Ketamine induced synaptic plasticity operates independently of long-term potentiation.
Journal
Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
ISSN: 1740-634X
Titre abrégé: Neuropsychopharmacology
Pays: England
ID NLM: 8904907
Informations de publication
Date de publication:
19 Jun 2024
19 Jun 2024
Historique:
received:
08
02
2024
accepted:
28
05
2024
revised:
11
05
2024
medline:
20
6
2024
pubmed:
20
6
2024
entrez:
19
6
2024
Statut:
aheadofprint
Résumé
Synaptic plasticity occurs via multiple mechanisms to regulate synaptic efficacy. Homeostatic and Hebbian plasticity are two such mechanisms by which neuronal synapses can be altered. Although these two processes are mechanistically distinct, they converge on downstream regulation of AMPA receptor activity to modify glutamatergic neurotransmission. However, much remains to be explored regarding how these two prominent forms of plasticity interact. Ketamine, a rapidly acting antidepressant, increases glutamatergic transmission via pharmacologically-induced homeostatic plasticity. Here, we demonstrate that Hebbian plasticity mechanisms are still intact in synapses that have undergone homeostatic scaling by ketamine after either systemic injection or perfusion onto hippocampal brain slices. We also investigated this relationship in the context of stress induced by chronic exposure to corticosterone (CORT) to better model the circumstances under which ketamine may be used as an antidepressant. We found that CORT induced an anhedonia-like behavioral phenotype in mice but did not impair long-term potentiation (LTP) induction. Furthermore, corticosterone exposure does not impact the intersection of homeostatic and Hebbian plasticity mechanisms, as synapses from CORT-exposed mice also demonstrated intact ketamine-induced plasticity and LTP in succession. These results provide a mechanistic explanation for how ketamine used for the treatment of depression does not impair the integrity of learning and memory processes encoded by mechanisms such as LTP.
Identifiants
pubmed: 38898206
doi: 10.1038/s41386-024-01895-2
pii: 10.1038/s41386-024-01895-2
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
ID : MH136569
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
ID : MH066198
Informations de copyright
© 2024. The Author(s).
Références
Maeng S, Zarate CA, Du J, Schloesser RJ, McCammon J, Chen G, et al. Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry. 2008;63:349–52.
doi: 10.1016/j.biopsych.2007.05.028
pubmed: 17643398
Autry AE, Monteggia LM. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharm Rev. 2012;64:238–58.
doi: 10.1124/pr.111.005108
pubmed: 22407616
pmcid: 3310485
Nosyreva E, Szabla K, Autry AE, Ryazanov AG, Monteggia LM, Kavalali ET. Acute suppression of spontaneous neurotransmission drives synaptic potentiation. J Neurosci. 2013;33:6990–7002.
doi: 10.1523/JNEUROSCI.4998-12.2013
pubmed: 23595756
pmcid: 3661220
Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng P-F, et al. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature. 2011;475:91–95.
doi: 10.1038/nature10130
pubmed: 21677641
pmcid: 3172695
Widrow B, Hoff ME. Adaptive switching circuits. Ire Wescon Convention Record. 1960. p. 96–104.
Hebb DO. The Organization of Behavior: A neuropsychological theory. New York: John Wily & Sons, Inc.; 1949.
Rosenblatt F. Two theorems of statistical separability in the perceptron (project para). Buffalo: Cornell Aeronautical Lab, Inc.; 1959.
Turrigiano GG. The dialectic of Hebb and homeostasis. Philos Trans R Soc Lond B Bio Sci. 2017;372:1–7.
Arendt KL, Zhang Y, Jurado S, Malenka RC, Südhof TC, Chen L. Retinoic acid and LTP recruit postsynaptic AMPA receptors using distinct SNARE-dependent mechanisms. Neuron. 2015;86:442–56.
doi: 10.1016/j.neuron.2015.03.009
pubmed: 25843403
pmcid: 4578641
Lu W-Y, Man H-Y, Ju W, Trimble WS, MacDonald JF, Wang YT. Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron. 2001;29:243–54.
doi: 10.1016/S0896-6273(01)00194-5
pubmed: 11182095
Kauer JA, Malenka RC, Nicoll RA. A persistent postsynaptic modification mediates long-term potentiation in the hippocampus. Neuron. 1988;1:911–7.
doi: 10.1016/0896-6273(88)90148-1
pubmed: 2908443
Crawford DC, Ramirez DMO, Trauterman B, Monteggia LM, Kavalali ET. Selective molecular impairment of spontaneous neurotransmission modulates synaptic efficacy. Nat Commun. 2017;8:1–14.
doi: 10.1038/ncomms14436
Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature. 1998;391:892–6.
doi: 10.1038/36103
pubmed: 9495341
Toyoizumi T, Kaneko M, Stryker MP, Miller KD. Modeling the dynamic interaction of Hebbian and homeostatic plasticity. Neuron. 2014;84:497–510.
doi: 10.1016/j.neuron.2014.09.036
pubmed: 25374364
pmcid: 4223656
Hsu YT, Li J, Wu D, Südhof TC, Chen L. Synaptic retinoic acid receptor signaling mediates mTOR-dependent metaplasticity that controls hippocampal learning. Proc Natl Acad Sci USA. 2019;116:7113–22.
doi: 10.1073/pnas.1820690116
pubmed: 30782829
pmcid: 6452649
Berrio JP, Kalliokoski O. Rethinking data treatment: The sucrose preference threshold for anhedonia in stress-induced rat models of depression. J Neurosci Methods. 2023;395:1–11.
doi: 10.1016/j.jneumeth.2023.109910
Suzuki K, Kim J-W, Nosyreva E, Kavalali ET, Monteggia LM. Convergence of distinct signaling pathways on synaptic scaling to trigger rapid antidepressant action. Cell Rep. 2021;37:1–13.
doi: 10.1016/j.celrep.2021.109918
Lisman J. Glutamatergic synapses are structurally and biochemically complex because of multiple plasticity processes: long-term potentiation, long-term depression, short-term potentiation and scaling. Philos Trans R Soc Lond B Biol Sci. 2017;372:1–11.
doi: 10.1098/rstb.2016.0260
Abbott LF, Nelson SB. Synaptic plasticity: taming the beast. Nat Neurosci. 2000;3:1178–83.
doi: 10.1038/81453
pubmed: 11127835
Stellwagen D, Malenka RC. Synaptic scaling mediated by glial TNF-α. Nature. 2006;440:1054–9.
doi: 10.1038/nature04671
pubmed: 16547515
Zanos P, Brown KA, Georgiou P, Yuan P, Zarate CA, Thompson SM, et al. NMDA receptor activation-dependent antidepressant-relevant behavioral and synaptic actions of ketamine. J Neurosci. 2023;43:1038–50.
doi: 10.1523/JNEUROSCI.1316-22.2022
pubmed: 36596696
pmcid: 9908316
Tang X-H, Zhang G-F, Xu N, Duan G-F, Jia M, Liu R, et al. Extrasynaptic CaMKIIα is involved in the antidepressant effects of ketamine by downregulating GluN2B receptors in an LPS-induced depression model. J Neuroinflammation. 2020;17:1–19.
doi: 10.1186/s12974-020-01843-z
Widman AJ, Stewart AE, Erb EM, Gardner E, McMahon LL. Intravascular ketamine increases theta-burst but not high frequency tetanus induced LTP at CA3-CA1 synapses within three hours and devoid of an increase in spine density. Front Synaptic Neurosci. 2018;10:1–8.
doi: 10.3389/fnsyn.2018.00008
Ribeiro PO, Silva HB, Tomé ÂR, Cunha RA, Antunes LM. Hippocampal long-term potentiation in adult mice after recovery from ketamine anesthesia. Lab Anim (NY). 2014;43:353–7.
doi: 10.1038/laban.571
pubmed: 25238524
Burgdorf J, Zhang X-L, Nicholson KL, Balster RL, Leander JD, Stanton PK, et al. GLYX-13, a NMDA receptor glycine-site functional partial agonist, induces antidepressant-like effects without ketamine-like side effects. Neuropsychopharmacology. 2013;38:5. 2013;38:729-42
Graef JD, Newberry K, Newton A, Pieschl R, Shields E, Luan F-N, et al. Effect of acute NR2B antagonist treatment on long-term potentiation in the rat hippocampus. Brain Res. 2015;1609:31–39.
doi: 10.1016/j.brainres.2015.03.019
pubmed: 25796435
Lenz M, Eichler A, Kruse P, Muellerleile J, Deller T, Jedlicka P, et al. All-trans retinoic acid induces synaptopodin-dependent metaplasticity in mouse dentate granule cells. eLife. 2021;10:1–18.
doi: 10.7554/eLife.71983
Arendt KL, Sarti F, Chen L. Chronic inactivation of a neural circuit enhances LTP by inducing silent synapse formation. J Neurosci. 2013;33:2087–96.
doi: 10.1523/JNEUROSCI.3880-12.2013
pubmed: 23365245
pmcid: 3804283
Jang G, Maciver MB. Ketamine produces a long‐lasting enhancement of CA1 neuron excitability. Int J Mol Sci. 2021;22:1–14.
doi: 10.3390/ijms22158091
Kim J-W, Monteggia LM. Increasing doses of ketamine curtail antidepressant responses and suppress associated synaptic signaling pathways. Behav Brain Res. 2020;380:1–8.
doi: 10.1016/j.bbr.2019.112378
Lin P-Y, Ma ZZ, Mahgoub M, Kavalali ET, Monteggia LM. A synaptic locus for TrkB signaling underlying ketamine rapid antidepressant action. Cell Rep. 2021;36:1–12.
doi: 10.1016/j.celrep.2021.109513
Frohlich J, Van Horn JD. Reviewing the ketamine model for schizophrenia. J Psychopharmacol. 2014;28:287–302.
doi: 10.1177/0269881113512909
pubmed: 24257811
Jansen KLR. A review of the nonmedical use of ketamine: use, users and consequences. J Psychoact Drugs. 2000;32:419–33.
doi: 10.1080/02791072.2000.10400244
Kim J-W, Autry AE, Na ES, Adachi M, Björkholm C, Kavalali ET, et al. Sustained effects of rapidly acting antidepressants require BDNF-dependent MeCP2 phosphorylation. Nat Neurosci. 2021;24:1100–9.
doi: 10.1038/s41593-021-00868-8
pubmed: 34183865
pmcid: 8338784
Gideons E, Kavalali ET, Monteggia LM. Mechanisms underlying differential effectiveness of memantine and ketamine in rapid antidepressant responses. Proc Natl Acad Sci USA. 2014;111:8649–54.
doi: 10.1073/pnas.1323920111
pubmed: 24912158
pmcid: 4060670
Yang Y, Calakos N. Presynaptic long-term plasticity. Front Synaptic Neurosci. 2013;5:1–22.
doi: 10.3389/fnsyn.2013.00008
Castillo PE. Presynaptic LTP and LTD of excitatory and inhibitory synapses. Cold Spring Harb Perspect Biol. 2012;4:1–23.
doi: 10.1101/cshperspect.a005728
Volianskis A, Bannister N, Collett VJ, Irvine MW, Monaghan DT, Fitzjohn SM, et al. Different NMDA receptor subtypes mediate induction of long-term potentiation and two forms of short-term potentiation at CA1 synapses in rat hippocampus in vitro. J Physiol. 2013;591:955–72.
doi: 10.1113/jphysiol.2012.247296
pubmed: 23230236
Volianskis A, Jensen MS. Transient and sustained types of long-term potentiation in the CA1 area of the rat hippocampus. J Physiol. 2003;550:459–92.
doi: 10.1113/jphysiol.2003.044214
pubmed: 12794181
pmcid: 2343043
Lin P-Y, Chanaday NL, Horvath PM, Ramirez DMO, Monteggia LM, Kavalali ET. VAMP4 maintains a Ca21-sensitive pool of spontaneously recycling synaptic vesicles. J Neurosci. 2020;40:5389–401.
doi: 10.1523/JNEUROSCI.2386-19.2020
pubmed: 32532887
pmcid: 7343330
Yang Y, Ju W, Zhang H, Sun L. Effect of ketamine on LTP and NMDAR EPSC in hippocampus of the chronic social defeat stress mice model of depression. Front Behav Neurosci. 2018;12:1–11.
doi: 10.3389/fnbeh.2018.00229
Logue J, Schoepfer K, Guerrero AB, Zhou Y, Kabbaj M. Sex-specific effects of social isolation stress and ketamine on hippocampal plasticity. Neurosci Lett. 2022;766:1–7.
doi: 10.1016/j.neulet.2021.136301
Hirata R, Togashi H, Matsumoto M, Yamaguchi T, Izumi T, Yoshioka M. Characterization of stress-induced suppression of long-term potentiation in the hippocampal CA1 field of freely moving rats. Brain Res. 2008;1226:27–32.
doi: 10.1016/j.brainres.2008.06.004
pubmed: 18582439
Aleksandrova LR, Wang YT, Phillips AG. Ketamine and its metabolite, (2R,6R)-HNK, restore hippocampal LTP and long-term spatial memory in the Wistar-Kyoto rat model of depression. Mol Brain. 2020;13:1–16.
doi: 10.1186/s13041-020-00627-z
Pavlides C, Watanabe Y, Mcewen BS. Effects of glucocorticoids on hippocampal long-term potentiation. Hippocampus. 1993;3:183–92.
doi: 10.1002/hipo.450030210
pubmed: 8353605
Park HJ, Lee S, Jung JW, Kim BC, Ryu JH, Kim DH. Glucocorticoid- and long-term stress-induced aberrant synaptic plasticity are mediated by activation of the glucocorticoid receptor. Arch Pharm Res. 2015;38:1204–12.
doi: 10.1007/s12272-015-0548-0
pubmed: 25564339
Kamal A, Ramakers GMJ, Altinbilek B, Kas MJH. Social isolation stress reduces hippocampal long-term potentiation: effect of animal strain and involvement of glucocorticoid receptors. Neuroscience. 2014;256:262–70.
doi: 10.1016/j.neuroscience.2013.10.016
pubmed: 24161282
Alfarez D, Wiegert O, Joels M, Krugers H. Corticosterone and stress reduce synaptic potentiation in mouse hippocampal slices with mild stimulation. Neuroscience. 2002;115:1119–26.
doi: 10.1016/S0306-4522(02)00483-9
pubmed: 12453484
Foy MR, Stanton ME, Levine S, Thompson RF. Behavioral stress impairs long-term potentiation in rodent hippocampus. Behav Neural Biol. 1987;48:138–49.
doi: 10.1016/S0163-1047(87)90664-9
pubmed: 2820370
Zhang LM, Wu ZY, Liu JZ, Li Y, Lv JM, Wang LY, et al. Subanesthetic dose of S-ketamine improved cognitive dysfunction via the inhibition of hippocampal astrocytosis in a mouse model of post-stroke chronic stress. J Psychiatr Res. 2023;158:1–14.
doi: 10.1016/j.jpsychires.2022.12.010
pubmed: 36542981
Radecki DT, Brown LM, Martinez J, Teyler TJ. BDNF protects against stress-induced impairments in spatial learning and memory and LTP. Hippocampus. 2005;15:246–53.
doi: 10.1002/hipo.20048
pubmed: 15476265
Shors TJ, Seib TB, Levine S, Thompson RF. Inescapable versus escapable shock modulates long-term potentiation in the rat hippocampus. Science. 1989;244:224–6.
doi: 10.1126/science.2704997
pubmed: 2704997
Maggio N, Segal M. Striking variations in corticosteroid modulation of long-term potentiation along the septotemporal axis of the hippocampus. J Neurosci. 2007;27:5757–65.
doi: 10.1523/JNEUROSCI.0155-07.2007
pubmed: 17522319
pmcid: 6672761
Zhu X, Zhang F, You Y, Wang H, Yuan S, Wu B, et al. S-Ketamine exerts antidepressant effects by regulating Rac1 GTPase mediated synaptic plasticity in the hippocampus of stressed rats. Cell Mol Neurobiol. 2023;43:299–314.
doi: 10.1007/s10571-021-01180-6
pubmed: 35083636
Johnston JN, Allen J, Shkolnikov I, Sanchez-Lafuente CL, Reive BS, Scheil K, et al. Reelin rescues behavioral, electrophysiological, and molecular metrics of a chronic stress phenotype in a similar manner to ketamine. ENeuro. 2023;10:1–13.
doi: 10.1523/ENEURO.0106-23.2023
Bramham CR, Southard T, Ahlers ST, Sarvey JM. Acute cold stress leading to elevated corticosterone neither enhances synaptic efficacy nor impairs LTP in the dentate gyrus of freely moving rats. Brain Res. 1998;789:245–55.
doi: 10.1016/S0006-8993(97)01265-1
pubmed: 9573376
Luine VN, Spencer RL, Mcewen BS. Effects of chronic corticosterone ingestion on spatial memory performance and hippocampal serotonergic function. Brain Res. 1993;616:65–70.
doi: 10.1016/0006-8993(93)90193-Q
pubmed: 7689414
Woodson JC, Macintosh D, Fleshner M, Diamond DM. Emotion-induced amnesia in rats: Working memory-specific impairment, corticosterone-memory correlation, and fear versus arousal effects on memory. Learn Mem. 2003;10:326–36.
doi: 10.1101/lm.62903
pubmed: 14557605
pmcid: 217998
Chang L, Toki H, Qu Y, Fujita Y, Mizuno-Yasuhira A, Yamaguchi JI, et al. No sex-specific differences in the acute antidepressant actions of (R)-ketamine in an inflammation model. Int J Neuropsychopharmacol. 2018;21:932–7.
doi: 10.1093/ijnp/pyy053
pubmed: 29893929
pmcid: 6165956
Benitah K, Siegel AN, Lipsitz O, Rodrigues NB, Meshkat S, Lee Y, et al. Sex differences in ketamine’s therapeutic effects for mood disorders: a systematic review. Psychiatry Res. 2022;312:1–16.
doi: 10.1016/j.psychres.2022.114579