The challenge of estimating global termite methane emissions.
deadwood
methane budget
methane emissions
methane oxidation
methanotrophs
termite mesocosm
termites
tree stems
Journal
Global change biology
ISSN: 1365-2486
Titre abrégé: Glob Chang Biol
Pays: England
ID NLM: 9888746
Informations de publication
Date de publication:
Jun 2024
Jun 2024
Historique:
revised:
30
05
2024
received:
25
03
2024
accepted:
04
06
2024
medline:
20
6
2024
pubmed:
20
6
2024
entrez:
20
6
2024
Statut:
ppublish
Résumé
Methane is a powerful greenhouse gas, more potent than carbon dioxide, and emitted from a variety of natural sources including wetlands, permafrost, mammalian guts and termites. As increases in global temperatures continue to break records, quantifying the magnitudes of key methane sources has never been more pertinent. Over the last 40 years, the contribution of termites to the global methane budget has been subject to much debate. The most recent estimates of termite emissions range between 9 and 15 Tg CH
Substances chimiques
Methane
OP0UW79H66
Greenhouse Gases
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
e17390Subventions
Organisme : Natural Environment Research Council
ID : NE/K01613X/1
Organisme : National Science Foundation
ID : DEB-1655340
Organisme : National Science Foundation
ID : DEB-1655759
Organisme : National Science Foundation
ID : DEB-2149151
Informations de copyright
© 2024 John Wiley & Sons Ltd.
Références
Abensperg‐Traun, M., & de Boer, E. S. (1990). Species abundance and habitat difference in biomass of subterranean termites (Isoptera) in the wheatbelt of Western Australia. Australian Journal of Ecology, 15(2), 219–226.
Barba, J., Bradford, M. A., Brewer, P. E., Bruhn, D., Covey, K., van Haren, J., Megonigal, J. P., Mikkelsen, T. N., Pangala, S. R., Pihlatie, M., Poulter, B., Rivas‐Ubach, A., Schadt, C. W., Terazawa, K., Warner, D. L., Zhang, Z., & Vargas, R. (2019). Methane emissions from tree stems: A new frontier in the global carbon cycle. New Phytologist, 222, 18–28. https://doi.org/10.1111/nph.15582
Bar‐On, Y. M., Phillips, R., & Milo, R. (2018). The biomass distribution on Earth. Proceedings of the National Academy of Sciences of the United States of America, 115(25), 6506–6511. https://doi.org/10.1073/pnas.1711842115
Bell, C., Rutherford, J., Brandt, A., Sherwin, E., Vaughn, T., & Zimmerle, D. (2022). Single‐blind determination of methane detection limits and quantification accuracy using aircraft‐based LiDAR. Elementa, 10(1), 186–188. https://doi.org/10.1525/elementa.2022.00080
Brümmer, C., Papen, H., Wassmann, R., & Brüggemann, N. (2009). Fluxes of CH4 and CO2 from soil and termite mounds in south Sudanian savanna of Burkina Faso (West Africa). Global Biogeochemical Cycles, 23(1), GB1001. https://doi.org/10.1029/2008GB003237
Brune, A. (2014). Symbiotic digestion of lignocellulose in termite guts. Nature Reviews Microbiology, 12(3), 168–180. https://doi.org/10.1038/nrmicro3182
Carmichael, M. J., Bernhardt, E. S., Bräuer, S. L., & Smith, W. K. (2014). The role of vegetation in methane flux to the atmosphere: Should vegetation be included as a distinct category in the global methane budget? Biogeochemistry, 119(1–3), 1–24. https://doi.org/10.1007/s10533‐014‐9974‐1
Castillo Vardaro, J. A., Bonachela, J. A., Baker, C. C. M., Pinsky, M. L., Doak, D. F., Pringle, R. M., & Tarnita, C. E. (2021). Resource availability and heterogeneity shape the self‐organisation of regular spatial patterning. Ecology Letters, 24(9), 1880–1891.
Chandra, N., Patra, P. K., Fujita, R., Hoglund‐Isaksson, L., Umezawa, T., Goto, D., Morimoto, S., Vaughn, B. H., & Rockmann, T. (2024). Methane emissions decreased in fossil fuel exploitation and sustainably increased in microbial source sectors during 1990–2020. Communications Earth & Environment, 5, 147. https://doi.org/10.1038/s43247‐024‐01286‐x
Cheesman, A. W., Cernusak, L. A., & Zanne, A. E. (2018). Relative roles of termites and saprotrophic microbes as drivers of wood decay: A wood block test. Austral Ecology, 43(3), 257–267. https://doi.org/10.1111/aec.12561
Chiri, E., Greening, C., Lappan, R., Waite, D. W., Jirapanjawat, T., Dong, X., Arndt, S. K., & Nauer, P. A. (2020). Termite mounds contain soil‐derived methanotroph communities kinetically adapted to elevated methane concentrations. ISME Journal, 14(11), 2715–2731. https://doi.org/10.1038/s41396‐020‐0722‐3
Chiri, E., Nauer, P. A., Lappan, R., Jirapanjawat, T., Waite, D. W., Handley, K. M., Hugenholtz, P., Cook, P. L. M., Arndt, S. K., & Greening, C. (2021). Termite gas emissions select for hydrogenotrophic microbial communities in termite mounds. Proceedings of the National Academy of Sciences of the United States of America, 118, e2102625118. https://doi.org/10.1073/pnas.2102625118/‐/DCSupplemental
Clement, R. A., Flores‐Moreno, H., Cernusak, L. A., Cheesman, A. W., Yatsko, A. R., Allison, S. D., Eggleton, P., & Zanne, A. E. (2021). Assessing the Australian termite diversity anomaly: How habitat and rainfall affect termite assemblages. Frontiers in Ecology and Evolution, 9, 657444. https://doi.org/10.3389/fevo.2021.657444
Constantino, R. (2018). Estimating global termite species richness using extrapolation. Sociobiology, 65(1), 10–14. https://doi.org/10.13102/sociobiology.v65i1.1845
Covey, K. R., & Megonigal, J. P. (2019). Methane production and emissions in trees and forests. New Phytologist, 222(1), 35–51. https://doi.org/10.1111/nph.15624
Darlington, J. P. E. C., Zimmerman, P. R., Greenberg, J., Westberg, C., & Bakwin, P. (1997). Production of metabolic gases by nests of the termite Macrotermes jeanneli in Kenya. Journal of Tropical Ecology, 13(4), 491–510. https://doi.org/10.1017/S0266467400010671
Davies, A. B., Baldeck, C. A., & Asner, G. P. (2016). Termite mounds alter the spatial distribution of African savanna tree species. Journal of Biogeography, 43(2), 301–313. https://doi.org/10.1111/jbl.12633
Davies, A. B., Levick, S. R., Asner, G. P., Robertson, M. P., Van Rensburg, B. J., & Parr, C. L. (2014). Spatial variability and abiotic determinants of termite mounds throughout a savanna catchment. Ecography, 37(9), 852–862. https://doi.org/10.2307/ecography.37.9.852
Davies, A. B., Parr, C. L., & Eggleton, P. (2021). A global review of termite sampling methods. Insectes Sociaux, 68(1), 3–14. https://doi.org/10.1007/s00040‐020‐00797‐y
Dawes‐Gromadzki, T. Z. (2008). Abundance and diversity of termites in a savanna woodland reserve in tropical Australia. Australian Journal of Entomology, 47(4), 307–314. https://doi.org/10.1111/j.1440‐6055.2008.00662.x
D'hont, B., Calders, K., Bartholomeus, H., Whiteside, T., Bartolo, R., Levick, S., Moorthy, S. M. K., Terryn, L., & Verbeeck, H. (2021). Characterising termite mounds in a tropical savanna with UAV laser scanning. Remote Sensing, 13(3), 1–19. https://doi.org/10.3390/rs13030476
Donovan, S. E., Eggleton, P., Dubbin, W. E., Batchelder, M., & Dibog, L. (2001). The effect of a soil‐feeding termite, Cubitermes fungifaber (Lsoptera: Termitidae) on soil properties: Termites may be an important source of soil microhabitat heterogeneity in tropical forests. Pedobiologia, 45, 1–11. http://www.urbanfischer.de/journals/pedoPedobi0l0gia
Eggleton, P., Bignell, D. E., Sands, W. A., Mawdsley, N. A., Lawton, J. H., Wood, T. G., & Bignell, N. C. (1996). The diversity, abundance and biomass of termites under differing levels of disturbance in the Mbalmayo Forest Reserve, southern Cameroon. Philosophical Transactions of the Royal Society Biological Sciences, 351, 51–68. https://doi.org/10.1098/rstb.1996.0004
Erland, B. M., Thorpe, A. K., & Gamon, J. A. (2022). Recent advances toward transparent methane emissions monitoring: A review. Environmental Science and Technology, 56(23), 16567–16581. https://doi.org/10.1021/acs.est.2c02136
Fagundes, T. M., Ordonez, J. C., & Yaghoobian, N. (2021). The role of mound functions and local environment in the diversity of termite mound structures. Journal of Theoretical Biology, 527, 110823. https://doi.org/10.1016/j.jtbi.2021.110823
Flores‐Moreno, H., Law, S. J., Yatsko, A. R., Cheesman, A. W., Allison, S. D., Cernusak, L. A., Clement, R. A., Eggleton, P., Rosenfield, M., & Zanne, A. E. (2024). Wood termite and fungi (WTF): Termite and CWD emissions data (v0.0.0). Zenodo, https://doi.org/10.5281/zenodo.11089744
Flores‐Moreno, H., Yatsko, A. R., Cheesman, A. W., Allison, S. D., Cernusak, L. A., Cheney, R., Clement, R. A., Cooper, W., Eggleton, P., Jensen, R., Rosenfield, M., & Zanne, A. E. (2023). Shifts in internal stem damage along a tropical precipitation gradient and implications for forest biomass estimation. New Phytologist. https://doi.org/10.1111/nph.19417
Fraser, P. J., Rasmussen, R. A., Creffield, J. W., French, J. R., & Khalil, M. A. K. (1986). Termites and global methane‐another assessment. Journal of Atmospheric Chemistry, 4, 295–310.
Griffiths, H. M., Ashton, L. A., Evans, T. A., Parr, C. L., & Eggleton, P. (2019). Termites can decompose more than half of deadwood in tropical rainforest. Current Biology, 29(4), R118–R119. https://doi.org/10.1016/j.cub.2019.01.012
Harit, A., Moger, H., Duprey, J. L., Gajalakshmi, S., Abbasi, S. A., Subramanian, S., & Jouquet, P. (2017). Termites can have greater influence on soil properties through the construction of soil sheetings than the production of above‐ground mounds. Insectes Sociaux, 64(2), 247–253. https://doi.org/10.1007/s00040‐017‐0541‐3
Hartke, T. R., & Rosengaus, R. B. (2013). Costs of pleometrosis in a polygamous termite. Proceedings of the Royal Society Biology, 280, 20122563. https://doi.org/10.1098/rspb.2012.2563
Hollenbeck, D., Zulevic, D., & Chen, Y. (2021). Advanced leak detection and quantification of methane emissions using sUAS. Drones, 5(4). https://doi.org/10.3390/drones5040117
Inoue, T., Takematsu, Y., Hyodo, F., Sugimoto, A., Yamada, A., Klangkaew, C., Kirtibutr, N., & Abe, T. (2001). The abundance and biomass of subterranean termites (Isoptera) in a dry evergreen forest of northeast Thailand. Sociobiology, 37(1), 41–52.
IPCC. (2021). Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (V. P. Masson‐Delmotte, A. Zhai, S. L. Pirani, C. Connors, S. Pean, N. Berger, Y. Caud, L. Chen, M. I. Goldfarb, M. Gomis, R. Yelekci, O. Waterfield, T. Maycock, T. K. Matthews, J. B. R. Lonnoy, K. Huang, E. Leitzell, R. Yu, & B. Zhou, Eds.). Cambridge University Press. https://doi.org/10.1017/9781009157896
Ito, A. (2023). Global termite methane emissions have been affected by climate and land‐use changes. Scientific Reports, 13(1). https://doi.org/10.1038/s41598‐023‐44529‐1
Jamali, H., Livesley, S. J., Dawes, T. Z., Cook, G. D., Hutley, L. B., & Arndt, S. K. (2011). Diurnal and seasonal variations in CH4 flux from termite mounds in tropical savannas of the Northern Territory, Australia. Agricultural and Forest Meteorology, 151(11), 1471–1479. https://doi.org/10.1016/j.agrformet.2010.06.009
Jamali, H., Livesley, S. J., Dawes, T. Z., Hutley, L. B., & Arndt, S. K. (2011). Termite mound emissions of CH4 and CO2 are primarily determined by seasonal changes in termite biomass and behaviour. Oecologia, 167(2), 525–534. https://doi.org/10.1007/s00442‐011‐1991‐3
Jamali, H., Livesley, S. J., Grover, S. P., Dawes, T. Z., Hutley, L. B., Cook, G. D., & Arndt, S. K. (2011). The importance of termites to the CH₄ balance of a tropical savanna woodland of northern Australia. Ecosystems, 14(5), 698–709. https://doi.org/10.1007/S10021‐01
Jamali, H., Livesley, S. J., Hutley, L. B., Fest, B., & Arndt, S. K. (2013). The relationships between termite mound CH4/CO2 emissions and internal concentration ratios are species specific. Biogeosciences, 10(4), 2229–2240. https://doi.org/10.5194/bg‐10‐2229‐2013
Jeffrey, L. C., Maher, D. T., Chiri, E., Leung, P. M., Nauer, P. A., Arndt, S. K., Tait, D. R., Greening, C., & Johnston, S. G. (2021). Bark‐dwelling methanotrophic bacteria decrease methane emissions from trees. Nature Communications, 12(1). https://doi.org/10.1038/s41467‐021‐22333‐7
Jones, D. T., Susilo, F. X., Bignell, D. E., Hardiwinoto, S., Gillison, A. N., & Eggleton, P. (2003). Termite assemblage collapse along a land‐use intensification gradient in lowland central Sumatra, Indonesia. Journal of Applied Ecology, 40(2), 380–391. https://doi.org/10.1046/j.1365‐2664.2003.00794.x
Josens, G., & Soki, K. (2010). Relation between termite numbers and the size of their mounds. Insectes Sociaux, 57, 303–316. https://doi.org/10.1007/s00040‐010‐0085‐2
Khalil, M. A. K., Rasmussen, R. A., French, J. R. J., & Holt, J. A. (1990). The influence of termites on atmospheric trace gases: CH4, CO2, CHC13, N2O, CO, H2, and light hydrocarbons. Journal of Geophysical Research, 95(D4), 3619–3634. https://doi.org/10.1029/JD095iD04p03619
King, G. M. (1997). Responses of atmospheric methane consumption by soils to global climate change. Global Change Biology, 3(4), 351–362. https://doi.org/10.1046/j.1365‐2486.1997.00090.x
Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G., Dlugokencky, E. J., Bergamaschi, P., Bergmann, D., Blake, D. R., Bruhwiler, L., Cameron‐Smith, P., Castaldi, S., Chevallier, F., Feng, L., Fraser, A., Heimann, M., Hodson, E. L., Houweling, S., Josse, B., … Zeng, G. (2013). Three decades of global methane sources and sinks. Nature Geoscience, 6(10), 813–823. https://doi.org/10.1038/ngeo1955
Korb, J. (2003). Thermoregulation and ventilation of termite mounds. Naturwissenschaften, 90(5), 212–219. https://doi.org/10.1007/s00114‐002‐0401‐4
Korb, J. (2011). Termite mound architecture, from function to construction. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 349–374). Springer.
Korb, J., & Linsenmair, K. E. (1998). Experimental heating of Macrotermes bellicosus (Isoptera, Macrotermitinae) mounds: What role does microclimate play in influencing mound architecture? Insectes Sociaux, 45, 335–342. https://doi.org/10.1007/s000400050092
Kouakou, A. E., Dosso, K., Roisin, Y., Konate, S., & Kouassi, K. P. (2022). Soil‐feeding termite diversity and abundance in a natural tropical humid forest (Tai National Park, Côte d'Ivoire). Journal of Entomology and Zoology Studies, 10(1), 246–252. https://doi.org/10.22271/j.ento.2022.v10.i1c.8942
Kumar, S., Torres, C., Ulutan, O., Ayasse, A., Roberts, D., & Majunath, B. S. (2020). Deep remote sensing methods for methane detection in overhead hyperspectral imagery. IEEE Winter Conference on Applications of Computer Vision (WACV), 1765–1774. https://doi.org/10.1109/WACV45572.2020.9093600
Law, S., Flores‐Moreno, H., Cheesman, A. W., Clement, R., Rosenfield, M., Yatsko, A., Cernusak, L. A., Dalling, J. W., Canam, T., Iqsaysa, I. A., Duan, E. S., Allison, S. D., Eggleton, P., & Zanne, A. E. (2023). Wood traits explain microbial but not termite‐driven decay in Australian tropical rainforest and savanna. Journal of Ecology, 111(5), 982–993. https://doi.org/10.1111/1365‐2745.14090
Le Mer, J., & Roger, P. (2001). Production, oxidation, emission and consumption of methane by soils: A review. European Journal of Soil Biology, 37, 25–50. https://doi.org/10.1016/S1164‐5563(01)01067‐6
Lee, C. C., & Lee, C. Y. (2015). A laboratory maintenance regime for a fungus‐growing termite Macrotermes gilvus (Blattodea: Termitidae). Journal of Economic Entomology, 108(3), 1243–1250. https://doi.org/10.1093/jee/tov112
Lind, B. M., Uys, V. M., Eggleton, P., & Hanan, N. P. (2022). Precipitation mediates termite functional diversity and dominance in southern Africa. Bothalia‐African Biodiversity & Conservation, 52(1). https://doi.org/10.38201/btha.abc.v52.i1.3
Luke, S. H., Fayle, T. M., Eggleton, P., Turner, E. C., & Davies, R. G. (2014). Functional structure of ant and termite assemblages in old growth forest, logged forest and oil palm plantation in Malaysian Borneo. Biodiversity and Conservation, 23(11), 2817–2832. https://doi.org/10.1007/s10531‐014‐0750‐2
MacDonald, J. A., Eggleton, P., Bignell, D. E., Forzi, F., & Fowler, D. (1998). Methane emission by termites and oxidation by soils, across a forest disturbance gradient in the Mbalmayo Forest Reserve, Cameroon. Global Change Biology, 4(4), 409–418. https://doi.org/10.1046/j.1365‐2486.1998.00163.x
MacDonald, J. A., Jeeva, D., Eggleton, P., Davies, R., Bignell, D. E., Fowler, D., Lawton, J., & Maryati, M. (1999). The effect of termite biomass and anthropogenic disturbance on the CH4 budgets of tropical forests in Cameroon and Borneo. Global Change Biology, 5, 869–879. https://doi.org/10.1046/j.1365‐2486.1999.00279.x
Martin, S. J., Funch, R. R., Hanson, P. R., & Yoo, E. H. (2018). A vast 4,000‐year‐old spatial pattern of termite mounds. Current Biology, 28(22), R1292–R1293. https://doi.org/10.1016/j.cub.2018.09.061
Martius, C., Wassmann, R., Thein, U., Bandeira, A., Rennenberg, H., Junk, W., & Seiler, W. (1993). Methane emission from wood‐feeding termites in Amazonia. Chemosphere, 26(4), 623–632. https://doi.org/10.1016/0045‐6535(93)90448‐E
Meyer, V. W., Crewe, R. M., Braack, L. E. O., Groeneveld, H. T., & Van Der Linde, M. J. (2001). Biomass of Macrotermes natalensis in the northern Kruger National Park, South Africa‐the effects of land characteristics. Sociobiology, 38, 431–448.
Muhammad, A., Ayu, F., Saputra, A., Yus, Y., Purnasari, T., & Salbiah, D. (2012). Subterranean termite fauna on a peatland: A preliminary assessment of the species diversity and biomass under different land use types. Proceeding Seminar Bersama UR‐UKM Ke‐7, (Pekanbaru, Indonesia), 70–72.
Nauer, P. A., Chiri, E., De Souza, D., Hutley, L. B., & Arndt, S. K. (2018). Technical note: Rapid image‐based field methods improve the quantification of termite mound structures and greenhouse‐gas fluxes. Biogeosciences, 15(12), 3731–3742. https://doi.org/10.5194/bg‐15‐3731‐2018
Nauer, P. A., Hutley, L. B., & Arndt, S. K. (2018). Termite mounds mitigate half of termite methane emissions. Proceedings of the National Academy of Sciences of the United States of America, 115(52), 13306–13311. https://doi.org/10.1073/pnas.1809790115
Nauer, P. A., & Schroth, M. H. (2010). In situ quantification of atmospheric methane oxidation in near‐surface soils. Vadose Zone Journal, 9(4), 1052–1062. https://doi.org/10.2136/vzj2009.0192
Neupane, A., Maynard, D. S., & Bradford, M. A. (2015). Consistent effects of eastern subterranean termites (Reticulitermes flavipes) on properties of a temperate forest soil. Soil Biology and Biochemistry, 91, 84–91. https://doi.org/10.1016/j.soilbio.2015.08.025
Nisbet, E. G., Manning, M. R., Dlugokencky, E. J., Fisher, R. E., Lowry, D., Michel, S. E., Myhre, C. L., Platt, S. M., Allen, G., Bousquet, P., Brownlow, R., Cain, M., France, J. L., Hermansen, O., Hossaini, R., Jones, A. E., Levin, I., Manning, A. C., Myhre, G., … White, J. W. C. (2019). Very strong atmospheric methane growth in the 4 years 2014–2017: Implications for the Paris agreement. Global Biogeochemical Cycles, 33(3), 318–342. https://doi.org/10.1029/2018GB006009
Räsänen, M., Vesala, R., Rönnholm, P., Arppe, L., Manninen, P., Jylhä, M., Rikkinen, J., Pellikka, P., & Rinne, J. (2023). Carbon dioxide and methane fluxes from mounds of African fungus‐growing termites. Biogeosciences, 20(19), 4029–4042. https://doi.org/10.5194/bg‐20‐4029‐2023
Rasmussen, R. A., & Khalil, M. A. K. (1983). Global production of methane by termites. Nature, 301, 700–702. https://doi.org/10.1038/301700a0
Rosenberg, Y., Bar‐On, Y. M., Fromm, A., Ostikar, M., Shoshany, A., Giz, O., & Milo, R. (2023). The global biomass and number of terrestrial arthropods. Science Advances, 9, eabq4049. https://doi.org/10.1126/sciadv.abq4049
Sanderson, M. G. (1996). Biomass of termites and their emissions of methane and carbon dioxide: A global database. Global Biogiochemical Cycles, 10(4), 543–557.
Saputra, A., Muhammad Nasir, D., Jalaludin, N. A., Halim, M., Bakri, A., Mohammad Esa, M. F., Riza Hazmi, I., & Rahim, F. (2018). Composition of termites in three different soil types across oil palm agroecosystem regions in Riau (Indonesia) and Johor (Peninsular Malaysia). Journal of Oil Palm Research, 30, 559–569. https://doi.org/10.21894/jopr.2018.0054
Saunois, M. R., Stavert, A., Poulter, B., Bousquet, P., Canadell, J. G., Jackson, R. B., Raymond, P. A., Dlugokencky, E. J., Houweling, S. K., Patra, P., Ciais, P., Arora, V. K., Bastviken, D., Bergamaschi, P., Blake, D. R., Brailsford, G., Bruhwiler, L., Carlson, K. M., Carrol, M., … Zhuang, Q. (2020). The global methane budget 2000‐2017. Earth System Science Data, 12(3), 1561–1623. https://doi.org/10.5194/essd‐12‐1561‐2020
Schmidt, A. M., Jacklyn, P., & Korb, J. (2014). “Magnetic” termite mounds: Is their unique shape an adaptation to facilitate gas exchange and improve food storage? Insectes Sociaux, 61(1), 41–49. https://doi.org/10.1007/s00040‐013‐0322‐6
Sherwood, O. A., Schwietzke, S., Arling, V. A., & Etiope, G. (2017). Global inventroy of gas geochemistry data from fossil fuel, microbial and burning sources, version 2017. Earth System Science Data, 9, 639–656.
Seibold, S., Rammer, W., Hothorn, T., Seidl, R., Ulyshen, M. D., Lorz, J., Cadotte, M. W., Lindenmayer, D. B., Adhikari, Y. P., Aragón, R., Bae, S., Baldrian, P., Barimani Varandi, H., Barlow, J., Bässler, C., Beauchêne, J., Berenguer, E., Bergamin, R. S., Birkemoe, T., … Müller, J. (2021). The contribution of insects to global forest deadwood decomposition. Nature, 597(7874), 77–81. https://doi.org/10.1038/s41586‐021‐03740‐8
Seiler, W., Conrad, R., & Scharffe, D. (1984). Field studies of methane emission from termite nests into the atmosphere and measurements of methane uptake by tropical soils. Journal of Atmospheric Chemistry, 1, 171–186. https://doi.org/10.1007/BF00053839
Shaw, J. T., Shah, A., Yong, H., & Allen, G. (2020). Methods for quantifying methane emissions using unmanned aerial vehicles: A review. Philosophical Transactions of the Royal Society A, 379, 20200450. https://doi.org/10.1098/sta.2020.0450
Singh, K., Muljadi, B. P., Raeini, A. Q., Jost, C., Vandeginste, V., Blunt, M. J., Theraulaz, G., & Degond, P. (2019). The architectural design of smart ventilation and drainage systems in termite nests. Science Advances, 5, eaat8520. https://doi.org/10.1126/sciadv.aat8520
Skeie, R. B., Hodnebrog, Ø., & Myhre, G. (2023). Trends in atmospheric methane concentrations since 1990 were driven and modified by anthropogenic emissions. Communications Earth & Environment, 4(1). https://doi.org/10.1038/s43247‐023‐00969‐1
Stavert, A. R., Saunois, M., Canadell, J. G., Poulter, B., Jackson, R. B., Regnier, P., Lauerwald, R., Raymond, P. A., Allen, G. H., Patra, P. K., Bergamaschi, P., Bousquet, P., Chandra, N., Ciais, P., Gustafson, A., Ishizawa, M., Ito, A., Kleinen, T., Maksyutov, S., … Zhuang, Q. (2022). Regional trends and drivers of the global methane budget. Global Change Biology, 28(1), 182–200. https://doi.org/10.1111/gcb.15901
Sugimoto, A., Inoue, T., Kirtibutr, N., & Abe, T. (1998). Methane oxidation by termite mounds estimated by the carbon isotopic composition of methane. Global Biogeochemical Cycles, 12(4), 595–605. https://doi.org/10.1029/98GB02266
Tarnita, C. E. (2018). Ecology: Termite patterning at multiple scales. Current Biology, 28(24), R1394–R1396.
Thompson, D. R., Leifer, I., Bovensmann, H., Eastwood, M., Fladeland, M., Frankenberg, C., Gerilowski, K., Green, R. O., Kratwurst, S., Krings, T., Luna, B., & Thorpe, A. K. (2015). Real‐time remote detection and measurement for airborne imaging spectroscopy: A case study with methane. Atmospheric Measurement Techniques, 8(10), 4383–4397. https://doi.org/10.5194/amt‐8‐4383‐2015
Urmann, K., Gonzalez‐Gil, G., Schroth, M. H., & Zeyer, J. (2007). Quantification of microbial methane oxidation in an alpine peat bog. Vadose Zone Journal, 6(4), 705–712. https://doi.org/10.2136/vzj2006.0185
van Asperen, H., Alves‐Oliveira, J. R., Warneke, T., Forsberg, B., Carioca De Araújo, A., & Notholt, J. (2021). The role of termite CH4 emissions on the ecosystem scale: A case study in the Amazon rainforest. Biogeosciences, 18(8), 2609–2625. https://doi.org/10.5194/bg‐18‐2609‐2021
Vasconcellos, A. (2010). Biomass and abundance of termites in three remnant areas of Atlantic Forest in northeastern Brazil. Revista Brasileira de Entomologia, 53(3), 455–461. https://doi.org/10.1590/S0085‐56262010000300017
Veldhuis, M. P., Laso, F. J., Olff, H., & Berg, M. P. (2017). Termites promote resistance of decomposition to spatiotemporal variability in rainfall. Ecology, 98(2), 467–477. https://doi.org/10.1002/ecy.1658
Walker, A. E. L., Robertson, M. P., Eggleton, P., Bunney, K., Lamb, C., Fisher, A. M., & Parr, C. L. (2022). Indirect control of decomposition by an invertebrate predator. Functional Ecology, 36(12), 2943–2954. https://doi.org/10.1111/1365‐2435.14198
Werner, P. A., & Prior, L. D. (2007). Tree‐piping termites and growth and survival of host trees in savanna woodland of north Australia. Journal of Tropical Ecology, 23(6), 611–622. https://doi.org/10.1017/S0266467407004476
Wijas, B. J., Flores‐Moreno, H., Allison, S. D., Chavez Rodriguez, L., Cheesman, A. W., Cernusak, L. A., Clement, R., Cornwell, W. K., Duan, E. S., Eggleton, P., Rosenfield, M. V., Yatsko, A. R., & Zanne, A. E. (2024). Drivers of wood decay in tropical ecosystems: Termites versus microbes along spatial, temporal and experimental precipitation gradients. Functional Ecology, 38, 546–559. https://doi.org/10.1111/1365‐2435.14494
Wijas, B. J., Lim, S., & Cornwell, W. K. (2022). Continental‐scale shifts in termite diversity and nesting and feeding strategies. Ecography, 2022(1). https://doi.org/10.1111/ecog.05902
Xu, X., Zeng, Q., Li, D., Wu, J., Wu, X., & Shen, J. (2010). GPR detection of several common subsurface voids inside dikes and dams. Engineering Geology, 111(1–4), 31–42. https://doi.org/10.1016/j.enggeo.2009.12.001
Yamada, A., Inoue, T., Sugimoto, A., Takematsu, Y., Kumai, T., Hyodo, F., Fujita, A., Tayasu, I., Klangkaew, C., Kirtibutr, N., Kudo, T., & Abe, T. (2003). Abundance and biomass of termites (Insecta: Isoptera) in dead wood in a dry evergreen forest in Thailand. Sociobiology, 42(3), 569–585.
Yang, X., Henderson, G., Mao, L., & Evans, A. (2009). Application of ground penetrating radar in detecting the hazards and risks of termites and ants in soil levees. Environmental Entomology, 38(4), 1241–1249. https://doi.org/10.1603/022.038.0435
Yatsko, A. R., Wijas, B., Calvert, J., Cheesman, A. W., Cook, K., Eggleton, P., Gambold, I., Jones, C., Russell‐Smith, P., & Zanne, A. E. (2024). Why are trees hollow? Termites, microbes, and tree internal stem damage in a tropical savanna. PREPRINT (Version 1) Available at EcoEvoRxiv. https://doi.org/10.32942/X2WG75
Zanne, A. E., Flores‐Moreno, H., Powell, J. R., Cornwell, W. K., Dalling, J. W., Austin, A. T., Classen, A. T., Eggleton, P., Okada, K., Parr, C. L., Carol Adair, E., Adu‐Bredu, S., Azharul Alam, M., Alvarez‐Garzón, C., Apgaua, D., Aragón, R., Ardon, M., Arndt, S. K., Ashton, L. A., … Zalamea, P.‐C. (2022). Termite sensitivity to temperature affects global wood decay rates. Science, 377, 1440–1444. https://doi.org/10.1126/science.abo3856
Zhou, Y., Staver, A. C., & Davies, A. B. (2023). Species‐level termite methane production rates. Ecology, 104(2). https://doi.org/10.1002/ecy.3905
Zimmerman, P. R., Greenberg, J. P., Wandiga, S. O., & Crutzen, P. J. (1982). Termites: A potentially large source of atmospheric methane, carbon dioxide, and molecular hydrogen. Science, 218(4572), 563–565. https://doi.org/10.1126/science.218.4572.563