Known pathogenic gene variants and new candidates detected in sudden unexpected infant death using whole genome sequencing.
ROS
SIDS
SUDEP
SUID
WGS
arrhythmia
cardiomyopathy
Journal
American journal of medical genetics. Part A
ISSN: 1552-4833
Titre abrégé: Am J Med Genet A
Pays: United States
ID NLM: 101235741
Informations de publication
Date de publication:
19 Jun 2024
19 Jun 2024
Historique:
revised:
13
02
2024
received:
22
11
2023
accepted:
08
03
2024
medline:
19
6
2024
pubmed:
19
6
2024
entrez:
19
6
2024
Statut:
aheadofprint
Résumé
The purpose of this study is to gain insights into potential genetic factors contributing to the infant's vulnerability to Sudden Unexpected Infant Death (SUID). Whole Genome Sequencing (WGS) was performed on 144 infants that succumbed to SUID, and 573 healthy adults. Variants were filtered by gnomAD allele frequencies and predictions of functional consequences. Variants of interest were identified in 88 genes, in 64.6% of our cohort. Seventy-three of these have been previously associated with SIDS/SUID/SUDP. Forty-three can be characterized as cardiac genes and are related to cardiomyopathies, arrhythmias, and other conditions. Variants in 22 genes were associated with neurologic functions. Variants were also found in 13 genes reported to be pathogenic for various systemic disorders and in two genes associated with immunological function. Variants in eight genes are implicated in the response to hypoxia and the regulation of reactive oxygen species (ROS) and have not been previously described in SIDS/SUID/SUDP. Seventy-two infants met the triple risk hypothesis criteria. Our study confirms and further expands the list of genetic variants associated with SUID. The abundance of genes associated with heart disease and the discovery of variants associated with the redox metabolism have important mechanistic implications for the pathophysiology of SUID.
Identifiants
pubmed: 38895864
doi: 10.1002/ajmg.a.63596
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e63596Subventions
Organisme : Aaron Matthew SIDS Research Guild
Organisme : Seattle Children's Research Institute
Organisme : NHLBI NIH HHS
ID : R01 HL126523
Pays : United States
Organisme : NHLBI NIH HHS
ID : P01 HL090554
Pays : United States
Informations de copyright
© 2024 The Authors. American Journal of Medical Genetics Part A published by Wiley Periodicals LLC.
Références
Allen, K., Anderson, T. M., Chajewska, U., Ramirez, J. M., & Mitchell, E. A. (2021). Factors associated with age of death in sudden unexpected infant death. Acta Paediatrica, 110(1), 174–183. https://doi.org/10.1111/apa.15308
Ambrose, N., Rodriguez, M., Waters, K. A., & Machaalani, R. (2019). Cell death in the human infant central nervous system and in sudden infant death syndrome (SIDS). Apoptosis, 24(1‐2), 46–61. https://doi.org/10.1007/s10495-018-1509-0
Amelio, I., Mancini, M., Petrova, V., Cairns, R. A., Vikhreva, P., Nicolai, S., Marini, A., Antonov, A. A., Le Quesne, J., Baena Acevedo, J. D., Dudek, K., Sozzi, G., Pastorino, U., Knight, R. A., Mak, T. W., & Melino, G. (2018). p53 mutants cooperate with HIF‐1 in transcriptional regulation of extracellular matrix components to promote tumor progression. Proceedings of the National Academy of Sciences of the United States of America, 115(46), E10869–E10878. https://doi.org/10.1073/pnas.1808314115
American SIDS Institute. (2023). Definitions. “SIDS.” American SIDS Institute. https://www.sids.org/what-is-sidssuid/definitions/
Anderson, T. M., Lavista Ferres, J. M., Ren, S. Y., Moon, R. Y., Goldstein, R. D., Ramirez, J. M., & Mitchell, E. A. (2019). Maternal smoking before and during pregnancy and the risk of sudden unexpected infant death. Pediatrics, 143(4), e20183325. https://doi.org/10.1542/peds.2018-3325
Baruteau, A. E., Tester, D. J., Kapplinger, J. D., Ackerman, M. J., & Behr, E. R. (2017). Sudden infant death syndrome and inherited cardiac conditions. Nature Reviews. Cardiology, 14(12), 715–726. https://doi.org/10.1038/nrcardio.2017.129
Basu, R. K., Hubchak, S., Hayashida, T., Runyan, C. E., Schumacker, P. T., & Schnaper, H. W. (2011). Interdependence of HIF‐1α and TGF‐β/Smad3 signaling in normoxic and hypoxic renal epithelial cell collagen expression. American Journal of Physiology. Renal Physiology, 300(4), F898–F905. https://doi.org/10.1152/ajprenal.00335.2010
Benjamini, Y., Drai, D., Elmer, G., Kafkafi, N., & Golani, I. (2001). Controlling the false discovery rate in behavior genetics research. Behavioural Brain Research, 125(1‐2), 279–284. https://doi.org/10.1016/s0166-4328(01)00297-2
Blix, A. S. (2020). A possible cause of sudden infant death syndrome. Medical Hypotheses, 136, 109520. https://doi.org/10.1016/j.mehy.2019.109520
Centers for Disease Control and Prevention. (2023). Sudden Unexpected Infant Death and Sudden Infant Death Syndrome. https://www.cdc.gov/sids/data.htm
Chahal, C. A. A., Salloum, M. N., Alahdab, F., Gottwald, J. A., Tester, D. J., Anwer, L. A., So, E. L., Murad, M. H., St Louis, E. K., Ackerman, M. J., & Somers, V. K. (2020). Systematic review of the genetics of sudden unexpected death in epilepsy: Potential overlap with sudden cardiac death and arrhythmia‐related genes. Journal of the American Heart Association, 9(1), e012264. https://doi.org/10.1161/JAHA.119.012264
Chahal, C. A. A., Tester, D. J., Fayyaz, A. U., Jaliparthy, K., Khan, N. A., Lu, D., Khan, M., Sahoo, A., Rajendran, A., Knight, J. A., Simpson, M. A., Behr, E. R., So, E. L., St Louis, E. K., Reichard, R. R., Edwards, W. D., Ackerman, M. J., & Somers, V. K. (2021). Confirmation of cause of death via comprehensive autopsy and whole exome molecular sequencing in people with epilepsy and sudden unexpected death. Journal of the American Heart Association, 10(23), e021170. https://doi.org/10.1161/JAHA.121.021170
Chen, C., Han, X., Fan, F., Liu, Y., Wang, T., Wang, J., Hu, P., Ma, A., & Tian, H. (2014). Serotonin drives the activation of pulmonary artery adventitial fibroblasts and TGF‐β1/Smad3‐mediated fibrotic responses through 5‐HT(2A) receptors. Molecular and Cellular Biochemistry, 397(1‐2), 267–276. https://doi.org/10.1007/s11010-014-2194-0
Cingolani, P., Patel, V. M., Coon, M., Nguyen, T., Land, S. J., Ruden, D. M., & Lu, X. (2012). Using Drosophila melanogaster as a model for genotoxic chemical mutational studies with a new program, SnpSift. Frontiers in Genetics, 3, 35. https://doi.org/10.3389/fgene.2012.00035
Cingolani, P., Platts, A., Wang, l L., Coon, M., Nguyen, T., Wang, L., Land, S. J., Lu, X., & Ruden, D. M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly, 6(2), 80–92. https://doi.org/10.4161/fly.19695
Clemens, D. J., Gray, B., Bagnall, R. D., Tester, D. J., Giudicessi, J. R., Maleszewski, J. J., Crotti, L., Schwartz, P. J., Matthews, E., Semsarian, C., Behr, E. R., & Ackerman, M. J. (2020). Prevalence and phenotypic correlations of calmodulinopathy‐causative CALM1‐3 variants detected in a multicenter molecular autopsy cohort of sudden unexplained death victims. Circulation. Genomic and Precision Medicine, 13(6), e003032. https://doi.org/10.1161/CIRCGEN.120.003032
Cummings, K. J., & Hodges, M. R. (2019). The serotonergic system and the control of breathing during development. Respiratory Physiology & Neurobiology, 270, 103255. https://doi.org/10.1016/j.resp.2019.103255
Dai, C., Wu, B., Chen, Y., Li, X., Bai, Y., Du, Y., Pang, Y., Wang, Y. T., & Dong, Z. (2021). Aagab acts as a novel regulator of NEDD4‐1‐mediated Pten nuclear translocation to promote neurological recovery following hypoxic‐ischemic brain damage. Cell Death and Differentiation, 28(8), 2367–2384. https://doi.org/10.1038/s41418-021-00757-4
Dales, R., Burnett, R. T., Smith‐Doiron, M., Stieb, D. M., & Brook, J. R. (2004). Air pollution and sudden infant death syndrome. Pediatrics, 113(6), e628–e631. https://doi.org/10.1542/peds.113.6.e628
Damar, İ. H., & Eroz, R. (2020). The association of hereditary prothrombotic risk factors with ST‐elevation myocardial infarction. Medeniyet Medical Journal, 35(4), 295–303. https://doi.org/10.5222/MMJ.2020.67366
Engström, K., Vánky, F., Rehnberg, M., Trinks, C., Jonasson, J., Green, A., & Gunnarsson, C. (2020). Novel SMAD3 p.Arg386Thr genetic variant co‐segregating with thoracic aortic aneurysm and dissection. Molecular Genetics & Genomic Medicine, 8(4), e1089. https://doi.org/10.1002/mgg3.1089
Farrugia, A., Rollet, K., Sinniger, J., Brun, S., Spenle, C., Ludes, B., Taleb, O., & Mensah‐Nyagan, A. G. (2021). H1153Y‐KCNH2 mutation identified in a sudden arrhythmic death syndrome case alters channel gating. International Journal of Molecular Sciences, 22(17), 9235. https://doi.org/10.3390/ijms22179235
Ferrante, L., Opdal, S. H., & Byard, R. W. (2024). Understanding the immune profile of sudden infant death syndrome—Proteomic perspectives. Acta Paediatrica, 113(2), 249–255. https://doi.org/10.1111/apa.16988
Garcia, A. J., 3rd, Koschnitzky, J. E., & Ramirez, J. M. (2013). The physiological determinants of sudden infant death syndrome. Respiratory Physiology & Neurobiology, 189(2), 288–300. https://doi.org/10.1016/j.resp.2013.05.032
Garcia, A. J., 3rd, Zanella, S., Dashevskiy, T., Khan, S. A., Khuu, M. A., Prabhakar, N. R., & Ramirez, J. M. (2016). Chronic intermittent hypoxia alters local respiratory circuit function at the level of the preBötzinger complex. Frontiers in Neuroscience, 10, 4. https://doi.org/10.3389/fnins.2016.00004
Gauda, E. B., & Master, Z. (2018). Contribution of relative leptin and adiponectin deficiencies in premature infants to chronic intermittent hypoxia: Exploring a new hypothesis. Respiratory Physiology & Neurobiology, 256, 119–127. https://doi.org/10.1016/j.resp.2017.12.003
Goldstein, R. D., Blair, P. S., Sens, M. A., Shapiro‐Mendoza, C. K., Krous, H. F., Rognum, T. O., Moon, R. Y., & 3rd International Congress on Sudden Infant and Child Death. (2019). Inconsistent classification of unexplained sudden deaths in infants and children hinders surveillance, prevention and research: recommendations from The 3rd International Congress on Sudden Infant and Child Death. Forensic Science, Medicine, and Pathology, 15(4), 622–628. https://doi.org/10.1007/s12024-019-00156-9
Goldwater, P. N. (2017). Infection: the neglected paradigm in SIDS research. Archives of Disease in Childhood, 102(8), 767–772. https://doi.org/10.1136/archdischild-2016-312327
Gray, B., Tester, D. J., Wong, L. C., Chanana, P., Jaye, A., Evans, J. M., Baruteau, A. E., Evans, M., Fleming, P., Jeffrey, I., Cohen, M., Tfelt‐Hansen, J., Simpson, M. A., Ackerman, M. J., & Behr, E. R. (2019). Noncardiac genetic predisposition in sudden infant death syndrome. Genetics in Medicine, 21(3), 641–649. https://doi.org/10.1038/s41436-018-0131-4
Guntheroth, W. G., & Spiers, P. S. (2002). The triple risk hypotheses in sudden infant death syndrome. Pediatrics, 110(5), e64. https://doi.org/10.1542/peds.110.5.e64
Guo, H., Liu, D., Gelbard, H., Cheng, T., Insalaco, R., Fernández, J. A., Griffin, J. H., & Zlokovic, B. V. (2004). Activated protein C prevents neuronal apoptosis via protease activated receptors 1 and 3. Neuron, 41(4), 563–572. https://doi.org/10.1016/s0896-6273(04)00019-4
Halvorsen, M., Gould, L., Wang, X., Grant, G., Moya, R., Rabin, R., Ackerman, M. J., Tester, D. J., Lin, P. T., Pappas, J. G., Maurano, M. T., Goldstein, D. B., Tsien, R. W., & Devinsky, O. (2021). De novo mutations in childhood cases of sudden unexplained death that disrupt intracellular Ca2+ regulation. Proceedings of the National Academy of Sciences of the United States of America, 118(52), e2115140118. https://doi.org/10.1073/pnas.2115140118
Hammer, M. F., Xia, M., & Schreiber, J. M. (2016). SCN8A‐related epilepsy and/or neurodevelopmental disorders. In M. P. Adam (Ed.), GeneReviews®. University of Washington.
Hammond, E. M., & Giaccia, A. J. (2004). The role of ATM and ATR in the cellular response to hypoxia and re‐oxygenation. DNA Repair, 3(8‐9), 1117–1122. https://doi.org/10.1016/j.dnarep.2004.03.035
Hamosh, A., Scott, A. F., Amberger, J., Valle, D., & McKusick, V. A. (2000). Online Mendelian Inheritance in Man (OMIM). Human Mutation, 15(1), 57–61. https://doi.org/10.1002/(SICI)1098-1004(200001)15:1<57::AID-HUMU12>3.0.CO;2-G
Hanna, A., Humeres, C., & Frangogiannis, N. G. (2021). The role of Smad signaling cascades in cardiac fibrosis. Cellular Signalling, 77, 109826. https://doi.org/10.1016/j.cellsig.2020.109826
Haynes, R. L., Trachtenberg, F., Darnall, R., Haas, E. A., Goldstein, R. D., Mena, O. J., Krous, H. F., & Kinney, H. C. (2023). Altered 5‐HT2A/C receptor binding in the medulla oblongata in the sudden infant death syndrome (SIDS): Part I. Tissue‐based evidence for serotonin receptor signaling abnormalities in cardiorespiratory‐ and arousal‐related circuits. Journal of Neuropathology and Experimental Neurology, 82(6), 467–482. https://doi.org/10.1093/jnen/nlad030
Humeres, C., Shinde, A. V., Hanna, A., Alex, L., Hernández, S. C., Li, R., Chen, B., Conway, S. J., & Frangogiannis, N. G. (2022). Smad7 effects on TGF‐β and ErbB2 restrain myofibroblast activation and protect from postinfarction heart failure. The Journal of Clinical Investigation, 132(3), e146926. https://doi.org/10.1172/JCI146926
Jin, Y., Schaffer, A. A., Michael Feolo, J., Holmes, B., & Kattman, B. L. (2019). GRAF‐pop: A fast distance‐based method to infer subject ancestry from multiple genotype datasets without principal components analysis. G3, 9(8), 2447–2461. https://doi.org/10.1534/g3.118.200925
Kalume, F. (2013). Sudden unexpected death in Dravet syndrome: respiratory and other physiological dysfunctions. Respiratory Physiology & Neurobiology, 189(2), 324–328. https://doi.org/10.1016/j.resp.2013.06.026
Karczewski, K. J., Francioli, L. C., Tiao, G., Cummings, B. B., Alföldi, J., Wang, Q., Collins, R. L., Laricchia, K. M., Ganna, A., Birnbaum, D. P., Gauthier, L. D., Brand, H., Solomonson, M., Watts, N. A., Rhodes, D., Singer‐Berk, M., England, E. M., Seaby, E. G., Kosmicki, J. A., … MacArthur, D. G. (2020). The mutational constraint spectrum quantified from variation in 141,456 humans. Nature, 581(7809), 434–443. https://doi.org/10.1038/s41586-020-2308-7
Keywan, C., Poduri, A. H., Goldstein, R. D., & Holm, I. A. (2021). Genetic factors underlying sudden infant death syndrome. The Application of Clinical Genetics, 14, 61–76. https://doi.org/10.2147/TACG.S239478
Kinney, H. C., & Haynes, R. L. (2019). The serotonin brainstem hypothesis for the sudden infant death syndrome. Journal of Neuropathology and Experimental Neurology, 78(9), 765–779. https://doi.org/10.1093/jnen/nlz062
Koh, H. Y., Haghighi, A., Keywan, C., Alexandrescu, S., Plews‐Ogan, E., Haas, E. A., Brownstein, C. A., Vargas, S. O., Haynes, R. L., Berry, G. T., Holm, I. A., Poduri, A. H., & Goldstein, R. D. (2022). Genetic determinants of sudden unexpected death in pediatrics. Genetics in Medicine, 24(4), 839–850. https://doi.org/10.1016/j.gim.2021.12.004
Landrum, M. J., Lee, J. M., Riley, G. R., Jang, W., Rubinstein, W. S., Church, D. M., & Maglott, D. R. (2014). ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Research, 42(Database issue), D980–D985. https://doi.org/10.1093/nar/gkt1113
Lavista Ferres, J. M., Anderson, T. M., Johnston, R., Ramirez, J. M., & Mitchell, E. A. (2020). Distinct populations of sudden unexpected infant death based on age. Pediatrics, 145(1), e20191637. https://doi.org/10.1542/peds.2019-1637
Let's Get Checked. (2023). Unpublished internal company document. Monrovia, CA.
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., & 1000 Genome Project Data Processing Subgroup. (2009). The sequence alignment/map format and SAMtools. Bioinformatics, 25(16), 2078–2079. https://doi.org/10.1093/bioinformatics/btp352
Loeys, B. L., & Dietz, H. C. (2008). Loeys‐Dietz syndrome. In M. P. Adam (Ed.), GeneReviews®. University of Washington.
Männikkö, R., Wong, L., Tester, D. J., Thor, M. G., Sud, R., Kullmann, D. M., Sweeney, M. G., Leu, C., Sisodiya, S. M., FitzPatrick, D. R., Evans, M. J., Jeffrey, I. J. M., Tfelt‐Hansen, J., Cohen, M. C., Fleming, P. J., Jaye, A., Simpson, M. A., Ackerman, M. J., Hanna, M. G., … Matthews, E. (2018). Dysfunction of NaV1.4, a skeletal muscle voltage‐gated sodium channel, in sudden infant death syndrome: A case‐control study. Lancet, 391(10129), 1483–1492. https://doi.org/10.1016/S0140-6736(18)30021-7
McInnes, L., Healy, J., Saul, N., & Großberger, L. (2018). UMAP: Uniform manifold approximation and projection. Journal of Open Source Software, 3(29), 861. https://doi.org/10.21105/joss.00861
Mitchell, E. A. (1991). Cot death: should the prone sleeping position be discouraged? Journal of Paediatrics and Child Health, 27(6), 319–321. https://doi.org/10.1111/j.1440-1754.1991.tb00409.x
Mitchell, E. A. (1997). The changing epidemiology of SIDS following the national risk reduction campaigns. Pediatric Pulmonology. Supplement, 16, 117–119. https://doi.org/10.1002/ppul.1950230865
Mitchell, E. A., & Krous, H. F. (2015). Sudden unexpected death in infancy: a historical perspective. Journal of paediatrics and child health, 51(1), 108–112. https://doi.org/10.1111/jpc.12818
Mitchell, E. A., Yan, X., Ren, S. Y., Anderson, T. M., Ramirez, J. M., Lavista Ferres, J. M., & Johnston, R. (2020). Geographic variation in sudden unexpected infant death in the United States. The Journal of Pediatrics, 220, 49–55.e2. https://doi.org/10.1016/j.jpeds.2020.01.006
Moore, J. P., Gallotti, R. G., Shannon, K. M., Bos, J. M., Sadeghi, E., Strasburger, J. F., Wakai, R. T., Horigome, H., Clur, S. A., Hill, A. C., Shah, M. J., Behere, S., Sarquella‐Brugada, G., Czosek, R., Etheridge, S. P., Fischbach, P., Kannankeril, P. J., Motonaga, K., Landstrom, A. P., … Ackerman, M. J. (2020). Genotype predicts outcomes in fetuses and neonates with severe congenital long QT syndrome. JACC. Clinical Electrophysiology, 6(12), 1561–1570. https://doi.org/10.1016/j.jacep.2020.06.001
Nasirova, N., Quina, L. A., Agosto‐Marlin, I. M., Ramirez, J. M., Lambe, E. K., & Turner, E. E. (2020). Dual recombinase fate mapping reveals a transient cholinergic phenotype in multiple populations of developing glutamatergic neurons. The Journal of Comparative Neurology, 528(2), 283–307. https://doi.org/10.1002/cne.24753
Ntimbane, T., Comte, B., Mailhot, G., Berthiaume, Y., Poitout, V., Prentki, M., Rabasa‐Lhoret, R., & Levy, E. (2009). Cystic fibrosis‐related diabetes: from CFTR dysfunction to oxidative stress. The Clinical Biochemist. Reviews, 30(4), 153–177.
Opdal, S. H. (2018). Cytokines, infection, and immunity. In J. R. Duncan (Ed.), SIDS sudden infant and early childhood death: The past, the present and the future. University of Adelaide Press.
Opdal, S. H., & Rognum, T. O. (2004). The sudden infant death syndrome gene: Does it exist? Pediatrics, 114(4), e506–e512. https://doi.org/10.1542/peds.2004-0683
Opdal, S. H., & Rognum, T. O. (2011). Gene variants predisposing to SIDS: Current knowledge. Forensic Science, Medicine, and Pathology, 7(1), 26–36. https://doi.org/10.1007/s12024-010-9182-9
Oski, F. A. (1979). Clinical implications of the oxyhemoglobin dissociation curve in the neonatal period. Critical Care Medicine, 7(9), 412–418. https://doi.org/10.1097/00003246-197909000-00013
Ou, Y., Liao, C., Li, H., & Yu, G. (2020). LncRNA SOX2OT/Smad3 feedback loop promotes myocardial fibrosis in heart failure. IUBMB Life, 72(11), 2469–2480. https://doi.org/10.1002/iub.2375
Pedersen, B. S., Brown, J. M., Dashnow, H., Wallace, A. D., Velinder, M., Tristani‐Firouzi, M., Schiffman, J. D., Tvrdik, T., Mao, R., Best, D. H., Bayrak‐Toydemir, P., & Quinlan, A. R. (2021). Effective variant filtering and expected candidate variant yield in studies of rare human disease. npj Genomic Medicine, 6(1), 60. https://doi.org/10.1038/s41525-021-00227-3
Pinzón Martín, S., Seeberger, P. H., & Varón, S. D. (2019). Mucins and pathogenic mucin‐like molecules are immunomodulators during infection and targets for diagnostics and vaccines. Frontiers in Chemistry, 7, 710. https://doi.org/10.3389/fchem.2019.00710 Erratum in: Front Chem. 2019 Dec 05;7:846.
Poulsen, J. P., Rognum, T. O., Hauge, S., Oyasaeter, S., & Saugstad, O. D. (1993). Post‐mortem concentrations of hypoxanthine in the vitreous humor—A comparison between babies with severe respiratory failure, congenital abnormalities of the heart, and victims of sudden infant death syndrome. Journal of Perinatal Medicine, 21(2), 153–163. https://doi.org/10.1515/jpme.1993.21.2.153
Ramanathan, R., Corwin, M. J., Hunt, C. E., Lister, G., Tinsley, L. R., Baird, T., Silvestri, J. M., Crowell, D. H., Hufford, D., Martin, R. J., Neuman, M. R., Weese‐Mayer, D. E., Cupples, L. A., Peucker, M., Willinger, M., Keens, T. G., & Collaborative Home Infant Monitoring Evaluation (CHIME) Study Group. (2001). Cardiorespiratory events recorded on home monitors: Comparison of healthy infants with those at increased risk for SIDS. JAMA, 285(17), 2199–2207. https://doi.org/10.1001/jama.285.17.2199
Ramirez, S., Allen, T., Villagracia, L., Chae, Y., Ramirez, J. M., & Rubens, D. D. (2016). Inner ear lesion and the differential roles of hypoxia and hypercarbia in triggering active movements: Potential implication for the Sudden Infant Death Syndrome. Neuroscience, 337, 9–16. https://doi.org/10.1016/j.neuroscience.2016.08.054
Rochtus, A. M., Goldstein, R. D., Holm, I. A., Brownstein, C. A., Pérez‐Palma, E., Haynes, R., Lal, D., & Poduri, A. H. (2020). The role of sodium channels in sudden unexpected death in pediatrics. Molecular Genetics & Genomic Medicine, 8(8), e1309. https://doi.org/10.1002/mgg3.1309
Rognum, T. O., & Saugstad, O. D. (1991). Hypoxanthine levels in vitreous humor: evidence of hypoxia in most infants who died of sudden infant death syndrome. Pediatrics, 87(3), 306–310.
Rognum, T. O., & Saugstad, O. D. (1993). Biochemical and immunological studies in SIDS victims. Clues to understanding the death mechanism. Acta Paediatrica Supplement, 82(Suppl 389), 82–85. https://doi.org/10.1111/j.1651-2227.1993.tb12886.x
Rubens, D. D., Vohr, B. R., Tucker, R., O'Neil, C. A., & Chung, W. (2008). Newborn oto‐acoustic emission hearing screening tests: preliminary evidence for a marker of susceptibility to SIDS. Early Human Development, 84(4), 225–229. https://doi.org/10.1016/j.earlhumdev.2007.06.001
Russo, V., Melillo, E., Papa, A. A., Rago, A., Chamberland, C., & Nigro, G. (2019). Arrhythmias and sudden cardiac death in beta‐thalassemia major patients: Noninvasive diagnostic tools and early markers. Cardiology Research and Practice, 2019, 9319832. https://doi.org/10.1155/2019/9319832
Sesé, M., Fuentes, P., Esteve‐Codina, A., Béjar, E., McGrail, K., Thomas, G., Aasen, T., Ramón, Y., & Cajal, S. (2017). Hypoxia‐mediated translational activation of ITGB3 in breast cancer cells enhances TGF‐β signaling and malignant features in vitro and in vivo. Oncotarget, 8(70), 114856–114876. https://doi.org/10.18632/oncotarget.23145
Stacklies, W., Redestig, H., Scholz, M., Walther, D., & Selbig, J. (2007). pcaMethods—A bioconductor package providing PCA methods for incomplete data. Bioinformatics, 23(9), 1164–1167. https://doi.org/10.1093/bioinformatics/btm069
Stoltenberg, L., Rootwelt, T., Oyasaeter, S., Rognum, T. O., & Saugstad, O. D. (1993). Hypoxanthine, xanthine, and uric acid concentrations in plasma, cerebrospinal fluid, vitreous humor, and urine in piglets subjected to intermittent versus continuous hypoxemia. Pediatric Research, 34(6), 767–771. https://doi.org/10.1203/00006450-199312000-00013
Sutphin, B. S., Boczek, N. J., Barajas‐Martínez, H., Hu, D., Ye, D., Tester, D. J., Antzelevitch, C., & Ackerman, M. J. (2016). Molecular and functional characterization of rare CACNA1C variants in sudden unexplained death in the young. Congenital Heart Disease, 11(6), 683–692. https://doi.org/10.1111/chd.12371
Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta‐Cepas, J., Simonovic, M., Doncheva, N. T., Morris, J. H., Bork, P., Jensen, L. J., & Mering, C. V. (2019). STRING v11: protein‐protein association networks with increased coverage, supporting functional discovery in genome‐wide experimental datasets. Nucleic Acids Research, 47(D1), D607–D613. https://doi.org/10.1093/nar/gky1131
Tester, D. J., Wong, L. C. H., Chanana, P., Gray, B., Jaye, A., Evans, J. M., Evans, M., Fleming, P., Jeffrey, I., Cohen, M., Tfelt‐Hansen, J., Simpson, M. A., Behr, E. R., & Ackerman, M. J. (2018). Exome‐wide rare variant analyses in sudden infant death syndrome. The Journal of Pediatrics, 203, 423–428.e11. https://doi.org/10.1016/j.jpeds.2018.08.011
Tester, D. J., Wong, L. C. H., Chanana, P., Jaye, A., Evans, J. M., FitzPatrick, D. R., Evans, M. J., Fleming, P., Jeffrey, I., Cohen, M. C., Tfelt‐Hansen, J., Simpson, M. A., Behr, E. R., & Ackerman, M. J. (2018). Cardiac genetic predisposition in sudden infant death syndrome. Journal of the American College of Cardiology, 71(11), 1217–1227. https://doi.org/10.1016/j.jacc.2018.01.030
Toye, J. M., Lemire, E. G., & Baerg, K. L. (2012). Perinatal and childhood morbidity and mortality in congenital analbuminemia. Paediatrics & Child Health, 17(6), e20–e23.
Vasiliou, V., Vasiliou, K., & Nebert, D. W. (2009). Human ATP‐binding cassette (ABC) transporter family. Human Genomics, 3(3), 281–290. https://doi.org/10.1186/1479-7364-3-3-281
Vivekanandarajah, A., Nelson, M. E., Kinney, H. C., Elliott, A. J., Folkerth, R. D., Tran, H., Cotton, J., Jacobs, P., Minter, M., McMillan, K., Duncan, J. R., Broadbelt, K. G., Schissler, K., Odendaal, H. J., Angal, J., Brink, L., Burger, E. H., Coldrey, J. A., Dempers, J., … Network, P. A. S. S. (2021). Nicotinic receptors in the brainstem ascending arousal system in SIDS with analysis of pre‐natal exposures to maternal smoking and alcohol in high‐risk populations of the safe passage study. Frontiers in Neurology, 12, 636668. https://doi.org/10.3389/fneur.2021.636668
Wang, K., Li, M., & Hakonarson, H. (2010). ANNOVAR: functional annotation of genetic variants from high‐throughput sequencing data. Nucleic Acids Research, 38(16), e164. https://doi.org/10.1093/nar/gkq603
Xu, P., Liu, Q., Xie, Y., Shi, X., Li, Y., Peng, M., Guo, H., Sun, R., Li, J., Hong, Y., Liu, X., & Xu, G. (2018). Breast cancer susceptibility protein 1 (BRCA1) rescues neurons from cerebral ischemia/reperfusion injury through NRF2‐mediated antioxidant pathway. Redox Biology, 18, 158–172. https://doi.org/10.1016/j.redox.2018.06.012
Yuan, G., Peng, Y. J., Reddy, V. D., Makarenko, V. V., Nanduri, J., Khan, S. A., Garcia, J. A., Kumar, G. K., Semenza, G. L., & Prabhakar, N. R. (2013). Mutual antagonism between hypoxia‐inducible factors 1α and 2α regulates oxygen sensing and cardio‐respiratory homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 110(19), E1788–E1796. https://doi.org/10.1073/pnas.1305961110