Multimodal framework to resolve variants of uncertain significance in
Journal
bioRxiv : the preprint server for biology
Titre abrégé: bioRxiv
Pays: United States
ID NLM: 101680187
Informations de publication
Date de publication:
08 Jun 2024
08 Jun 2024
Historique:
medline:
19
6
2024
pubmed:
19
6
2024
entrez:
19
6
2024
Statut:
epublish
Résumé
Efforts to resolve the functional impact of variants of uncertain significance (VUS) have lagged behind the identification of new VUS; as such, there is a critical need for scalable VUS resolution technologies. Computational variant effect predictors (VEPs), once trained, can predict pathogenicity for all missense variants in a gene, set of genes, or the exome. Existing tools have employed information on known pathogenic and benign variants throughout the genome to predict pathogenicity of VUS. We hypothesize that taking a gene-specific approach will improve pathogenicity prediction over globally-trained VEPs. We tested this hypothesis using the gene
Identifiants
pubmed: 38895336
doi: 10.1101/2024.06.07.597916
pmc: PMC11185720
pii:
doi:
Types de publication
Journal Article
Preprint
Langues
eng