Artificial Intelligence for Otosclerosis Detection: A Pilot Study.

Artificial intelligence CT scan Otosclerosis Temporal bone

Journal

Journal of imaging informatics in medicine
ISSN: 2948-2933
Titre abrégé: J Imaging Inform Med
Pays: Switzerland
ID NLM: 9918663679206676

Informations de publication

Date de publication:
26 Jun 2024
Historique:
received: 02 02 2024
accepted: 06 03 2024
revised: 05 03 2024
medline: 27 6 2024
pubmed: 27 6 2024
entrez: 26 6 2024
Statut: aheadofprint

Résumé

The gold standard for otosclerosis diagnosis, aside from surgery, is high-resolution temporal bone computed tomography (TBCT), but it can be compromised by the small size of the lesions. Many artificial intelligence (AI) algorithms exist, but they are not yet used in daily practice for otosclerosis diagnosis. The aim was to evaluate the diagnostic performance of AI in the detection of otosclerosis. This case-control study included patients with otosclerosis surgically confirmed (2010-2020) and control patients who underwent TBCT and for whom radiological data were available. The AI algorithm interpreted the TBCT to assign a positive or negative diagnosis of otosclerosis. A double-blind reading was then performed by two trained radiologists, and the diagnostic performances were compared according to the best combination of sensitivity and specificity (Youden index). A total of 274 TBCT were included (174 TBCT cases and 100 TBCT controls). For the AI algorithm, the best combination of sensitivity and specificity was 79% and 98%, with an ideal diagnostic probability value estimated by the Youden index at 59%. For radiological analysis, sensitivity was 84% and specificity 98%. The diagnostic performance of the AI algorithm was comparable to that of a trained radiologist, although the sensitivity at the estimated ideal threshold was lower.

Identifiants

pubmed: 38926265
doi: 10.1007/s10278-024-01079-w
pii: 10.1007/s10278-024-01079-w
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine.

Références

Marinelli, J.P.; Totten, D.J.; Chauhan, K.K.; Lohse, C.M.; Grossardt, B.R.; Vrabec, J.T.; Carlson, M.L. The Rise and Fall of Otosclerosis: A Population-Based Study of Disease Incidence Spanning 70 Years. Otol Neurotol 2020, 41, e1082–e1090, https://doi.org/10.1097/MAO.0000000000002763 .
doi: 10.1097/MAO.0000000000002763 pubmed: 32925838 pmcid: 8055300
Quesnel, A.M.; Ishai, R.; McKenna, M.J. Otosclerosis: Temporal Bone Pathology. Otolaryngol Clin North Am 2018, 51, 291–303, https://doi.org/10.1016/j.otc.2017.11.001 .
doi: 10.1016/j.otc.2017.11.001 pubmed: 29397947
Karosi, T.; Szekanecz, Z.; Sziklai, I. Otosclerosis: An Autoimmune Disease? Autoimmun Rev 2009, 9, 95–101, https://doi.org/10.1016/j.autrev.2009.03.009 .
doi: 10.1016/j.autrev.2009.03.009 pubmed: 19318139
Batson, L.; Rizzolo, D. Otosclerosis: An Update on Diagnosis and Treatment. JAAPA 2017, 30, 17–22, https://doi.org/10.1097/01.JAA.0000511784.21936.1b .
doi: 10.1097/01.JAA.0000511784.21936.1b pubmed: 28060022
Bonnafous, S.; Margier, J.; Bartier, S.; Tournegros, R.; Tringali, S.; Fieux, M. Estimated Costs Associated With Management of Otosclerosis With Hearing Aids vs Surgery in Europe. JAMA Netw Open 2022, 5, e2148932, https://doi.org/10.1001/jamanetworkopen.2021.48932 .
doi: 10.1001/jamanetworkopen.2021.48932 pubmed: 35175343 pmcid: 8855228
Virk, J.S.; Singh, A.; Lingam, R.K. The Role of Imaging in the Diagnosis and Management of Otosclerosis. Otol Neurotol 2013, 34, e55-60, https://doi.org/10.1097/MAO.0b013e318298ac96 .
doi: 10.1097/MAO.0b013e318298ac96 pubmed: 23921926
Vicente, A. de O.; Yamashita, H.K.; Albernaz, P.L.M.; Penido, N. de O. Computed Tomography in the Diagnosis of Otosclerosis. Otolaryngol Head Neck Surg 2006, 134, 685–692, https://doi.org/10.1016/j.otohns.2005.11.030 .
Naumann, I.C.; Porcellini, B.; Fisch, U. Otosclerosis: Incidence of Positive Findings on High-Resolution Computed Tomography and Their Correlation to Audiological Test Data. Ann Otol Rhinol Laryngol 2005, 114, 709–716, https://doi.org/10.1177/000348940511400910 .
doi: 10.1177/000348940511400910 pubmed: 16240935
Lagleyre, S.; Sorrentino, T.; Calmels, M.-N.; Shin, Y.-J.; Escudé, B.; Deguine, O.; Fraysse, B. Reliability of High-Resolution CT Scan in Diagnosis of Otosclerosis. Otol Neurotol 2009, 30, 1152–1159, https://doi.org/10.1097/MAO.0b013e3181c2a084 .
doi: 10.1097/MAO.0b013e3181c2a084 pubmed: 19887979
Veillon, F.; Stierle, J.L.; Dussaix, J.; Ramos-Taboada, L.; Riehm, S. [Otosclerosis imaging: matching clinical and imaging data]. J Radiol 2006, 87, 1756–1764, https://doi.org/10.1016/s0221-0363(06)74157-9 .
doi: 10.1016/s0221-0363(06)74157-9 pubmed: 17124478
Purohit, B.; Hermans, R.; Op de beeck, K. Imaging in Otosclerosis: A Pictorial Review. Insights Imaging 2014, 5, 245–252, https://doi.org/10.1007/s13244-014-0313-9 .
Fujima, N.; Andreu-Arasa, V.C.; Onoue, K.; Weber, P.C.; Hubbell, R.D.; Setty, B.N.; Sakai, O. Utility of Deep Learning for the Diagnosis of Otosclerosis on Temporal Bone CT. Eur Radiol 2021, 31, 5206–5211, https://doi.org/10.1007/s00330-020-07568-0 .
doi: 10.1007/s00330-020-07568-0 pubmed: 33409781
Veillon, F.; Riehm, S.; Emachescu, B.; Haba, D.; Roedlich, M.N.; Greget, M.; Tongio, J. Imaging of the Windows of the Temporal Bone. Semin Ultrasound CT MR 2001, 22, 271–280, https://doi.org/10.1016/s0887-2171(01)90011-3 .
doi: 10.1016/s0887-2171(01)90011-3 pubmed: 11451100
Veillon, F.; Riehm, S.; Roedlich, M.N.; Meriot, P.; Blonde, E.; Tongio, J. Imaging of Middle Ear Pathology. Semin Roentgenol 2000, 35, 2–11, https://doi.org/10.1016/s0037-198x(00)80027-9 .
doi: 10.1016/s0037-198x(00)80027-9 pubmed: 10670048
Tringali, S.; Pouget, J.-F.; Bertholon, P.; Dubreuil, C.; Martin, C. Value of Temporal Bone Density Measurements in Otosclerosis Patients with Normal-Appearing Computed Tomographic Scan. Ann Otol Rhinol Laryngol 2007, 116, 195–198, https://doi.org/10.1177/000348940711600306 .
doi: 10.1177/000348940711600306 pubmed: 17419523
Tan, W.; Guan, P.; Wu, L.; Chen, H.; Li, J.; Ling, Y.; Fan, T.; Wang, Y.; Li, J.; Yan, B. The Use of Explainable Artificial Intelligence to Explore Types of Fenestral Otosclerosis Misdiagnosed When Using Temporal Bone High-Resolution Computed Tomography. Ann Transl Med 2021, 9, 969, https://doi.org/10.21037/atm-21-1171 .
doi: 10.21037/atm-21-1171 pubmed: 34277769 pmcid: 8267294
Mei, X.; Lee, H.-C.; Diao, K.-Y.; Huang, M.; Lin, B.; Liu, C.; Xie, Z.; Ma, Y.; Robson, P.M.; Chung, M.; et al. Artificial Intelligence-Enabled Rapid Diagnosis of Patients with COVID-19. Nat Med 2020, 26, 1224–1228, https://doi.org/10.1038/s41591-020-0931-3 .
doi: 10.1038/s41591-020-0931-3 pubmed: 32427924 pmcid: 7446729
LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444, https://doi.org/10.1038/nature14539 .
doi: 10.1038/nature14539 pubmed: 26017442
Wang, Y.-M.; Li, Y.; Cheng, Y.-S.; He, Z.-Y.; Yang, J.-M.; Xu, J.-H.; Chi, Z.-C.; Chi, F.-L.; Ren, D.-D. Deep Learning in Automated Region Proposal and Diagnosis of Chronic Otitis Media Based on Computed Tomography. Ear and Hearing 2020, 41, 669, https://doi.org/10.1097/AUD.0000000000000794 .
doi: 10.1097/AUD.0000000000000794 pubmed: 31567561
A. Attye ; S. Pouilly ; A. Baguant ; G. Haddad ; M. Keskin ; S. Schmerber ; L. Gaillandre Comparaison Deep Learning / radiologues dans la détection de l’otospongiose chez des patients opérés. Journées Francophones de Radiologie Diagnostique et Inerventionnelle, 2021.
Yagi, C.; Morita, Y.; Takahashi, K.; Ogi, M.; Oshima, S.; Yamamoto, Y.; Horii, A. Otosclerosis: Anatomical Distribution of Otosclerotic Loci Analyzed by High-Resolution Computed Tomography. Eur Arch Otorhinolaryngol 2019, 276, 1335–1340, https://doi.org/10.1007/s00405-019-05385-w .
doi: 10.1007/s00405-019-05385-w pubmed: 30887165
Takahashi, M.; Noda, K.; Yoshida, K.; Tsuchida, K.; Yui, R.; Nakazawa, T.; Kurihara, S.; Baba, A.; Motegi, M.; Yamamoto, K.; et al. Preoperative Prediction by Artificial Intelligence for Mastoid Extension in Pars Flaccida Cholesteatoma Using Temporal Bone High-Resolution Computed Tomography: A Retrospective Study. PLoS One 2022, 17, e0273915, https://doi.org/10.1371/journal.pone.0273915 .
doi: 10.1371/journal.pone.0273915 pubmed: 36190937 pmcid: 9529134
Moon, C.N.; Hahn, M.J. Primary Malleus Fixation: Diagnosis and Treatment. Laryngoscope 1981, 91, 1298–1307, https://doi.org/10.1288/00005537-198108000-00012 .
doi: 10.1288/00005537-198108000-00012 pubmed: 6790887
Sanghan, N.; Chansakul, T.; Kozin, E.D.; Juliano, A.F.; Curtin, H.D.; Reinshagen, K.L. Retrospective Review of Otic Capsule Contour and Thickness in Patients with Otosclerosis and Individuals with Normal Hearing on CT. AJNR Am J Neuroradiol 2018, 39, 2350–2355, https://doi.org/10.3174/ajnr.A5892 .
doi: 10.3174/ajnr.A5892 pubmed: 30467217 pmcid: 6295232
Tomura, N.; Sashi, R.; Kobayashi, M.; Hirano, H.; Hashimoto, M.; Watarai, J. Normal Variations of the Temporal Bone on High-Resolution CT: Their Incidence and Clinical Significance. Clin Radiol 1995, 50, 144–148, https://doi.org/10.1016/s0009-9260(05)83043-0 .
doi: 10.1016/s0009-9260(05)83043-0 pubmed: 7889701
Bonnafous, S.; Hermann, R.; Zaouche, S.; Tringali, S.; Fieux, M. Evolution and Safety of Day-Case Major Ear Surgery. Eur Ann Otorhinolaryngol Head Neck Dis 2021, 138, 141–145, https://doi.org/10.1016/j.anorl.2020.09.006 .
doi: 10.1016/j.anorl.2020.09.006 pubmed: 33046425
Deng, F.; Touska, P.; Reinshagen, K.L.; Curtin, H.D.; Juliano, A.F. Diagnostic Performance of Conebeam CT Pixel Values in Active Fenestral Otosclerosis. AJNR Am J Neuroradiol 2021, 42, 1667–1670, https://doi.org/10.3174/ajnr.A7192 .
doi: 10.3174/ajnr.A7192 pubmed: 34140277 pmcid: 8423045

Auteurs

Antoine Emin (A)

Hospices Civils de Lyon, Service d'Imagerie Médicale, Centre Hospitalier Lyon Sud, 69310, Pierre Bénite Cedex, France.

Sophie Daubié (S)

Hospices Civils de Lyon, Service d'Imagerie Médicale, Centre Hospitalier Lyon Sud, 69310, Pierre Bénite Cedex, France.

Loïc Gaillandre (L)

Centre Libéral d'imagerie Médicale de L'agglomération Lilloise (Climal), Service Scanner, 26, Rue du Ballon, 59000, Lille, France.

Arthur Aouad (A)

Université de Lyon, Université Lyon 1, 69003, Lyon, France.

Jean Baptiste Pialat (JB)

Hospices Civils de Lyon, Service d'Imagerie Médicale, Centre Hospitalier Lyon Sud, 69310, Pierre Bénite Cedex, France.
Université de Lyon, Université Lyon 1, 69003, Lyon, France.

Valentin Favier (V)

Département d'ORL, Chirurgie Cervico Faciale Et Maxillo-Faciale, Hôpital Gui de Chauliac, CHU de Montpellier, Montpellier, France.

Florent Carsuzaa (F)

Service ORL, Chirurgie Cervico-Maxillo-Faciale Et Audiophonologie, Centre Hospitalier Universitaire de Poitiers, 86000, Poitiers, France.

Stéphane Tringali (S)

Université de Lyon, Université Lyon 1, 69003, Lyon, France.
Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, D'otoneurochirurgie Et de Chirurgie Cervico-Faciale, Service d'ORL165 Chemin du Grand Revoyet, 69310, Pierre Bénite Cedex, France.
UMR 5305, Laboratoire de Biologie Tissulaire Et d'Ingénierie Thérapeutique, Institut de Biologie Et Chimie Des Protéines, CNRS/Université, Claude Bernard Lyon 1, 7 Passage du Vercors, CEDEX 07, 69367, Lyon, France.

Maxime Fieux (M)

Université de Lyon, Université Lyon 1, 69003, Lyon, France. maxime.fieux@chu-lyon.fr.
Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, D'otoneurochirurgie Et de Chirurgie Cervico-Faciale, Service d'ORL165 Chemin du Grand Revoyet, 69310, Pierre Bénite Cedex, France. maxime.fieux@chu-lyon.fr.
UMR 5305, Laboratoire de Biologie Tissulaire Et d'Ingénierie Thérapeutique, Institut de Biologie Et Chimie Des Protéines, CNRS/Université, Claude Bernard Lyon 1, 7 Passage du Vercors, CEDEX 07, 69367, Lyon, France. maxime.fieux@chu-lyon.fr.

Classifications MeSH