Ectodomain shedding of PLA2R1 is mediated by the metalloproteases ADAM10 and ADAM17.
ADAM10
ADAM17
PLA2R1
inflammation
membranous nephropathy
metalloproteases
podocyte
shedding
soluble PLA2R1
Journal
The Journal of biological chemistry
ISSN: 1083-351X
Titre abrégé: J Biol Chem
Pays: United States
ID NLM: 2985121R
Informations de publication
Date de publication:
17 Jun 2024
17 Jun 2024
Historique:
received:
03
12
2023
revised:
17
05
2024
accepted:
30
05
2024
medline:
20
6
2024
pubmed:
20
6
2024
entrez:
19
6
2024
Statut:
aheadofprint
Résumé
Phospholipase A2 receptor 1 (PLA2R1) is a 180-kDa transmembrane protein that plays a role in inflammation and cancer, and is the major autoantigen in membranous nephropathy (MN), a rare but severe autoimmune kidney disease. A soluble form of PLA2R1 has been detected in mouse and human serum. It is likely produced by proteolytic shedding of membrane-bound PLA2R1 but the mechanism is unknown. Here, we show that human PLA2R1 is cleaved by A Disintegrin And Metalloprotease 10 (ADAM10) and ADAM17 in HEK293 cells, mouse embryonic fibroblasts and human podocytes. By combining site-directed mutagenesis and sequencing, we determined the exact cleavage site within the extracellular juxtamembrane stalk of human PLA2R1. Orthologs and paralogs of PLA2R1 are also shed. By using pharmacological inhibitors and genetic approaches with RNA interference and knock-out cellular models, we identified a major role of ADAM10 in the constitutive shedding of PLA2R1, and a dual role of ADAM10 and ADAM17 in the stimulated shedding. We did not observe evidence for cleavage by β- or γ-secretase, suggesting that PLA2R1 may not be a substrate for Regulated Intramembrane Proteolysis. PLA2R1 shedding occurs constitutively and can be triggered by the calcium ionophore ionomycin, the protein kinase C inducer PMA, cytokines and lipopolysaccharides, in vitro and in vivo. Altogether, our results show that PLA2R1 is a novel substrate for ADAM10 and ADAM17, producing a soluble form that is increased in inflammatory conditions and likely exerts various functions in physiological and pathophysiological conditions including inflammation, cancer and MN.
Identifiants
pubmed: 38897568
pii: S0021-9258(24)01981-1
doi: 10.1016/j.jbc.2024.107480
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
107480Informations de copyright
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.
Déclaration de conflit d'intérêts
Conflict of interest The authors declare that they have no conflicts of interest with the contents of this article.