Cognitive impairment in children and adults with cerebrotendinous xanthomatosis: A French cohort study.

MMSE cerebrotendinous xanthomatosis cognition dementia neuropsychological tests

Journal

Journal of inherited metabolic disease
ISSN: 1573-2665
Titre abrégé: J Inherit Metab Dis
Pays: United States
ID NLM: 7910918

Informations de publication

Date de publication:
19 Jun 2024
Historique:
revised: 06 03 2024
received: 11 12 2023
accepted: 21 05 2024
medline: 20 6 2024
pubmed: 20 6 2024
entrez: 19 6 2024
Statut: aheadofprint

Résumé

Cerebrotendinous xanthomatosis is a rare and treatable metabolic disorder related to the accumulation of cholestanol. This disorder is primarily associated with motor and cognitive impairments, although the latter has not been extensively characterized. The objectives of this work were to define the cognitive profile found in cerebrotendinous xanthomatosis patients, investigate the progression of cognitive impairment over time, and search for radio-clinical correlations. Through a multicentric chart review study, we collected cognitive and radiological data from nine children and eighteen adults with genetically proven cerebrotendinous xanthomatosis. We performed a volumetric and morphological analysis of the brain magnetic resonance imaging. In our cohort, 44% (4/9) of children and 78% (14/18) of adults exhibited cognitive impairment that can be severe. The study revealed a significant impairment in various cognitive domains, specifically executive, attentional, language, and visuo-spatial. Among adults, 16% (3/18) developed dementia after age 50. These three patients had delayed chenodeoxycholic acid treatment and important cerebral atrophy. Besides these three cases of late-onset cognitive decline, Mini-Mental State Evaluation was generally stable, suggesting cognitive impairment due to a neurodevelopmental disorder and persisting in adulthood. Cognitive impairment was less common in children, possibly related to early chenodeoxycholic acid treatment in our cohort. The severity of magnetic resonance imaging abnormalities did not predict cognitive impairment in patients. Overall, in cerebrotendinous xanthomatosis, cognitive impairment can be severe and mainly neurodevelopmental. Early chenodeoxycholic acid treatment might be associated with a reduced risk of cognitive decline.

Identifiants

pubmed: 38897600
doi: 10.1002/jimd.12765
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024 The Author(s). Journal of Inherited Metabolic Disease published by John Wiley & Sons Ltd on behalf of SSIEM.

Références

van Bogaert L, Scherer HJ, Epstein E. Une Forme Cérébrale de la Cholestérinose Généralisée (Type Particulier de Lipipose à Cholestérine). Masson Cie; 1937.
Cali JJ, Hsieh CL, Francke U, Russell DW. Mutations in the bile acid biosynthetic enzyme sterol 27‐hydroxylase underlie cerebrotendinous xanthomatosis. J Biol Chem. 1991;266(12):7779‐7783.
Salen G, Steiner RD. Epidemiology, diagnosis, and treatment of cerebrotendinous xanthomatosis (CTX). J Inherit Metab Dis. 2017;40(6):771‐781.
Berginer VM, Abeliovich D, Opitz JM. Genetics of cerebrotendinous xanthomatosis (CTX): an autosomal recessive trait with high gene frequency in Sephardim of Moroccan origin. Am J Med Genet. 1981;10(2):151‐157.
Pilo‐de‐la‐Fuente B, Jimenez‐Escrig A, Lorenzo JR, et al. Cerebrotendinous xanthomatosis in Spain: clinical, prognostic, and genetic survey: cerebrotendinous xanthomatosis in Spain. Eur J Neurol. 2011;18(10):1203‐1211.
Sekijima Y, Koyama S, Yoshinaga T, Koinuma M, Inaba Y. Nationwide survey on cerebrotendinous xanthomatosis in Japan. J Hum Genet. 2018;63(3):271‐280.
Degos B, Nadjar Y, Amador MM, et al. Natural history of cerebrotendinous xanthomatosis: a paediatric disease diagnosed in adulthood. Orphanet J Rare Dis. 2016;11(1):41.
Wong JC, Walsh K, Hayden D, Eichler FS. Natural history of neurological abnormalities in cerebrotendinous xanthomatosis. J Inherit Metab Dis. 2018;41(4):647‐656.
Yunisova G, Tufekcioglu Z, Dogu O, et al. Patients with lately diagnosed cerebrotendinous xanthomatosis. Neurodegener Dis. 2019;19(5–6):218‐224.
Nie S, Chen G, Cao X, Zhang Y. Cerebrotendinous xanthomatosis: a comprehensive review of pathogenesis, clinical manifestations, diagnosis, and management. Orphanet J Rare Dis. 2014;9(1):179.
Duell PB, Salen G, Eichler FS, et al. Diagnosis, treatment, and clinical outcomes in 43 cases with cerebrotendinous xanthomatosis. J Clin Lipidol. 2018;12(5):1169‐1178.
Mandia D, Chaussenot A, Besson G, et al. Cholic acid as a treatment for cerebrotendinous xanthomatosis in adults. J Neurol. 2019;266:2043‐2050.
Lionnet C, Carra C, Ayrignac X, et al. Étude rétrospective multicentrique de 15 cas adultes de xanthomatose cérébrotendineuse: aspects cliniques et paracliniques typiques et atypiques. Rev Neurol (Paris). 2014;170(6–7):445‐453.
Guyant‐Maréchal L, Verrips A, Girard C, et al. Unusual cerebrotendinous xanthomatosis with fronto‐temporal dementia phenotype. Am J Med Genet A. 2005;139A(2):114‐117.
Koyama S, Kawanami T, Tanji H, et al. A case of cerebrotendinous xanthomatosis presenting with epilepsy as an initial symptom with a novel V413D mutation in the CYP27A1 gene. Clin Neurol Neurosurg. 2012;114(7):1021‐1023.
Amador M Del M, Masingue M, Debs R, et al. Treatment with chenodeoxycholic acid in cerebrotendinous xanthomatosis: clinical, neurophysiological, and quantitative brain structural outcomes. J Inherit Metab Dis. 2018;41(5):799‐807.
Salen G. Cholestanol deposition in cerebrotendinous xanthomatosis: a possible mechanism. Ann Intern Med. 1971;75(6):843.
Brass EP, Stelten BML, Verrips A. Cerebrotendinous xanthomatosis‐associated diarrhea and response to chenodeoxycholic acid treatment. JIMD Rep. 2020;56(1):105‐111.
Manjón JV, Coupé P. volBrain: An online MRI brain volumetry system. Front Neuroinformatics. 2016;10:30. doi:10.3389/fninf.2016.00030
OECD. OECD Education at a Glance 2020: OECD Indicators. OECD; 2020. Accessed January 20, 2023. https://www.oecd-ilibrary.org/education/education-at-a-glance-2020_69096873-en
van Heijst AFJ, Verrips A, Wevers RA, Cruysberg JRM, Renier WO, Tolboom JJM. Treatment and follow‐up of children with cerebrotendinous xanthomatosis. Eur J Pediatr. 1998;157(4):313‐316.
Fraidakis MJ. Psychiatric manifestations in cerebrotendinous xanthomatosis. Transl Psychiatry. 2013;3(9):e302.
Stelten BML, Huidekoper HH, van de Warrenburg BPC, et al. Long‐term treatment effect in cerebrotendinous xanthomatosis depends on age at treatment start. Neurology. 2019;92(2):e83‐e95.
Yahalom G, Tsabari R, Molshatzki N, Ephraty L, Cohen H, Hassin‐Baer S. Neurological outcome in cerebrotendinous xanthomatosis treated with chenodeoxycholic acid: early versus late diagnosis. Clin Neuropharmacol. 2013;36(3):78‐83.
Berginer VM, Salen G, Shefer S. Long‐term treatment of cerebrotendinous xanthomatosis with chenodeoxycholic acid. N Engl J Med. 1984;311(26):1649‐1652.
Vaz FM, Jamal Y, Barto R, et al. Newborn screening for Cerebrotendinous Xanthomatosis: a retrospective biomarker study using both flow‐injection and UPLC‐MS/MS analysis in 20,000 newborns. Clin Chim Acta. 2023;539:170‐174.
Hong X, Daiker J, Sadilek M, et al. Toward newborn screening of cerebrotendinous xanthomatosis: results of a biomarker research study using 32,000 newborn dried blood spots. Genet Med. 2020;22(10):1606‐1612.
Degrassi I, Amoruso C, Giordano G, et al. Case report: early treatment with chenodeoxycholic acid in cerebrotendinous xanthomatosis presenting as neonatal cholestasis. Front Pediatr. 2020;16(8):382.
Barkhof F, Verrips A, Wesseling P, et al. Cerebrotendinous xanthomatosis: the spectrum of imaging findings and the correlation with neuropathologic findings. Radiology. 2000;217(3):869‐876.
Stelten BML, Bonnot O, Huidekoper HH, et al. Autism spectrum disorder: an early and frequent feature in cerebrotendinous xanthomatosis. J Inherit Metab Dis. 2018;41(4):641‐646.

Auteurs

Quentin Salardaine (Q)

Neurology Department, AP-HP Sorbonne University, Pitié-Salpêtrière University Hospital, Paris, France.

Natalia Shor (N)

Neuroradiology Department, Pitié-Salpêtrière University Hospital, AP-HP, Sorbonne University, Paris, France.

Nicolas Villain (N)

Neurology Department, AP-HP Sorbonne University, Pitié-Salpêtrière University Hospital, Paris, France.
Institut du Cerveau - ICM, Sorbonne Université, INSERM U1127, CNRS 7225, Paris, France.

Frédérique Bozon (F)

Neurology Department, AP-HP Sorbonne University, Pitié-Salpêtrière University Hospital, Paris, France.

Maria Del Mar Amador (MDM)

Neurology Department, National Reference center ALS, Pitié-Salpêtrière University Hospital, AP-HP Sorbonne University, Paris, France.

Clarisse Duchon (C)

Inherited Metabolic Disease Department and National Reference Centre for Inherited Metabolic diseases, Necker Hospital, AP-HP Centre-Paris University, Paris, France.

Nicolas Mélé (N)

Neurology Department, GHU Paris Psychiatrie et Neurosciences, Université Paris Cité, Sainte-Anne Hospital, Paris, France.

Manuel Schiff (M)

Paediatrics Department, Reference Center for Inborn Error of Metabolism, Necker and Robert-Debré Hospital, AP-HP, Université Paris Cité, Paris, France.

Anaïs Brassier (A)

Inherited Metabolic Disease Department and National Reference Centre for Inherited Metabolic diseases, Necker Hospital, AP-HP Centre-Paris University, Paris, France.

Yann Nadjar (Y)

Neurology Department, Reference Center for Neurological Metabolic and Lysosomal Diseases, Pitié-Salpêtrière University Hospital, AP-HP Sorbonne University, Paris, France.

Classifications MeSH