmaceutics, 10, 1473–1491.
Szmydynger‐Chodobska, J., Pascale, C. L., Pfeffer, A. N., Coulter, C., & Chodobski, A. (2007). Expression of junctional proteins in choroid plexus epithelial cell lines: A comparative study. Cerebrospinal Fluid Research, 4, 11.
Tayarani, I., Cloez, I., Clement, M., & Bourre, J. M. (1989). Antioxidant enzymes and related trace elements in aging brain capillaries and choroid plexus. Journal of Neurochemistry, 53, 817–824.
Tietz, S., & Engelhardt, B. (2015). Brain barriers: Crosstalk between complex tight junctions and adherens junctions. The Journal of Cell Biology, 209, 493–506.
Tubbs, R. S., Iwanaga, J., Rizk, E. B., D'Antoni, A. V., & Dumont, A. S. (2022). Cerebrospinal fluid and subarachnoid space volume 1: Clinical anatomy and physiology. Academic Press, Elsevier.
Uchida, Y., Zhang, Z., Tachikawa, M., & Terasaki, T. (2015). Quantitative targeted absolute proteomics of rat blood‐cerebrospinal fluid barrier transporters: Comparison with a human specimen. Journal of Neurochemistry, 134, 1104–1115.
Usui, T., Nakazawa, A., Okura, T., Deguchi, Y., Akanuma, S. I., Kubo, Y., & Hosoya, K. I. (2016). Histamine elimination from the cerebrospinal fluid across the blood‐cerebrospinal fluid barrier: Involvement of plasma membrane monoamine transporter (PMAT/SLC29A4). Journal of Neurochemistry, 139, 408–418.
Van Huysse, J. W., Amin, M. S., Yang, B., & Leenen, F. H. (2012). Salt‐induced hypertension in a mouse model of Liddle syndrome is mediated by epithelial sodium channels in the brain. Hypertension, 60, 691–696.
Vorbrodt, A. W., & Dobrogowska, D. H. (2003). Molecular anatomy of intercellular junctions in brain endothelial and epithelial barriers: Electron microscopist's view. Brain Research. Brain Research Reviews, 42, 221–242.
Wang, H. W., Amin, M. S., El‐Shahat, E., Huang, B. S., Tuana, B. S., & Leenen, F. H. (2010). Effects of central sodium on epithelial sodium channels in rat brain. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 299, R222–R233.
Watts, A. G., Sanchez‐Watts, G., Emanuel, J. R., & Levenson, R. (1991). Cell‐specific expression of mRNAs encoding Na+,K(+)‐ATPase alpha‐ and beta‐subunit isoforms within the rat central nervous system. Proceedings of the National Academy of Sciences of the United States of America, 88, 7425–7429.
Welch, K. (1963). Secretion of cerebrospinal fluid by choroid plexus of the rabbit. The American Journal of Physiology, 205, 617–624.
Wolburg, H., & Paulus, W. (2010). Choroid plexus: Biology and pathology. Acta Neuropathologica, 119, 75–88.
Wolburg, H., Wolburg‐Buchholz, K., Liebner, S., & Engelhardt, B. (2001). Claudin‐1, claudin‐2 and claudin‐11 are present in tight junctions of choroid plexus epithelium of the mouse. Neuroscience Letters, 307, 77–80.
Wright, E. M. (1972). Mechanisms of ion transport across the choroid plexus. The Journal of Physiology, 226, 545–571.
Yang, X., Wang, Q., & Cao, E. (2020). Structure of the human cation‐chloride cotransporter NKCC1 determined by single‐particle electron cryo‐microscopy. Nature Communications, 11, 1016.
Zeuthen, T. (2000). Molecular water pumps. Reviews of Physiology, Biochemistry and Pharmacology, 141, 97–151.
Zeuthen, T., & Wright, E. M. (1981). Epithelial potassium transport: Tracer and electrophysiological studies in choroid plexus. The Journal of Membrane Biology, 60, 105–128.
Ziemann, A. E., Schnizler, M. K., Albert, G. W., Severson, M. A., Howard, M. A., 3rd, Welsh, M. J., & Wemmie, J. A. (2008). Seizure termination by acidosis depends on Asic1a. Nature Neuroscience, 11, 816–822.
Zlokovic, B. V., Mackic, J. B., Wang, L., Mccomb, J. G., & Mcdonough, A. (1993). Differential expression of Na,K‐ATPase alpha and beta subunit isoforms at the blood‐brain barrier and the choroid plexus. The Journal of Biological Chemistry, 268, 8019–8025.