Crossed VEP asymmetry in a patient with AHR-linked infantile nystagmus and foveal hypoplasia.
AHR gene
Crossed VEP asymmetry
Foveal hypoplasia
Infantile nystagmus
Journal
Documenta ophthalmologica. Advances in ophthalmology
ISSN: 1573-2622
Titre abrégé: Doc Ophthalmol
Pays: Netherlands
ID NLM: 0370667
Informations de publication
Date de publication:
26 Jun 2024
26 Jun 2024
Historique:
received:
13
12
2023
accepted:
05
06
2024
medline:
26
6
2024
pubmed:
26
6
2024
entrez:
26
6
2024
Statut:
aheadofprint
Résumé
Infantile nystagmus and foveal hypoplasia associated with AHR gene defects is a newly recognized and rare disorder. Our aim was to present a patient with a novel biallelic AHR pathogenic variant with electrophysiological evidence of chiasmal misrouting. Complete ocular examination, fundus imaging, visual evoked potentials (VEP) and full-field electroretinography were performed at initial presentation. Genetic testing was performed by whole exome sequencing. Female patient of 6 years old presented a reduced best corrected visual acuity, an infantile nystagmus and a grade III typical foveal hypoplasia without ocular hypopigmentation. A crossed asymmetry was discovered on pattern onset/offset VEP. Genetic testing put in evidence a novel homozygous variant in AHR: c.2242del, p. (Gln748Lysfs AHR gene defects could be associated with infantile nystagmus, foveal hypoplasia and chiasmal misrouting.
Identifiants
pubmed: 38922562
doi: 10.1007/s10633-024-09979-6
pii: 10.1007/s10633-024-09979-6
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Université de Bordeaux
ID : Apithem NCT04495218
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Mayer AK, Mahajnah M, Thomas MG et al (2019) Homozygous stop mutation in AHR causes autosomal recessive foveal hypoplasia and infantile nystagmus. Brain 142:1528–1534. https://doi.org/10.1093/brain/awz098
doi: 10.1093/brain/awz098
pubmed: 31009037
AlMoallem B, Alharthi E (2022) Novel biallelic AHR splice site mutation cause isolated foveal hypoplasia in Saudi patient: a case report. Ophthalmic Genet 43:425–429. https://doi.org/10.1080/13816810.2022.2039718
doi: 10.1080/13816810.2022.2039718
pubmed: 35188035
Apkarian P, Reits D, Spekreijse H, Van Dorp D (1983) A decisive electrophysiological test for human albinism. Electroencephalogr Clin Neurophysiol 55:513–531. https://doi.org/10.1016/0013-4694(83)90162-1
doi: 10.1016/0013-4694(83)90162-1
pubmed: 6187545
Kriss A, Russell-Eggitt I, Taylor D (1990) Childhood albinism. Visual electrophysiological features. Ophthalmic Paediatr Genet 11:185–192. https://doi.org/10.3109/13816819009020978
doi: 10.3109/13816819009020978
pubmed: 2280976
van Genderen MM, Riemslag FCC, Schuil J et al (2006) Chiasmal misrouting and foveal hypoplasia without albinism. Br J Ophthalmol 90:1098–1102. https://doi.org/10.1136/bjo.2006.091702
doi: 10.1136/bjo.2006.091702
pubmed: 16707527
pmcid: 1857410
Smirnov V, Drumare I, Bouacha I et al (2015) Long-term follow-up of two patients with oligocone trichromacy. Doc Ophthalmol 131:149–158. https://doi.org/10.1007/s10633-015-9508-8
doi: 10.1007/s10633-015-9508-8
pubmed: 26138751
Apkarian P, Shallo-Hoffmann J (1991) VEP projections in congenital nystagmus; VEP asymmetry in albinism: a comparison study. Invest Ophthalmol Vis Sci 32:2653–2661
pubmed: 1651299
Lasseaux E, Plaisant C, Michaud V et al (2018) Molecular characterization of a series of 990 index patients with albinism. Pigment Cell Melanoma Res 31:466–474. https://doi.org/10.1111/pcmr.12688
doi: 10.1111/pcmr.12688
pubmed: 29345414
Thomas MG, Kumar A, Mohammad S et al (2011) Structural grading of foveal hypoplasia using spectral-domain optical coherence tomography a predictor of visual acuity? Ophthalmology 118:1653–1660. https://doi.org/10.1016/j.ophtha.2011.01.028
doi: 10.1016/j.ophtha.2011.01.028
pubmed: 21529956
Guillery RW, Okoro AN, Witkop CJ (1975) Abnormal visual pathways in the brain of a human albino. Brain Res 96:373–377. https://doi.org/10.1016/0006-8993(75)90750-7
doi: 10.1016/0006-8993(75)90750-7
pubmed: 1175020
Kruijt CC, de Wit GC, Bergen AA et al (2018) The phenotypic spectrum of albinism. Ophthalmology 125:1953–1960. https://doi.org/10.1016/j.ophtha.2018.08.003
doi: 10.1016/j.ophtha.2018.08.003
pubmed: 30098354
Soong F, Levin AV, Westall CA (2000) Comparison of techniques for detecting visually evoked potential asymmetry in albinism. J Am Assoc Pediatr Ophthalmol Strabismus 4:302–310. https://doi.org/10.1067/mpa.2000.107901
doi: 10.1067/mpa.2000.107901
Self JE, Dunn MJ, Erichsen JT et al (2020) Management of nystagmus in children: a review of the literature and current practice in UK specialist services. Eye 34:1515–1534. https://doi.org/10.1038/s41433-019-0741-3
doi: 10.1038/s41433-019-0741-3
pubmed: 31919431
pmcid: 7608566
Apkarian P (1992) A practical approach to albino diagnosis VEP misrouting across the age span. Ophthalmic Paediatr Genet 13:77–88. https://doi.org/10.3109/13816819209087608
doi: 10.3109/13816819209087608
pubmed: 1495770
Neveu MM, Jeffery G, Burton LC et al (2003) Age-related changes in the dynamics of human albino visual pathways. Eur J Neurosci 18:1939–1949. https://doi.org/10.1046/j.1460-9568.2003.02929.x
doi: 10.1046/j.1460-9568.2003.02929.x
pubmed: 14622226
Al-Araimi M, Pal B, Poulter JA et al (2013) A new recessively inherited disorder composed of foveal hypoplasia, optic nerve decussation defects and anterior segment dysgenesis maps to chromosome 16q23.3-24.1. Mol Vis 19:2165–2172
pubmed: 24194637
pmcid: 3816992
Poulter JA, Al-Araimi M, Conte I et al (2013) Recessive mutations in SLC38A8 cause foveal hypoplasia and optic nerve misrouting without albinism. Am J Human Genetics 93:1143–1150. https://doi.org/10.1016/j.ajhg.2013.11.002
doi: 10.1016/j.ajhg.2013.11.002
Schiff ER, Tailor VK, Chan HW et al (2021) Novel biallelic variants and phenotypic features in patients with SLC38A8-related foveal hypoplasia. Int J Mol Sci 22:1130. https://doi.org/10.3390/ijms22031130
doi: 10.3390/ijms22031130
pubmed: 33498813
pmcid: 7866073
Zhou Y, Li S, Huang L et al (2018) A splicing mutation in aryl hydrocarbon receptor associated with retinitis pigmentosa. Hum Mol Genet 27:2563–2572. https://doi.org/10.1093/hmg/ddy165
doi: 10.1093/hmg/ddy165
pubmed: 29726989
Zhang X, Gan M, Li J et al (2020) Endogenous indole pyruvate pathway for tryptophan metabolism mediated by IL4I1. J Agric Food Chem 68:10678–10684. https://doi.org/10.1021/acs.jafc.0c03735
doi: 10.1021/acs.jafc.0c03735
pubmed: 32866000
Chevallier A, Mialot A, Petit J-M et al (2013) Oculomotor deficits in aryl hydrocarbon receptor null mouse. PLoS ONE 8:e53520. https://doi.org/10.1371/journal.pone.0053520
doi: 10.1371/journal.pone.0053520
pubmed: 23301081
pmcid: 3536739
Juricek L, Coumoul X (2018) The aryl hydrocarbon receptor and the nervous system. Int J Mol Sci 19:2504. https://doi.org/10.3390/ijms19092504
doi: 10.3390/ijms19092504
pubmed: 30149528
pmcid: 6163841
Schulte KW, Green E, Wilz A et al (2017) Structural basis for aryl hydrocarbon receptor-mediated gene activation. Structure 25:1025-1033.e3. https://doi.org/10.1016/j.str.2017.05.008
doi: 10.1016/j.str.2017.05.008
pubmed: 28602820
Fukunaga BN, Probst MR, Reisz-Porszasz S, Hankinson O (1995) Identification of functional domains of the aryl hydrocarbon receptor (*). J Biol Chem 270:29270–29278. https://doi.org/10.1074/jbc.270.49.29270
doi: 10.1074/jbc.270.49.29270
pubmed: 7493958
Chiang JPW, Lamey TM, Wang NK et al (2018) Development of high-throughput clinical testing of RPGR orf15 using a large inherited retinal dystrophy cohort. Invest Ophthalmol Vis Sci 59:4434–4440. https://doi.org/10.1167/iovs.18-24555
doi: 10.1167/iovs.18-24555
pubmed: 30193314