Explaining the influence of practice on the grooved pegboard times of older adults: role of force steadiness.
Aging
Force steadiness
Grooved pegboard test
Hand function
Manual dexterity
Journal
Experimental brain research
ISSN: 1432-1106
Titre abrégé: Exp Brain Res
Pays: Germany
ID NLM: 0043312
Informations de publication
Date de publication:
25 Jun 2024
25 Jun 2024
Historique:
received:
18
03
2024
accepted:
18
06
2024
medline:
25
6
2024
pubmed:
25
6
2024
entrez:
25
6
2024
Statut:
aheadofprint
Résumé
The purpose was to identify the variables that can explain the variance in the grooved pegboard times of older adults categorized as either fast or slow performers. Participants (n = 28; 60-83 years) completed two experimental sessions, before and after 6 practice sessions of the grooved pegboard test. The 2 groups were identified based on average pegboard times during the practice sessions. Average pegboard time during practice was 73 ± 11 s for the fast group and 85 ± 13 s for the slow group. Explanatory variables for the pegboard times before and after practice were the durations of 4 peg-manipulation phases and 12 measures of force steadiness (coefficient of variation [CV] for force) during isometric contractions with the index finger abductor and wrist extensor muscles. Time to complete the grooved pegboard test after practice decreased by 25 ± 11% for the fast group and by 28 ± 10% for the slow group. Multiple regression models explained more of the variance in the pegboard times for the fast group before practice (Adjusted R
Identifiants
pubmed: 38916760
doi: 10.1007/s00221-024-06878-9
pii: 10.1007/s00221-024-06878-9
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Multiple Sclerosis Foundation
ID : RG-2206-39688
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Almuklass AM, Price RC, Gould JR, Enoka RM (2016) Force steadiness as a predictor of time to complete a pegboard test of dexterity in young men and women. J Appl Physiol 120(12):1410–1417. https://doi.org/10.1152/japplphysiol.01051.2015
doi: 10.1152/japplphysiol.01051.2015
pubmed: 27103655
Almuklass AM, Davis L, Hamilton LD, Vieira TM, Botter A, Enoka RM (2018a) Motor unit discharge characteristics and walking performance of individuals with multiple sclerosis. J Neurophysiol 119(4):1273–1282. https://doi.org/10.1152/jn.00598.2017
doi: 10.1152/jn.00598.2017
pubmed: 29357453
pmcid: 5966731
Almuklass AM, Feeney DF, Mani D, Hamilton LD, Enoka RM (2018b) Peg-manipulation capabilities of middle-aged adults have a greater influence on pegboard times than those of young and old adults. Exp Brain Res 236:2165–2172. https://doi.org/10.1007/s00221-018-5294-3
doi: 10.1007/s00221-018-5294-3
pubmed: 29785485
Ambike SS, Paclet F, Latash ML, Zatsiorsky VM (2013) Grip-force modulation in multi-finger prehension during wrist flexion and extension. Exp Brain Res 227(4):509–522. https://doi.org/10.1007/s00221-013-3527-z
doi: 10.1007/s00221-013-3527-z
pubmed: 23625077
pmcid: 3766344
Ashendorf L, Vanderslice-Barr JL, McCaffrey RJ (2009) Motor tests and cognition in healthy older adults. Appl Neuropsychol 16(3):171–176. https://doi.org/10.1080/09084280903098562
doi: 10.1080/09084280903098562
pubmed: 20183169
Bohannon RW, Bubela D, Magasi S, McCreath H, Wang YC, Reuben D, Rymer WZ, Gershon R (2014) Comparison of walking performance over the first 2 minutes and the full 6 minutes of the Six-Minute Walk Test. BMC Res Notes 7(1):269. https://doi.org/10.1186/1756-0500-7-269
doi: 10.1186/1756-0500-7-269
pubmed: 24767634
pmcid: 4012174
Bowden JL, McNulty PA (2013) The magnitude and rate of reduction in strength, dexterity and sensation in the human hand vary with ageing. Exp Gerontol 48(8):756–765. https://doi.org/10.1016/j.exger.2013.03.011
doi: 10.1016/j.exger.2013.03.011
pubmed: 23570975
Carville SF, Perry MC, Rutherford OM, Smith ICH, Newham DJ (2007) Steadiness of quadriceps contractions in young and older adults with and without a history of falling. Eur J Appl Physiol 100(5):527–533. https://doi.org/10.1007/s00421-006-0245-2
doi: 10.1007/s00421-006-0245-2
pubmed: 16983499
Daneshgar S, Tvrdy T, Enoka RM (2023) Practice-induced changes in manual dexterity of older adults depend on initial pegboard time. Med Sci Sports Exerc 55(11):2045–2052. https://doi.org/10.1249/MSS.0000000000003245
doi: 10.1249/MSS.0000000000003245
pubmed: 37379250
Dartnall TJ, Rogasch NC, Nordstrom MA, Semmler JG (2009) Eccentric muscle damage has variable effects on motor unit recruitment thresholds and discharge patterns in elbow flexor muscles. J Neurophysiol 102(1):413–423. https://doi.org/10.1152/jn.91285.2008
doi: 10.1152/jn.91285.2008
pubmed: 19420118
Davis LA, Alenazy MS, Almuklass AM, Feeney DF, Vieira T, Botter A, Enoka RM (2020) Force control during submaximal isometric contractions is associated with walking performance in persons with multiple sclerosis. J Neurophysiol 123(6):2191–2200. https://doi.org/10.1152/jn.00085.2020
doi: 10.1152/jn.00085.2020
pubmed: 32347151
pmcid: 7311722
Del Vecchio A, Falla D, Felici F, Farina D (2019) The relative strength of common synaptic input to motor neurons is not a determinant of the maximal rate of force development in humans. J Appl Physiol 127(1):205–214. https://doi.org/10.1152/japplphysiol.00139.2019
doi: 10.1152/japplphysiol.00139.2019
pubmed: 31120812
Del Vecchio A, Germer CM, Kinfe TM, Nuccio S, Hug F, Eskofier B, Farina D, Enoka RM (2023) The forces generated by agonist muscles during isometric contractions arise from motor unit synergies. J Neurosci 43(16):2860–2873. https://doi.org/10.1523/JNEUROSCI.1265-22.2023
doi: 10.1523/JNEUROSCI.1265-22.2023
pubmed: 36922028
pmcid: 10124954
Dideriksen JL, Negro F, Enoka RM, Farina D (2012) Motor unit recruitment strategies and muscle properties determine the influence of synaptic noise on force steadiness. J Neurophysiol 107:3357–3369. https://doi.org/10.1152/jn.00938.2011
doi: 10.1152/jn.00938.2011
pubmed: 22423000
pmcid: 3378401
Duchateau J, Enoka RM (2011) Human motor unit recordings: origins and insight into the integrated motor system. Brain Res 1409:42–61. https://doi.org/10.1016/j.brainres.2011.06.011
doi: 10.1016/j.brainres.2011.06.011
pubmed: 21762884
Elliott D, Lyons J, Hayes SJ, Burkitt JJ, Hansen S, Grierson LEM, Foster NC, Roberts JW, Bennett SJ (2020) The multiple process model of goal-directed aiming/reaching: insights on limb control from various special populations. Exp Brain Res 238(12):2685–2699. https://doi.org/10.1007/s00221-020-05952-2
doi: 10.1007/s00221-020-05952-2
pubmed: 33079207
Enoka RM, Farina D (2021) Force steadiness: from motor units to voluntary actions. Physiology 36(2):114–130. https://doi.org/10.1152/physiol.00027.2020
doi: 10.1152/physiol.00027.2020
pubmed: 33595382
Farina D, Negro F (2015) Common synaptic input to motor neurons, motor unit synchronization, and force control. Exerc Sport Sci Rev 43(1):23–33. https://doi.org/10.1249/JES.0000000000000032
doi: 10.1249/JES.0000000000000032
pubmed: 25390298
Farina D, Negro F, Muceli S, Enoka RM (2016) Principles of motor unit physiology evolve with advances in technology. Physiology 31(2):83–94. https://doi.org/10.1152/physiol.00040.2015
doi: 10.1152/physiol.00040.2015
pubmed: 26889014
Feeney DF, Mani D, Enoka RM (2018) Variability in common synaptic input to motor neurons modulates both force steadiness and pegboard time in young and older adults. J Physiol 596(16):3793–3806. https://doi.org/10.1113/JP275658
doi: 10.1113/JP275658
pubmed: 29882259
pmcid: 6092304
Galganski ME, Fuglevand AJ, Enoka RM (1993) Reduced control of motor output in a human hand muscle of elderly subjects during submaximal contractions. J Neurophysiol 69(6):2108–2115. https://doi.org/10.1152/jn.1993.69.6.2108
doi: 10.1152/jn.1993.69.6.2108
pubmed: 8350134
Gershon RC, Wagster MV, Hendrie HC, Fox NA, Cook KF, Nowinski CJ (2013) NIH toolbox for assessment of neurological and behavioral function. Neurology 80(11 Suppl 3):S2-6. https://doi.org/10.1212/WNL.0b013e3182872e5f
doi: 10.1212/WNL.0b013e3182872e5f
pubmed: 23479538
pmcid: 3662335
Hamilton LD, Thomas E, Almuklass AM, Enoka RM (2017) A framework for identifying the adaptations responsible for differences in pegboard times between middle-aged and older adults. Exp Gerontol 97:9–16. https://doi.org/10.1016/j.exger.2017.07.003
doi: 10.1016/j.exger.2017.07.003
pubmed: 28688836
pmcid: 5591777
Hamilton LD, Mazzo MR, Petrigna L, Ahmed AA, Enoka RM (2019) Poor estimates of motor variability are associated with longer grooved pegboard times for middle-aged and older adults. J Neurophysiol 121:588–601. https://doi.org/10.1152/jn.00543.2018.-Goal-directed
doi: 10.1152/jn.00543.2018.-Goal-directed
pubmed: 30540504
Hirono T, Ikezoe T, Yamagata M, Kato T, Kimura M, Ichihashi N (2021) Relationship between postural sway on an unstable platform and ankle plantar flexor force steadiness in community-dwelling older women. Gait Posture 84:227–231. https://doi.org/10.1016/j.gaitpost.2020.12.023
doi: 10.1016/j.gaitpost.2020.12.023
pubmed: 33383532
Hyngstrom AS, Kuhnen HR, Kirking KM, Hunter SK (2014) Functional implications of impaired control of submaximal hip flexion following stroke. Muscle Nerve 49(2):225–232. https://doi.org/10.1002/mus.23886
doi: 10.1002/mus.23886
pubmed: 23625534
pmcid: 4511603
Keen DA, Yue GH, Enoka RM (1994) Training-related enhancement in the control of motor output in elderly humans. J Appl Physiol 77(6):2648–2658. https://doi.org/10.1152/jappl.1994.77.6.2648
doi: 10.1152/jappl.1994.77.6.2648
pubmed: 7896604
Kobayashi H, Koyama Y, Enoka RM, Suzuki S (2014) A unique form of light-load training improves steadiness and performance on some functional tasks in older adults. Scand J Med Sci Sports 24(1):98–110. https://doi.org/10.1111/j.1600-0838.2012.01460.x
doi: 10.1111/j.1600-0838.2012.01460.x
pubmed: 22493975
Kobayashi-Cuya KE, Sakurai R, Sakuma N, Suzuki H, Yaunaga M, Ogawa S, Takebayashi T, Fujiwara Y (2018) Hand dexterity, not handgrip strength, is associated with executive function in Japanese community-dwelling older adults: a cross-sectional study. BMC Geriatr 18:210. https://doi.org/10.1186/s12877-018-0880-6
doi: 10.1186/s12877-018-0880-6
pubmed: 30205814
pmcid: 6134789
Kouzaki M, Shinohara M (2010) Steadiness in plantar flexor muscles and its relation to postural sway in young and elderly adults. Muscle Nerve 42(1):78–87. https://doi.org/10.1002/mus.21599
doi: 10.1002/mus.21599
pubmed: 20544908
pmcid: 4590785
Laidlaw DH, Kornatz KW, Keen DA, Suzuki S, Enoka RM (1999) Strength training improves the steadiness of slow lengthening contractions performed by old adults. J Appl Physiol 87(5):1786–1795. https://doi.org/10.1152/jappl.1999.87.5.1786
doi: 10.1152/jappl.1999.87.5.1786
pubmed: 10562623
Levine J, Avrillon S, Farina D, Hug F, Pons JL (2023) Two motor neuron synergies, invariant across ankle joint angles, activate the triceps surae during plantarflexion. J Physiol 601(19):4337–4354. https://doi.org/10.1113/JP284503
doi: 10.1113/JP284503
pubmed: 37615253
Maillet J, Avrillon S, Nordez A, Rossi J, Hug F (2022) Handedness is associated with less common input to spinal motor neurons innervating different hand muscles. J Neurophysiol 128:778–789. https://doi.org/10.1152/jn.00237.2022
doi: 10.1152/jn.00237.2022
pubmed: 36001792
Mani D, Almuklass AM, Hamilton LD, Vieira TM, Botter A, Enoka RM (2018) Motor unit activity, force steadiness, and perceived fatigability are correlated with mobility in older adults. J Neurophysiol 120(4):1988–1997. https://doi.org/10.1152/jn.00192.2018
doi: 10.1152/jn.00192.2018
pubmed: 30044670
pmcid: 6230777
Marmon AR, Gould JR, Enoka RM (2011a) Practicing a functional task improves steadiness with hand muscles in older adults. Med Sci Sports Exerc 43(8):1531–1537. https://doi.org/10.1249/MSS.0b013e3182100439
doi: 10.1249/MSS.0b013e3182100439
pubmed: 21266932
Marmon AR, Pascoe MA, Schwartz RS, Enoka RM (2011b) Associations among strength, steadiness, and hand function across the adult life span. Med Sci Sports Exerc 43(4):560–567. https://doi.org/10.1249/MSS.0b013e3181f3f3ab
doi: 10.1249/MSS.0b013e3181f3f3ab
pubmed: 20689447
Mazzo MR, Holobar A, Enoka RM (2022) Association between effective neural drive to the triceps surae and fluctuations in plantar-flexion torque during submaximal isometric contractions. Exp Physiol 107(5):489–507. https://doi.org/10.1113/EP090228
doi: 10.1113/EP090228
pubmed: 35218261
McGrath R, Tomkinson GR, Clark BC, Cawthon PM, Cesari M, Snih SA, Jurivich DA, Hackney KJ (2021) Assessing additional characteristics of muscle function with digital handgrip dynamometry and accelerometry: framework of a novel handgrip strength protocol. J Am Med Dir Assoc 22(11):2323–2328. https://doi.org/10.1016/j.jamda.2021.05.033
doi: 10.1016/j.jamda.2021.05.033
Moritz CT, Barry BK, Pascoe MA, Enoka RM (2005) Discharge rate variability influences the variation in force fluctuations across the working range of a hand muscle. J Neurophysiol 93:2449–2459. https://doi.org/10.1152/jn.01122.2004
doi: 10.1152/jn.01122.2004
pubmed: 15615827
Narici MV, Bordini M, Cerretelli P (1991) Effect of aging on human adductor pollicis muscle function. J Appl Physiol 71(4):1277–1281. https://doi.org/10.1152/jappl.1991.71.4.1277
doi: 10.1152/jappl.1991.71.4.1277
pubmed: 1757349
Negro F, Yavuz UŞ, Farina D (2016) The human motor neuron pools receive a dominant slow-varying common synaptic input. J Physiol 594(19):5491–5505. https://doi.org/10.1113/JP271748
doi: 10.1113/JP271748
pubmed: 27151459
pmcid: 5043036
Oldfield OC (1971) The assessment and analysis of handedness: the edinburgh inventory. Neuropsychologia 9(1):97–113. https://doi.org/10.1016/0028-3932(71)90067-4
doi: 10.1016/0028-3932(71)90067-4
pubmed: 5146491
Ostwald SK, Snowdon DA, Rysavy DM, Keenan NL, Kane RL (1989) Manual dexterity as a correlate of dependency in the elderly. J Am Geriatr Soc 37(10):963–969. https://doi.org/10.1111/j.1532-5415.1989.tb07282.x
doi: 10.1111/j.1532-5415.1989.tb07282.x
pubmed: 2507619
Pereira HM, Spears VC, Schlinder-Delap B, Yoon T, Nielson KA, Hunter SK (2015) Age and sex differences in steadiness of elbow flexor muscles with imposed cognitive demand. Eur J Appl Physiol 115(6):1367–1379. https://doi.org/10.1007/s00421-015-3113-0
doi: 10.1007/s00421-015-3113-0
pubmed: 25633070
pmcid: 4431934
Pereira HM, Schlinder-DeLap B, Keenan KG, Negro F, Farina D, Hyngstrom AS, Nielson KA, Hunter SK (2019) Oscillations in neural drive and age-related reductions in force steadiness with a cognitive challenge. J Appl Physiol 126(4):1056–1065. https://doi.org/10.1152/japplphysiol.00821.2018
doi: 10.1152/japplphysiol.00821.2018
pubmed: 30817244
pmcid: 6485692
Pethick J, Taylor MJD, Harridge SDR (2022) Aging and skeletal muscle force control: current perspectives and future directions. Scand J Med Sci Sports 32(10):1430–1443. https://doi.org/10.1111/sms.14207
doi: 10.1111/sms.14207
pubmed: 35815914
pmcid: 9541459
Reuben DB, Magasi S, McCreath HE, Bohannon RW, Wang YC, Bubela DJ, Rymer WZ, Beaumont J, Rine RM, Lai JS, Gershon RC (2013) Motor assessment using the NIH toolbox. Neurology 80(11):S65–S75. https://doi.org/10.1212/WNL.0b013e3182872e01
doi: 10.1212/WNL.0b013e3182872e01
pubmed: 23479547
pmcid: 3662336
Ricotta JM, Nardon M, De SD, Jiang J, Graziani W, Latash ML (2023) Motor unit-based synergies in a non-compartmentalized muscle. Exp Brain Res 241(5):1367–1379. https://doi.org/10.1007/s00221-023-06606-9
doi: 10.1007/s00221-023-06606-9
pubmed: 37017728
Seidel D, Crilly N, Matthews FE, Jagger C, Clarkson PJ, Brayne C (2009) Patterns of functional loss among older people: a prospective analysis. Hum Factors 51(5):669–680. https://doi.org/10.1177/0018720809353597
doi: 10.1177/0018720809353597
pubmed: 20196292
Seol J, Lim N, Nagata K, Okura T (2023) Effects of home-based manual dexterity training on cognitive function among older adults: a randomized controlled trial. European Rev of Aging Phys Act 20:9. https://doi.org/10.1186/s11556-023-00319-2
doi: 10.1186/s11556-023-00319-2
Sobinov AR, Bensmaia SJ (2021) The neural mechanisms of manual dexterity. Nat Rev Neurosci 22:741–757. https://doi.org/10.1038/s41583-021-00528-7
doi: 10.1038/s41583-021-00528-7
pubmed: 34711956
pmcid: 9169115
Suetta C, Haddock B, Alcazar J, Noerst T, Hansen OM, Ludvig H, Kamper RS, Schnohr P, Prescott E, Andersen LL, Frandsen U, Aagaard P, Bülow J, Hovind P, Simonsen L (2019) The copenhagen sarcopenia study: lean mass, strength, power, and physical function in a danish cohort aged 20–93 years. J Cachexia Sarcopenia Muscle 10(6):1316–1329. https://doi.org/10.1002/jcsm.12477
doi: 10.1002/jcsm.12477
pubmed: 31419087
pmcid: 6903448
Thompson CK, Negro F, Johnson MD, Holmes MR, McPherson LM, Powers RK, Farina D, Heckman CJ (2018) Robust and accurate decoding of motoneuron behaviour and prediction of the resulting force output. J Physiol. https://doi.org/10.1113/JP276153
doi: 10.1113/JP276153
pubmed: 29920677
pmcid: 6092308
Thompson-Butel AG, Lin GG, Shiner CT, McNulty PA (2014) Two common tests of dexterity can stratify upper limb motor function after stroke. Neurorehabil Neural Repair 28(8):788–796. https://doi.org/10.1177/1545968314523678
doi: 10.1177/1545968314523678
pubmed: 24627336
Turner TS, Tucker KJ, Rogasch NC, Semmler JG (2008) Impaired neuromuscular function during isometric, shortening, and lengthening contractions after exercise-induced damage to elbow flexor muscles. J Appl Physiol 105(2):502–509. https://doi.org/10.1152/japplphysiol.90421.2008
doi: 10.1152/japplphysiol.90421.2008
pubmed: 18556432
Vila-Chã C, Hassanlouei H, Farina D, Falla D (2012) Eccentric exercise and delayed onset muscle soreness of the quadriceps induce adjustments in agonist-antagonist activity, which are dependent on the motor task. Exp Brain Res 216(3):385–395. https://doi.org/10.1007/s00221-011-2942-2
doi: 10.1007/s00221-011-2942-2
pubmed: 22094715
Wang YC, Magasi SR, Bohannon RW, Reuben DB, McCreath HE, Bubela DJ, Gershon RC, Rymer WZ (2011) Assessing dexterity function: a comparison of two alternatives for the NIH toolbox. J Hand Ther. https://doi.org/10.1016/j.jht.2011.05.001
doi: 10.1016/j.jht.2011.05.001
pubmed: 21925835
pmcid: 3244520
Weinman LE, Del Vecchio A, Mazzo MR, Enoka RM (2024) Motor unit modes in the calf muscle during submaximal isometric contraction are changed by brief stretches. J Physiol 602(7):1385–1404. https://doi.org/10.1113/jp285437
doi: 10.1113/jp285437
pubmed: 38513002
Werremeyer MM, Cole KJ (1997) Wrist action affects precision grip force. J Neurophysiol 78(1):271–280. https://doi.org/10.1152/jn.1997.78.1.271
doi: 10.1152/jn.1997.78.1.271
pubmed: 9242279
Williams ME, Hadler NM, Earp JA (1982) Manual ability as a marker of dependency in geriatric women. J Chronic Dis 35(2):115–122. https://doi.org/10.1016/0021-9681(82)90112-6
doi: 10.1016/0021-9681(82)90112-6
pubmed: 7056836