Evolving patterns and clinical outcome of genetic studies performed at diagnosis in acute myeloid leukemia patients: Real life data from the PETHEMA Registry.
NGS
PETHEMA
REALMOL
acute myeloid leukemia
cytogenetic
diagnostic
genetic
Journal
Cancer
ISSN: 1097-0142
Titre abrégé: Cancer
Pays: United States
ID NLM: 0374236
Informations de publication
Date de publication:
19 Jun 2024
19 Jun 2024
Historique:
revised:
05
04
2024
received:
15
12
2023
accepted:
05
04
2024
medline:
19
6
2024
pubmed:
19
6
2024
entrez:
19
6
2024
Statut:
aheadofprint
Résumé
There are no studies assessing the evolution and patterns of genetic studies performed at diagnosis in acute myeloid leukemia (AML) patients. Such studies could help to identify potential gaps in our present diagnostic practices, especially in the context of increasingly complex procedures and classifications. The REALMOL study (NCT05541224) evaluated the evolution, patterns, and clinical impact of performing main genetic and molecular studies performed at diagnosis in 7285 adult AML patients included in the PETHEMA AML registry (NCT02607059) between 2000 and 2021. Screening rates increased for all tests across different time periods (2000-2007, 2008-2016, and 2017-2021) and was the most influential factor for NPM1, FLT3-ITD, and next-generation sequencing (NGS) determinations: NPM1 testing increased from 28.9% to 72.8% and 95.2% (p < .001), whereas FLT3-ITD testing increased from 38.1% to 74.1% and 95.9% (p < .0001). NGS testing was not performed between 2000-2007 and only reached 3.5% in 2008-2016, but significantly increased to 72% in 2017-2021 (p < .001). Treatment decision was the most influential factor to perform karyotype (odds ratio [OR], 6.057; 95% confidence interval [CI], 4.702-7.802), and fluorescence in situ hybridation (OR, 2.273; 95% CI, 1.901-2.719) studies. Patients ≥70 years old or with an Eastern Cooperative Oncology Group ≥2 were less likely to undergo these diagnostic procedures. Performing genetic studies were associated with a favorable impact on overall survival, especially in patients who received intensive chemotherapy. This unique study provides relevant information about the evolving landscape of genetic and molecular diagnosis for adult AML patients in real-world setting, highlighting the increased complexity of genetic diagnosis over the past 2 decades.
Sections du résumé
BACKGROUND
BACKGROUND
There are no studies assessing the evolution and patterns of genetic studies performed at diagnosis in acute myeloid leukemia (AML) patients. Such studies could help to identify potential gaps in our present diagnostic practices, especially in the context of increasingly complex procedures and classifications.
METHODS
METHODS
The REALMOL study (NCT05541224) evaluated the evolution, patterns, and clinical impact of performing main genetic and molecular studies performed at diagnosis in 7285 adult AML patients included in the PETHEMA AML registry (NCT02607059) between 2000 and 2021.
RESULTS
RESULTS
Screening rates increased for all tests across different time periods (2000-2007, 2008-2016, and 2017-2021) and was the most influential factor for NPM1, FLT3-ITD, and next-generation sequencing (NGS) determinations: NPM1 testing increased from 28.9% to 72.8% and 95.2% (p < .001), whereas FLT3-ITD testing increased from 38.1% to 74.1% and 95.9% (p < .0001). NGS testing was not performed between 2000-2007 and only reached 3.5% in 2008-2016, but significantly increased to 72% in 2017-2021 (p < .001). Treatment decision was the most influential factor to perform karyotype (odds ratio [OR], 6.057; 95% confidence interval [CI], 4.702-7.802), and fluorescence in situ hybridation (OR, 2.273; 95% CI, 1.901-2.719) studies. Patients ≥70 years old or with an Eastern Cooperative Oncology Group ≥2 were less likely to undergo these diagnostic procedures. Performing genetic studies were associated with a favorable impact on overall survival, especially in patients who received intensive chemotherapy.
CONCLUSIONS
CONCLUSIONS
This unique study provides relevant information about the evolving landscape of genetic and molecular diagnosis for adult AML patients in real-world setting, highlighting the increased complexity of genetic diagnosis over the past 2 decades.
Banques de données
ClinicalTrials.gov
['NCT02607059']
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Novartis
Organisme : Instituto de Salud Carlos III
Organisme : European Union-NextGenerationEU
Informations de copyright
© 2024 American Cancer Society.
Références
Döhner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424‐447. doi:10.1182/blood‐2016‐08‐733196
Döhner H, Wei AH, Appelbaum FR, et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 2022;140(12):1345‐1377. doi:10.1182/blood.2022016867
Rodríguez‐Arbolí E, Martínez‐Cuadrón D, Rodríguez‐Veiga R, et al. Long‐term outcomes after autologous versus allogeneic stem cell transplantation in molecularly‐stratified patients with intermediate cytogenetic risk acute myeloid leukemia: a PETHEMA study. Transplant Cell Ther. 2021;27(4):311.e1‐311.e10. doi:10.1016/j.jtct.2020.12.029
Ayala R, Carreño‐Tarragona G, Barragán E, et al. Impact of FLT3‐ITD mutation status and its ratio in a cohort of 2901 patients undergoing upfront intensive chemotherapy: a PETHEMA Registry study. Cancers. 2022;14(23):5799. doi:10.3390/cancers14235799
Stone RM, Mandrekar SJ, Sanford BL, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med. 2017;377(5):454‐464. doi:10.1056/NEJMoa1614359
Perl AE, Martinelli G, Cortes JE, et al. Gilteritinib or chemotherapy for relapsed or refractory FLT3‐mutated AML. N Engl J Med. 2019;381(18):1728‐1740. doi:10.1056/NEJMoa1902688
Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374(23):2209‐2221. doi:10.1056/NEJMoa1516192
Sargas C, Ayala R, Chillón MC, et al. Networking for advanced molecular diagnosis in acute myeloid leukemia patients is possible: the PETHEMA NGS‐AML project. Haematologica. 2021;106(12):3079‐3089. doi:10.3324/haematol.2020.263806
Angenendt L, Röllig C, Montesinos P, et al. Chromosomal abnormalities and prognosis in NPM1‐mutated acute myeloid leukemia: a pooled analysis of individual patient data from nine international cohorts. J Clin Oncol. 2019;37(29):2632‐2642. doi:10.1200/JCO.19.00416
Shimony S, Stahl M, Stone RM. Acute myeloid leukemia: 2023 update on diagnosis, risk‐stratification, and management. Am J Hematol. 2023;98(3):502‐526. doi:10.1002/ajh.26822
Montesinos P, Recher C, Vives S, et al. Ivosidenib and azacitidine in IDH1‐mutated acute myeloid leukemia. N Engl J Med. 2022;386(16):1519‐1531. doi:10.1056/NEJMoa2117344
Cheson BD, Cassileth PA, Head DR, et al. Report of the National Cancer Institute‐sponsored workshop on definitions of diagnosis and response in acute myeloid leukemia. J Clin Oncol. 1990;8(5):813‐819. doi:10.1200/JCO.1990.8.5.813
Cheson BD, Bennett JM, Kopecky KJ, et al. Revised recommendations of the International Working Group for diagnosis, standardization of response criteria, treatment outcomes, and reporting standards for therapeutic trials in acute myeloid leukemia. J Clin Oncol. 2003;21(24):4642‐4649. doi:10.1200/JCO.2003.04.036
Döhner H, Estey EH, Amadori S, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115(3):453‐474. doi:10.1182/blood‐2009‐07‐235358
Vardiman JW, Thiele J, Arber DA, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114(5):937‐951. doi:10.1182/blood‐2009‐03‐209262
Swerdlow SH, Campo E, Harris NL, et al., eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Revised 4th edition. International Agency for Research on Cancer; 2017.
Grimwade D. The clinical significance of cytogenetic abnormalities in acute myeloid leukaemia. Best Pract Res Clin Haematol. 2001;14(3):497‐529. doi:10.1053/beha.2001.0152
Grimwade D, Walker H, Oliver F, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties. Blood. 1998;92(7):2322‐2333. doi:10.1182/blood.v92.7.2322
Slovak ML, Kopecky KJ, Cassileth PA, et al. Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood. 2000;96(13):4075‐4083. doi:10.1182/blood.v96.13.4075.h8004075_4075_4083
Byrd JC, Mrózek K, Dodge RK, et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood. 2002;100(13):4325‐4336. doi:10.1182/blood‐2002‐03‐0772
Grimwade D, Walker H, Harrison G, et al. The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukemia (AML): analysis of 1065 patients entered into the United Kingdom Medical Research Council AML11 trial. Blood. 2001;98(5):1312‐1320. doi:10.1182/blood.v98.5.1312
Farag SS, Farag SS, Archer KJ, et al. Pretreatment cytogenetics add to other prognostic factors predicting complete remission and long‐term outcome in patients 60 years of age or older with acute myeloid leukemia: results from Cancer and Leukemia Group B 8461. Blood. 2006;108(1):63‐73. doi:10.1182/blood‐2005‐11‐4354
Fröhling S, Schlenk RF, Kayser S, et al. Cytogenetics and age are major determinants of outcome in intensively treated acute myeloid leukemia patients older than 60 years: results from AMLSG trial AML HD98‐B. Blood. 2006;108(10):3280‐3288. doi:10.1182/blood‐2006‐04‐014324
Schlenk RF, Döhner K, Krauter J, et al. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med. 2008;358(18):1909‐1918. doi:10.1056/NEJMoa074306
Gale RE, Green C, Allen C, et al. The impact of FLT3 internal tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia. Blood. 2008;111(5):2776‐2784. doi:10.1182/blood‐2007‐08‐109090
Döhner K, Schlenk RF, Habdank M, et al. Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations. Blood. 2005;106(12):3740‐3746. doi:10.1182/blood‐2005‐05‐2164
Verhaak RGW, Goudswaard CS, van Putten W, et al. Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood. 2005;106(12):3747‐3754. doi:10.1182/blood‐2005‐05‐2168
Schnittger S, Schoch C, Kern W, et al. Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood. 2005;106(12):3733‐3739. doi:10.1182/blood‐2005‐06‐2248
Thiede C, Koch S, Creutzig E, et al. Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood. 2006;107(10):4011‐4020. doi:10.1182/blood‐2005‐08‐3167
Schlenk RF, Döhner K, Kneba M, et al. Gene mutations and response to treatment with all‐trans retinoic acid in elderly patients with acute myeloid leukemia. Results from the AMLSG Trial AML HD98B. Haematologica. 2009;94(1):54‐60. doi:10.3324/haematol.13378
Cancer Genome Atlas Research Network, Ley TJ, Miller C, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368(22):2059‐2074. doi:10.1056/NEJMoa1301689
Arber DA, Orazi A, Hasserjian RP, et al. International consensus classification of myeloid neoplasms and acute leukemias: integrating morphologic, clinical, and genomic data. Blood. 2022;140(11):1200‐1228. doi:10.1182/blood.2022015850
Khoury JD, Solary E, Abla O, et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia. 2022;36(7):1703‐1719. doi:10.1038/s41375‐022‐01613‐1
Sargas C, Ayala R, Larráyoz MJ, et al. Comparison of the 2022 and 2017 European LeukemiaNet risk classifications in a real‐life cohort of the PETHEMA group. Blood Cancer J. 2023;13(1):77. doi:10.1038/s41408‐023‐00835‐5
Martínez‐Cuadrón D, Serrano J, Gil C, et al. Evolving treatment patterns and outcomes in older patients (≥60 years) with AML: changing everything to change nothing? Leukemia. 2021;35(6):1571‐1585. doi:10.1038/s41375‐020‐01058‐4
Martínez‐Cuadrón D, Megías‐Vericat JE, Serrano J, et al. Treatment patterns and outcomes of 2310 patients with secondary acute myeloid leukemia: a PETHEMA registry study. Blood Adv. 2022;6(4):1278‐1295. doi:10.1182/bloodadvances.2021005335