Identification of RNA structures and their roles in RNA functions.
Journal
Nature reviews. Molecular cell biology
ISSN: 1471-0080
Titre abrégé: Nat Rev Mol Cell Biol
Pays: England
ID NLM: 100962782
Informations de publication
Date de publication:
26 Jun 2024
26 Jun 2024
Historique:
accepted:
28
05
2024
medline:
27
6
2024
pubmed:
27
6
2024
entrez:
26
6
2024
Statut:
aheadofprint
Résumé
The development of high-throughput RNA structure profiling methods in the past decade has greatly facilitated our ability to map and characterize different aspects of RNA structures transcriptome-wide in cell populations, single cells and single molecules. The resulting high-resolution data have provided insights into the static and dynamic nature of RNA structures, revealing their complexity as they perform their respective functions in the cell. In this Review, we discuss recent technical advances in the determination of RNA structures, and the roles of RNA structures in RNA biogenesis and functions, including in transcription, processing, translation, degradation, localization and RNA structure-dependent condensates. We also discuss the current understanding of how RNA structures could guide drug design for treating genetic diseases and battling pathogenic viruses, and highlight existing challenges and future directions in RNA structure research.
Identifiants
pubmed: 38926530
doi: 10.1038/s41580-024-00748-6
pii: 10.1038/s41580-024-00748-6
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. Springer Nature Limited.
Références
Hingerty, B., Brown, R. S. & Jack, A. Further refinement of the structure of yeast tRNAPhe. J. Mol. Biol. 124, 523–534 (1978).
pubmed: 361973
doi: 10.1016/0022-2836(78)90185-7
Chen, Y. & Pollack, L. SAXS studies of RNA: structures, dynamics, and interactions with partners. Wiley Interdiscip. Rev. RNA 7, 512–526 (2016).
pubmed: 27071649
pmcid: 4909577
doi: 10.1002/wrna.1349
Dagenais, P., Desjardins, G. & Legault, P. An integrative NMR–SAXS approach for structural determination of large RNAs defines the substrate-free state of a trans-cleaving Neurospora Varkud Satellite ribozyme. Nucleic Acids Res. 49, 11959–11973 (2021).
pubmed: 34718697
pmcid: 8599749
doi: 10.1093/nar/gkab963
Cheong, C. & Moore, P. B. Solution structure of an unusually stable RNA tetraplex containing G- and U-quartet structures. Biochemistry 31, 8406–8414 (1992).
pubmed: 1382577
doi: 10.1021/bi00151a003
Barnwal, R. P., Yang, F. & Varani, G. Applications of NMR to structure determination of RNAs large and small. Arch. Biochem. Biophys. 628, 42–56 (2017).
pubmed: 28600200
pmcid: 5555312
doi: 10.1016/j.abb.2017.06.003
Gabashvili, I. S. et al. Solution structure of the E. coli 70S ribosome at 11.5 Å resolution. Cell 100, 537–549 (2000).
pubmed: 10721991
doi: 10.1016/S0092-8674(00)80690-X
Wrede, P., Wurst, R., Vournakis, J. & Rich, A. Conformational changes of yeast tRNAPhe and E. coli tRNA2Glu as indicated by different nuclease digestion patterns. J. Biol. Chem. 254, 9608–9616 (1979).
pubmed: 114514
doi: 10.1016/S0021-9258(19)83559-7
Wurst, R. M., Vournakis, J. N. & Maxam, A. M. Structure mapping of 5′-
pubmed: 363143
doi: 10.1021/bi00614a021
Lockard, R. E. & Kumar, A. Mapping tRNA structure in solution using double-strand-specific ribonuclease V1 from cobra venom. Nucleic Acids Res. 9, 5125–5140 (1981).
pubmed: 7031604
pmcid: 327503
doi: 10.1093/nar/9.19.5125
Lempereur, L. et al. Conformation of yeast 18S rRNA. Direct chemical probing of the 5′ domain in ribosomal subunits and in deproteinized RNA by reverse transcriptase mapping of dimethyl sulfate-accessible. Nucleic Acids Res. 13, 8339–8357 (1985).
pubmed: 2417197
pmcid: 322138
doi: 10.1093/nar/13.23.8339
Merino, E. J., Wilkinson, K. A., Coughlan, J. L. & Weeks, K. M. RNA structure analysis at single nucleotide resolution by selective 2′-hydroxyl acylation and primer extension (SHAPE). J. Am. Chem. Soc. 127, 4223–4231 (2005).
pubmed: 15783204
doi: 10.1021/ja043822v
Wan, Y., Kertesz, M., Spitale, R. C., Segal, E. & Chang, H. Y. Understanding the transcriptome through RNA structure. Nat. Rev. Genet. 12, 641–655 (2011).
pubmed: 21850044
doi: 10.1038/nrg3049
Kertesz, M. et al. Genome-wide measurement of RNA secondary structure in yeast. Nature 467, 103–107 (2010).
pubmed: 20811459
doi: 10.1038/nature09322
Underwood, J. G. et al. FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing. Nat. Methods 7, 995–1001 (2010).
pubmed: 21057495
pmcid: 3247016
doi: 10.1038/nmeth.1529
Rouskin, S., Zubradt, M., Washietl, S., Kellis, M. & Weissman, J. S. Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature 505, 701–705 (2014).
pubmed: 24336214
doi: 10.1038/nature12894
Ding, Y. et al. In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature 505, 696–700 (2014).
pubmed: 24270811
doi: 10.1038/nature12756
Wan, Y. et al. Landscape and variation of RNA secondary structure across the human transcriptome. Nature 505, 706–709 (2014).
pubmed: 24476892
pmcid: 3973747
doi: 10.1038/nature12946
Homan, P. J. et al. Single-molecule correlated chemical probing of RNA. Proc. Natl Acad. Sci. USA 111, 13858–13863 (2014).
pubmed: 25205807
pmcid: 4183288
doi: 10.1073/pnas.1407306111
Spitale, R. C. & Incarnato, D. Probing the dynamic RNA structurome and its functions. Nat. Rev. Genet. 24, 178–196 (2023).
pubmed: 36348050
doi: 10.1038/s41576-022-00546-w
Strobel, E. J., Yu, A. M. & Lucks, J. B. High-throughput determination of RNA structures. Nat. Rev. Genet. 19, 615–634 (2018).
pubmed: 30054568
pmcid: 7388734
doi: 10.1038/s41576-018-0034-x
Corley, M. et al. Footprinting SHAPE-eCLIP reveals transcriptome-wide hydrogen bonds at RNA–protein interfaces. Mol. Cell 80, 903–914.e8 (2020).
pubmed: 33242392
pmcid: 8074864
doi: 10.1016/j.molcel.2020.11.014
Lee, B. et al. Comparison of SHAPE reagents for mapping RNA structures inside living cells. RNA 23, 169–174 (2017).
pubmed: 27879433
pmcid: 5238792
doi: 10.1261/rna.058784.116
Spitale, R. C. et al. RNA SHAPE analysis in living cells. Nat. Chem. Biol. 9, 18–20 (2013).
pubmed: 23178934
doi: 10.1038/nchembio.1131
Marinus, T., Fessler, A. B., Ogle, C. A. & Incarnato, D. A novel SHAPE reagent enables the analysis of RNA structure in living cells with unprecedented accuracy. Nucleic Acids Res. 49, e34 (2021).
pubmed: 33398343
pmcid: 8034653
doi: 10.1093/nar/gkaa1255
Siegfried, N. A., Busan, S., Rice, G. M., Nelson, J. A. & Weeks, K. M. RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP). Nat. Methods 11, 959–965 (2014).
pubmed: 25028896
pmcid: 4259394
doi: 10.1038/nmeth.3029
Zubradt, M. et al. DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo. Nat. Methods 14, 75–82 (2017).
pubmed: 27819661
doi: 10.1038/nmeth.4057
Aviran, S. & Incarnato, D. Computational approaches for RNA structure ensemble deconvolution from structure probing data. J. Mol. Biol. 434, 167635 (2022).
pubmed: 35595163
doi: 10.1016/j.jmb.2022.167635
Busan, S., Weidmann, C. A., Sengupta, A. & Weeks, K. M. Guidelines for SHAPE reagent choice and detection strategy for RNA structure probing studies. Biochemistry 58, 2655–2664 (2019).
pubmed: 31117385
doi: 10.1021/acs.biochem.8b01218
Guo, L. T. et al. Sequencing and structure probing of long RNAs using MarathonRT: a next-generation reverse transcriptase. J. Mol. Biol. 432, 3338–3352 (2020).
pubmed: 32259542
pmcid: 7556701
doi: 10.1016/j.jmb.2020.03.022
Mitchell, D., Cotter, J., Saleem, I. & Mustoe, A. M. Mutation signature filtering enables high-fidelity RNA structure probing at all four nucleobases with DMS. Nucleic Acids Res. 51, 8744–8757 (2023).
pubmed: 37334863
pmcid: 10484685
doi: 10.1093/nar/gkad522
Smola, M. J., Rice, G. M., Busan, S., Siegfried, N. A. & Weeks, K. M. Selective 2′-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) for direct, versatile and accurate RNA structure analysis. Nat. Protoc. 10, 1643–1669 (2015).
pubmed: 26426499
pmcid: 4900152
doi: 10.1038/nprot.2015.103
Liu, Z. et al. In vivo nuclear RNA structurome reveals RNA-structure regulation of mRNA processing in plants. Genome Biol. 22, 11 (2021).
pubmed: 33397430
pmcid: 7784297
doi: 10.1186/s13059-020-02236-4
Sun, L. et al. RNA structure maps across mammalian cellular compartments. Nat. Struct. Mol. Biol. 26, 322–330 (2019).
pubmed: 30886404
pmcid: 6640855
doi: 10.1038/s41594-019-0200-7
Yamagami, R., Sieg, J. P., Assmann, S. M. & Bevilacqua, P. C. Genome-wide analysis of the in vivo tRNA structurome reveals RNA structural and modification dynamics under heat stress. Proc. Natl Acad. Sci. USA 119, e2201237119 (2022).
pubmed: 35696576
pmcid: 9231505
doi: 10.1073/pnas.2201237119
Yang, M. et al. Intact RNA structurome reveals mRNA structure-mediated regulation of miRNA cleavage in vivo. Nucleic Acids Res. 48, 8767–8781 (2020).
pubmed: 32652041
pmcid: 7470952
doi: 10.1093/nar/gkaa577
Watters, K. E., Strobel, E. J., Yu, A. M., Lis, J. T. & Lucks, J. B. Cotranscriptional folding of a riboswitch at nucleotide resolution. Nat. Struct. Mol. Biol. 23, 1124–1131 (2016).
pubmed: 27798597
pmcid: 5497173
doi: 10.1038/nsmb.3316
Incarnato, D. et al. In vivo probing of nascent RNA structures reveals principles of cotranscriptional folding. Nucleic Acids Res. 45, 9716–9725 (2017).
pubmed: 28934475
pmcid: 5766169
doi: 10.1093/nar/gkx617
Saldi, T., Riemondy, K., Erickson, B. & Bentley, D. L. Alternative RNA structures formed during transcription depend on elongation rate and modify RNA processing. Mol. Cell 81, 1789–1801.e5 (2021).
pubmed: 33631106
pmcid: 8052309
doi: 10.1016/j.molcel.2021.01.040
Yu, G. et al. Genome-wide probing of eukaryotic nascent RNA structure elucidates cotranscriptional folding and its antimutagenic effect. Nat. Commun. 14, 5853 (2023).
pubmed: 37730811
pmcid: 10511511
doi: 10.1038/s41467-023-41550-w
Yang, M. et al. In vivo single-molecule analysis reveals COOLAIR RNA structural diversity. Nature 609, 394–399 (2022).
pubmed: 35978193
pmcid: 9452300
doi: 10.1038/s41586-022-05135-9
Bohn, P., Gribling-Burrer, A. S., Ambi, U. B. & Smyth, R. P. Nano-DMS-MaP allows isoform-specific RNA structure determination. Nat. Methods 20, 849–859 (2023).
pubmed: 37106231
pmcid: 10250195
doi: 10.1038/s41592-023-01862-7
Aw, J. G. A. et al. Determination of isoform-specific RNA structure with nanopore long reads. Nat. Biotechnol. 39, 336–346 (2021).
pubmed: 33106685
doi: 10.1038/s41587-020-0712-z
Bevilacqua, P. C., Ritchey, L. E., Su, Z. & Assmann, S. M. Genome-wide analysis of RNA secondary structure. Annu. Rev. Genet. 50, 235–266 (2016).
pubmed: 27648642
doi: 10.1146/annurev-genet-120215-035034
Wan, Y., Qu, K., Ouyang, Z. & Chang, H. Y. Genome-wide mapping of RNA structure using nuclease digestion and high-throughput sequencing. Nat. Protoc. 8, 849–869 (2013).
pubmed: 23558785
doi: 10.1038/nprot.2013.045
Mortimer, S. A. & Weeks, K. M. Time-resolved RNA SHAPE chemistry: quantitative RNA structure analysis in one-second snapshots and at single-nucleotide resolution. Nat. Protoc. 4, 1413–1421 (2009).
pubmed: 19745823
pmcid: 4950915
doi: 10.1038/nprot.2009.126
Rabin, D. & Crothers, D. M. Analysis of RNA secondary structure by photochemical reversal of psoralen crosslinks. Nucleic Acids Res. 7, 689–703 (1979).
pubmed: 116192
pmcid: 328048
doi: 10.1093/nar/7.3.689
Cordero, P., Kladwang, W., VanLang, C. C. & Das, R. The mutate-and-map protocol for inferring base pairs in structured RNA. Methods Mol. Biol. 1086, 53–77 (2014).
pubmed: 24136598
pmcid: 4080707
doi: 10.1007/978-1-62703-667-2_4
Lu, Z. et al. RNA duplex map in living cells reveals higher-order transcriptome structure. Cell 165, 1267–1279 (2016).
pubmed: 27180905
pmcid: 5029792
doi: 10.1016/j.cell.2016.04.028
Aw, J. G. A. et al. In vivo mapping of eukaryotic RNA interactomes reveals principles of higher-order organization and regulation. Mol. Cell 62, 603–617 (2016).
pubmed: 27184079
doi: 10.1016/j.molcel.2016.04.028
Sharma, E., Sterne-Weiler, T., O’Hanlon, D. & Blencowe, B. J. Global mapping of human RNA–RNA interactions. Mol. Cell 62, 618–626 (2016).
pubmed: 27184080
doi: 10.1016/j.molcel.2016.04.030
Ziv, O. et al. COMRADES determines in vivo RNA structures and interactions. Nat. Methods 15, 785–788 (2018).
pubmed: 30202058
pmcid: 6168409
doi: 10.1038/s41592-018-0121-0
Kudla, G., Granneman, S., Hahn, D., Beggs, J. D. & Tollervey, D. Cross-linking, ligation, and sequencing of hybrids reveals RNA–RNA interactions in yeast. Proc. Natl Acad. Sci. USA 108, 10010–10015 (2011).
pubmed: 21610164
pmcid: 3116431
doi: 10.1073/pnas.1017386108
Sugimoto, Y. et al. hiCLIP reveals the in vivo atlas of mRNA secondary structures recognized by Staufen 1. Nature 519, 491–494 (2015).
pubmed: 25799984
pmcid: 4376666
doi: 10.1038/nature14280
Ye, R. et al. Capture RIC-seq reveals positional rules of PTBP1-associated RNA loops in splicing regulation. Mol. Cell 83, 1311–1327.e7 (2023).
pubmed: 36958328
doi: 10.1016/j.molcel.2023.03.001
Cao, C. et al. Global in situ profiling of RNA–RNA spatial interactions with RIC-seq. Nat. Protoc. 16, 2916–2946 (2021).
pubmed: 34021296
doi: 10.1038/s41596-021-00524-2
Christy, T. W. et al. Direct mapping of higher-order RNA interactions by SHAPE-JuMP. Biochemistry 60, 1971–1982 (2021).
pubmed: 34121404
doi: 10.1021/acs.biochem.1c00270
Van Damme, R. et al. Chemical reversible crosslinking enables measurement of RNA 3D distances and alternative conformations in cells. Nat. Commun. 13, 911 (2022).
pubmed: 35177610
pmcid: 8854666
doi: 10.1038/s41467-022-28602-3
Xu, B. et al. Recent advances in RNA structurome. Sci. China Life Sci. 65, 1285–1324 (2022).
pubmed: 35717434
pmcid: 9206424
doi: 10.1007/s11427-021-2116-2
Gabryelska, M. M. et al. Global mapping of RNA homodimers in living cells. Genome Res. 32, 956–967 (2022).
pubmed: 35332098
pmcid: 9104694
Zhang, M. et al. Classification and clustering of RNA crosslink-ligation data reveal complex structures and homodimers. Genome Res. 32, 968–985 (2022).
pubmed: 35332099
pmcid: 9104705
Tants, J.-N. & Schlundt, A. Advances, applications, and perspectives in small-angle X-ray scattering of RNA. ChemBioChem 24, e202300110 (2023).
pubmed: 37466350
doi: 10.1002/cbic.202300110
Zhang, K. et al. Cryo-EM structure of a 40 kDa SAM-IV riboswitch RNA at 3.7 Å resolution. Nat. Commun. 10, 5511 (2019).
pubmed: 31796736
pmcid: 6890682
doi: 10.1038/s41467-019-13494-7
Kappel, K. et al. Accelerated cryo-EM-guided determination of three-dimensional RNA-only structures. Nat. Methods 17, 699–707 (2020).
pubmed: 32616928
pmcid: 7386730
doi: 10.1038/s41592-020-0878-9
Langeberg, C. J. & Kieft, J. S. A generalizable scaffold-based approach for structure determination of RNAs by cryo-EM. Nucleic Acids Res. 51, e100 (2023).
pubmed: 37791881
pmcid: 10639074
doi: 10.1093/nar/gkad784
Reuter, J. S. & Mathews, D. H. RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinforma. 11, 129 (2010).
doi: 10.1186/1471-2105-11-129
Lorenz, R. et al. ViennaRNA Package 2.0. Algorithms Mol. Biol. 6, 26 (2011).
pubmed: 22115189
pmcid: 3319429
doi: 10.1186/1748-7188-6-26
Hofacker, I. L. et al. Fast folding and comparison of RNA secondary structures. Monatshefte fur Chem. 125, 167–188 (1994).
doi: 10.1007/BF00818163
Hofacker, I. L., Fekete, M. & Stadler, P. F. Secondary structure prediction for aligned RNA sequences. J. Mol. Biol. 319, 1059–1066 (2002).
pubmed: 12079347
doi: 10.1016/S0022-2836(02)00308-X
Washietl, S., Hofacker, I. L. & Stadler, P. F. Fast and reliable prediction of noncoding RNAs. Proc. Natl Acad. Sci. USA 102, 2454–2459 (2005).
pubmed: 15665081
pmcid: 548974
doi: 10.1073/pnas.0409169102
Rivas, E., Clements, J. & Eddy, S. R. A statistical test for conserved RNA structure shows lack of evidence for structure in lncRNAs. Nat. Methods 14, 45–48 (2017).
pubmed: 27819659
doi: 10.1038/nmeth.4066
Tavares, R. C. A., Pyle, A. M. & Somarowthu, S. Phylogenetic analysis with improved parameters reveals conservation in lncRNA structures. J. Mol. Biol. 431, 1592–1603 (2019).
pubmed: 30890332
pmcid: 6515926
doi: 10.1016/j.jmb.2019.03.012
Yu, H., Qi, Y. & Ding, Y. Deep learning in RNA structure studies. Front. Mol. Biosci. 9, 869601 (2022).
pubmed: 35677883
pmcid: 9168262
doi: 10.3389/fmolb.2022.869601
Sato, K. & Hamada, M. Recent trends in RNA informatics: a review of machine learning and deep learning for RNA secondary structure prediction and RNA drug discovery. Brief. Bioinform 24, bbad186 (2023).
pubmed: 37232359
pmcid: 10359090
doi: 10.1093/bib/bbad186
Zhang, J., Fei, Y., Sun, L. & Zhang, Q. C. Advances and opportunities in RNA structure experimental determination and computational modeling. Nat. Methods 19, 1193–1207 (2022).
pubmed: 36203019
doi: 10.1038/s41592-022-01623-y
Aviran, S. et al. Modeling and automation of sequencing-based characterization of RNA structure. Proc. Natl Acad. Sci. USA 108, 11069–11074 (2011).
pubmed: 21642536
pmcid: 3131376
doi: 10.1073/pnas.1106541108
Selega, A., Sirocchi, C., Iosub, I., Granneman, S. & Sanguinetti, G. Robust statistical modeling improves sensitivity of high-throughput RNA structure probing experiments. Nat. Methods 14, 83–89 (2017).
pubmed: 27819660
doi: 10.1038/nmeth.4068
Choudhary, K., Lai, Y. H., Tran, E. J. & Aviran, S. dStruct: identifying differentially reactive regions from RNA structurome profiling data. Genome Biol. 20, 40 (2019).
pubmed: 30791935
pmcid: 6385470
doi: 10.1186/s13059-019-1641-3
Marangio, P., Law, K. Y. T., Sanguinetti, G. & Granneman, S. diffBUM-HMM: a robust statistical modeling approach for detecting RNA flexibility changes in high-throughput structure probing data. Genome Biol. 22, 165 (2021).
pubmed: 34044851
pmcid: 8157727
doi: 10.1186/s13059-021-02379-y
Yu, B., Li, P., Zhang, Q. C. & Hou, L. Differential analysis of RNA structure probing experiments at nucleotide resolution: uncovering regulatory functions of RNA structure. Nat. Commun. 13, 4227 (2022).
pubmed: 35869080
pmcid: 9307511
doi: 10.1038/s41467-022-31875-3
Gong, J., Xu, K., Ma, Z., Lu, Z. J. & Zhang, Q. C. A deep learning method for recovering missing signals in transcriptome-wide RNA structure profiles from probing experiments. Nat. Mach. Intell. 3, 995–1006 (2021).
doi: 10.1038/s42256-021-00412-0
Low, J. T. & Weeks, K. M. SHAPE-directed RNA secondary structure prediction. Methods 52, 150–158 (2010).
pubmed: 20554050
pmcid: 2941709
doi: 10.1016/j.ymeth.2010.06.007
Tomezsko, P. J. et al. Determination of RNA structural diversity and its role in HIV-1 RNA splicing. Nature 582, 438–442 (2020).
pubmed: 32555469
pmcid: 7310298
doi: 10.1038/s41586-020-2253-5
Olson, S. W. et al. Discovery of a large-scale, cell-state-responsive allosteric switch in the 7SK RNA using DANCE-MaP. Mol. Cell 82, 1708–1723.e10 (2022).
pubmed: 35320755
pmcid: 9081252
doi: 10.1016/j.molcel.2022.02.009
Morandi, E. et al. Genome-scale deconvolution of RNA structure ensembles. Nat. Methods 18, 249–252 (2021).
pubmed: 33619392
doi: 10.1038/s41592-021-01075-w
Goodarzi, H. et al. Systematic discovery of structural elements governing stability of mammalian messenger RNAs. Nature 485, 264–268 (2012).
pubmed: 22495308
pmcid: 3350620
doi: 10.1038/nature11013
Fish, L. et al. A prometastatic splicing program regulated by SNRPA1 interactions with structured RNA elements. Science 372, eabc7531 (2021).
pubmed: 33986153
pmcid: 8238114
doi: 10.1126/science.abc7531
Morandi, E., van Hemert, M. J. & Incarnato, D. SHAPE-guided RNA structure homology search and motif discovery. Nat. Commun. 13, 1722 (2022).
pubmed: 35361788
pmcid: 8971488
doi: 10.1038/s41467-022-29398-y
Yang, Z., Zeng, X., Zhao, Y. & Chen, R. AlphaFold2 and its applications in the fields of biology and medicine. Signal. Transduct. Target. Ther. 8, 115 (2023).
pubmed: 36918529
pmcid: 10011802
doi: 10.1038/s41392-023-01381-z
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
pubmed: 34265844
pmcid: 8371605
doi: 10.1038/s41586-021-03819-2
Westhof, E. & Leontis, N. B. An RNA-centric historical narrative around the Protein Data Bank. J. Biol. Chem. 296, 100555 (2021).
pubmed: 33744291
pmcid: 8080527
doi: 10.1016/j.jbc.2021.100555
Singh, J., Hanson, J., Paliwal, K. & Zhou, Y. RNA secondary structure prediction using an ensemble of two-dimensional deep neural networks and transfer learning. Nat. Commun. 10, 5407 (2019).
pubmed: 31776342
pmcid: 6881452
doi: 10.1038/s41467-019-13395-9
Danaee, P. et al. bpRNA: large-scale automated annotation and analysis of RNA secondary structure. Nucleic Acids Res. 46, 5381–5394 (2018).
pubmed: 29746666
pmcid: 6009582
doi: 10.1093/nar/gky285
Sato, K., Akiyama, M. & Sakakibara, Y. RNA secondary structure prediction using deep learning with thermodynamic integration. Nat. Commun. 12, 941 (2021).
pubmed: 33574226
pmcid: 7878809
doi: 10.1038/s41467-021-21194-4
Fu, L. et al. UFold: fast and accurate RNA secondary structure prediction with deep learning. Nucleic Acids Res. 50, e14 (2022).
pubmed: 34792173
doi: 10.1093/nar/gkab1074
Yang, E. et al. GCNfold: a novel lightweight model with valid extractors for RNA secondary structure prediction. Comput. Biol. Med. 164, 107246 (2023).
pubmed: 37487383
doi: 10.1016/j.compbiomed.2023.107246
Li, Y. et al. Integrating end-to-end learning with deep geometrical potentials for ab initio RNA structure prediction. Nat. Commun. 14, 5745 (2023).
pubmed: 37717036
pmcid: 10505173
doi: 10.1038/s41467-023-41303-9
Wang, W. et al. trRosettaRNA: automated prediction of RNA 3D structure with transformer network. Nat. Commun. 14, 7266 (2023).
pubmed: 37945552
pmcid: 10636060
doi: 10.1038/s41467-023-42528-4
Das, R. & Baker, D. Automated de novo prediction of native-like RNA tertiary structures. Proc. Natl Acad. Sci. USA 104, 14664–14669 (2007).
pubmed: 17726102
pmcid: 1955458
doi: 10.1073/pnas.0703836104
Townshend, R. J. et al. Geometric deep learning of RNA structure. Science 373, 1047–1051 (2021).
pubmed: 34446608
pmcid: 9829186
doi: 10.1126/science.abe5650
Watkins, A. M., Rangan, R. & Das, R. FARFAR2: improved de novo rosetta prediction of complex global RNA folds. Structure 28, 963–976.e966 (2020).
pubmed: 32531203
pmcid: 7415647
doi: 10.1016/j.str.2020.05.011
Pan, X., Rijnbeek, P., Yan, J. & Shen, H.-B. Prediction of RNA–protein sequence and structure binding preferences using deep convolutional and recurrent neural networks. BMC Genomics 19, 511 (2018).
pubmed: 29970003
pmcid: 6029131
doi: 10.1186/s12864-018-4889-1
Sun, L. et al. Predicting dynamic cellular protein–RNA interactions by deep learning using in vivo RNA structures. Cell Res. 31, 495–516 (2021).
pubmed: 33623109
pmcid: 7900654
doi: 10.1038/s41422-021-00476-y
Xu, Y. et al. PrismNet: predicting protein–RNA interaction using in vivo RNA structural information. Nucleic Acids Res. 51, W468–W477 (2023).
pubmed: 37140045
pmcid: 10320048
doi: 10.1093/nar/gkad353
Baek, M. et al. Accurate prediction of protein–nucleic acid complexes using RoseTTAFoldNA. Nat. Methods 21, 117–121 (2024).
pubmed: 37996753
doi: 10.1038/s41592-023-02086-5
Sun, W., Ding, L. & Zhang, H. The potential role of RNA structure in crop molecular breeding. Front. Plant. Sci. 13, 868771 (2022).
pubmed: 35586218
pmcid: 9108716
doi: 10.3389/fpls.2022.868771
Xiang, Y. et al. Pervasive downstream RNA hairpins dynamically dictate start-codon selection. Nature 621, 423–430 (2023).
pubmed: 37674078
pmcid: 10499604
doi: 10.1038/s41586-023-06500-y
Flamm, C. et al. Caveats to deep learning approaches to RNA secondary structure prediction. Front. Bioinform. 2, 835422 (2022).
pubmed: 36304289
pmcid: 9580944
doi: 10.3389/fbinf.2022.835422
Szikszai, M., Wise, M., Datta, A., Ward, M. & Mathews, D. H. Deep learning models for RNA secondary structure prediction (probably) do not generalize across families. Bioinformatics 38, 3892–3899 (2022).
pubmed: 35748706
pmcid: 9364374
doi: 10.1093/bioinformatics/btac415
Wayment-Steele, H. K. et al. RNA secondary structure packages evaluated and improved by high-throughput experiments. Nat. Methods 19, 1234–1242 (2022).
pubmed: 36192461
pmcid: 9839360
doi: 10.1038/s41592-022-01605-0
Gusarov, I. & Nudler, E. The mechanism of intrinsic transcription termination. Mol. Cell 3, 495–504 (1999).
pubmed: 10230402
doi: 10.1016/S1097-2765(00)80477-3
Zhang, J. & Landick, R. A two-way street: regulatory interplay between RNA polymerase and nascent RNA structure. Trends Biochem. Sci. 41, 293–310 (2016).
pubmed: 26822487
pmcid: 4911296
doi: 10.1016/j.tibs.2015.12.009
Perdrizet, G. A. et al. Transcriptional pausing coordinates folding of the aptamer domain and the expression platform of a riboswitch. Proc. Natl Acad. Sci. USA 109, 3323–3328 (2012).
pubmed: 22331895
pmcid: 3295289
doi: 10.1073/pnas.1113086109
Steinert, H. et al. Pausing guides RNA folding to populate transiently stable RNA structures for riboswitch-based transcription regulation. eLife 6, e21297 (2017).
pubmed: 28541183
pmcid: 5459577
doi: 10.7554/eLife.21297
Turowski, T. W. et al. Nascent transcript folding plays a major role in determining RNA polymerase elongation rates. Mol. Cell 79, 488–503.e11 (2020).
pubmed: 32585128
pmcid: 7427326
doi: 10.1016/j.molcel.2020.06.002
Long, Y., Wang, X., Youmans, D. T. & Cech, T. R. How do lncRNAs regulate transcription? Sci. Adv. 3, eaao2110 (2017).
pubmed: 28959731
pmcid: 5617379
doi: 10.1126/sciadv.aao2110
Yang, F. et al. Shape of promoter antisense RNAs regulates ligand-induced transcription activation. Nature 595, 444–449 (2021).
pubmed: 34194047
pmcid: 8439151
doi: 10.1038/s41586-021-03589-x
Liang, L. et al. Complementary Alu sequences mediate enhancer–promoter selectivity. Nature 619, 868–875 (2023).
pubmed: 37438529
doi: 10.1038/s41586-023-06323-x
Peterlin, B. M., Brogie, J. E. & Price, D. H. 7SK snRNA: a noncoding RNA that plays a major role in regulating eukaryotic transcription. Wiley Interdiscip. Rev. RNA 3, 92–103 (2012).
pubmed: 21853533
doi: 10.1002/wrna.106
AJ, C. Q., Bugai, A. & Barboric, M. Cracking the control of RNA polymerase II elongation by 7SK snRNP and P-TEFb. Nucleic Acids Res. 44, 7527–7539 (2016).
doi: 10.1093/nar/gkw585
Whittaker, C. & Dean, C. The FLC locus: a platform for discoveries in epigenetics and adaptation. Annu. Rev. Cell Dev. Biol. 33, 555–575 (2017).
pubmed: 28693387
doi: 10.1146/annurev-cellbio-100616-060546
Roca, X., Krainer, A. R. & Eperon, I. C. Pick one, but be quick: 5′ splice sites and the problems of too many choices. Genes Dev. 27, 129–144 (2013).
pubmed: 23348838
pmcid: 3566305
doi: 10.1101/gad.209759.112
Watakabe, A., Inoue, K., Sakamoto, H. & Shimura, Y. A secondary structure at the 3′ splice site affects the in vitro splicing reaction of mouse immunoglobulin mu chain pre-mRNAs. Nucleic Acids Res. 17, 8159–8169 (1989).
pubmed: 2510128
pmcid: 334955
doi: 10.1093/nar/17.20.8159
Varani, L. et al. Structure of tau exon 10 splicing regulatory element RNA and destabilization by mutations of frontotemporal dementia and parkinsonism linked to chromosome 17. Proc. Natl Acad. Sci. USA 96, 8229–8234 (1999).
pubmed: 10393977
pmcid: 22217
doi: 10.1073/pnas.96.14.8229
Singh, N. N., Singh, R. N. & Androphy, E. J. Modulating role of RNA structure in alternative splicing of a critical exon in the spinal muscular atrophy genes. Nucleic Acids Res. 35, 371–389 (2007).
pubmed: 17170000
doi: 10.1093/nar/gkl1050
Warf, M. B. & Berglund, J. A. Role of RNA structure in regulating pre-mRNA splicing. Trends Biochem. Sci. 35, 169–178 (2010).
pubmed: 19959365
doi: 10.1016/j.tibs.2009.10.004
Rubtsov, P. Role of pre-mRNA secondary structures in the regulation of alternative splicing. Mol. Biol. 50, 823–830 (2016).
doi: 10.1134/S0026893316060170
Kubodera, T. et al. Thiamine‐regulated gene expression of Aspergillus oryzae thiA requires splicing of the intron containing a riboswitch‐like domain in the 5′‐UTR. FEBS Lett. 555, 516–520 (2003).
pubmed: 14675766
doi: 10.1016/S0014-5793(03)01335-8
Cheah, M. T., Wachter, A., Sudarsan, N. & Breaker, R. R. Control of alternative RNA splicing and gene expression by eukaryotic riboswitches. Nature 447, 497–500 (2007).
pubmed: 17468745
doi: 10.1038/nature05769
Wachter, A. et al. Riboswitch control of gene expression in plants by splicing and alternative 3′ end processing of mRNAs. Plant. Cell 19, 3437–3450 (2007).
pubmed: 17993623
pmcid: 2174889
doi: 10.1105/tpc.107.053645
Warf, M. B., Diegel, J. V., von Hippel, P. H. & Berglund, J. A. The protein factors MBNL1 and U2AF65 bind alternative RNA structures to regulate splicing. Proc. Natl Acad. Sci. USA 106, 9203–9208 (2009).
pubmed: 19470458
pmcid: 2695092
doi: 10.1073/pnas.0900342106
Muro, A. F. et al. Regulation of fibronectin EDA exon alternative splicing: possible role of RNA secondary structure for enhancer display. Mol. Cell. Biol. 19, 2657–2671 (1999).
pubmed: 10082532
pmcid: 84059
doi: 10.1128/MCB.19.4.2657
Buratti, E. et al. RNA folding affects the recruitment of SR proteins by mouse and human polypurinic enhancer elements in the fibronectin EDA exon. Mol. Cell. Biol. 24, 1387–1400 (2004).
pubmed: 14729981
pmcid: 321440
doi: 10.1128/MCB.24.3.1387-1400.2004
McManus, C. J. & Graveley, B. R. RNA structure and the mechanisms of alternative splicing. Curr. Opin. Genet. Dev. 21, 373–379 (2011).
pubmed: 21530232
pmcid: 3149766
doi: 10.1016/j.gde.2011.04.001
Lin, C. L., Taggart, A. J. & Fairbrother, W. G. RNA structure in splicing: an evolutionary perspective. RNA Biol. 13, 766–771 (2016).
pubmed: 27454491
pmcid: 5014005
doi: 10.1080/15476286.2016.1208893
Graveley, B. R. Mutually exclusive splicing of the insect Dscam pre-mRNA directed by competing intronic RNA secondary structures. Cell 123, 65–73 (2005).
pubmed: 16213213
pmcid: 2366815
doi: 10.1016/j.cell.2005.07.028
Anastassiou, D., Liu, H. & Varadan, V. Variable window binding for mutually exclusive alternative splicing. Genome Biol. 7, 1–12 (2006).
doi: 10.1186/gb-2006-7-1-r2
Xu, B., Meng, Y. & Jin, Y. RNA structures in alternative splicing and back-splicing. Wiley Interdiscip. Rev. RNA 12, e1626 (2021).
pubmed: 32929887
doi: 10.1002/wrna.1626
Lovci, M. T. et al. Rbfox proteins regulate alternative mRNA splicing through evolutionarily conserved RNA bridges. Nat. Struct. Mol. Biol. 20, 1434–1442 (2013).
pubmed: 24213538
pmcid: 3918504
doi: 10.1038/nsmb.2699
Woodson, S. A., Panja, S. & Santiago-Frangos, A. Proteins that chaperone RNA regulation. Microbiol. Spectr. 6 https://doi.org/10.1128/microbiolspec.RWR-0026-2018 (2018).
Wu, J. Y. & Maniatis, T. Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell 75, 1061–1070 (1993).
pubmed: 8261509
doi: 10.1016/0092-8674(93)90316-I
Kalmykova, S. et al. Conserved long-range base pairings are associated with pre-mRNA processing of human genes. Nat. Commun. 12, 2300 (2021).
pubmed: 33863890
pmcid: 8052449
doi: 10.1038/s41467-021-22549-7
Zhang, Y. et al. The biogenesis of nascent circular RNAs. Cell Rep. 15, 611–624 (2016).
pubmed: 27068474
doi: 10.1016/j.celrep.2016.03.058
Zhang, X. O. et al. Complementary sequence-mediated exon circularization. Cell 159, 134–147 (2014).
pubmed: 25242744
doi: 10.1016/j.cell.2014.09.001
Johansson, J. et al. An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell 110, 551–561 (2002).
pubmed: 12230973
doi: 10.1016/S0092-8674(02)00905-4
Brito Querido, J., Diaz-Lopez, I. & Ramakrishnan, V. The molecular basis of translation initiation and its regulation in eukaryotes. Nat. Rev. Mol. Cell Biol. 25, 168–186 (2024).
pubmed: 38052923
doi: 10.1038/s41580-023-00624-9
Leppek, K., Das, R. & Barna, M. Functional 5′ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat. Rev. Mol. Cell Biol. 19, 158–174 (2018).
pubmed: 29165424
doi: 10.1038/nrm.2017.103
Spitale, R. C. et al. Structural imprints in vivo decode RNA regulatory mechanisms. Nature 519, 486–490 (2015).
pubmed: 25799993
pmcid: 4376618
doi: 10.1038/nature14263
Waldron, J. A. et al. mRNA structural elements immediately upstream of the start codon dictate dependence upon eIF4A helicase activity. Genome Biol. 20, 300 (2019).
pubmed: 31888698
pmcid: 6936103
doi: 10.1186/s13059-019-1901-2
Wang, J. et al. Rapid 40S scanning and its regulation by mRNA structure during eukaryotic translation initiation. Cell 185, 4474–4487.e17 (2022).
pubmed: 36334590
pmcid: 9691599
doi: 10.1016/j.cell.2022.10.005
Zhang, H., Wang, Y. & Lu, J. Function and evolution of upstream ORFs in eukaryotes. Trends Biochem. Sci. 44, 782–794 (2019).
pubmed: 31003826
doi: 10.1016/j.tibs.2019.03.002
Corley, M. et al. An RNA structure-mediated, posttranscriptional model of human ɑ-1-antitrypsin expression. Proc. Natl Acad. Sci. USA 114, E10244–E10253 (2017).
pubmed: 29109288
pmcid: 5703279
doi: 10.1073/pnas.1706539114
Jankowsky, E. & Guenther, U. P. A helicase links upstream ORFs and RNA structure. Curr. Genet. 65, 453–456 (2019).
pubmed: 30483885
doi: 10.1007/s00294-018-0911-z
Lyu, K. et al. An RNA G-quadruplex structure within the ADAR 5′UTR interacts with DHX36 helicase to regulate translation. Angew. Chem. Int. Ed. Engl. 61, e202203553 (2022).
pubmed: 36300875
doi: 10.1002/anie.202203553
Kwok, C. K., Ding, Y., Shahid, S., Assmann, S. M. & Bevilacqua, P. C. A stable RNA G-quadruplex within the 5′-UTR of Arabidopsis thaliana ATR mRNA inhibits translation. Biochem. J. 467, 91–102 (2015).
pubmed: 25793418
doi: 10.1042/BJ20141063
Cho, H. et al. Translational control of phloem development by RNA G-quadruplex-JULGI determines plant sink strength. Nat. Plants 4, 376–390 (2018).
pubmed: 29808026
doi: 10.1038/s41477-018-0157-2
Kikinis, Z., Eisenstein, R. S., Bettany, A. J. & Munro, H. N. Role of RNA secondary structure of the iron-responsive element in translational regulation of ferritin synthesis. Nucleic Acids Res. 23, 4190–4195 (1995).
pubmed: 7479083
pmcid: 307361
doi: 10.1093/nar/23.20.4190
Zhou, Z. D. & Tan, E. K. Iron regulatory protein (IRP)–iron responsive element (IRE) signaling pathway in human neurodegenerative diseases. Mol. Neurodegener. 12, 75 (2017).
pubmed: 29061112
pmcid: 5654065
doi: 10.1186/s13024-017-0218-4
Pestova, T. V., Shatsky, I. N., Fletcher, S. P., Jackson, R. J. & Hellen, C. U. A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs. Genes Dev. 12, 67–83 (1998).
pubmed: 9420332
pmcid: 316404
doi: 10.1101/gad.12.1.67
Kieft, J. S., Zhou, K., Jubin, R. & Doudna, J. A. Mechanism of ribosome recruitment by hepatitis C IRES RNA. RNA 7, 194–206 (2001).
pubmed: 11233977
pmcid: 1370078
doi: 10.1017/S1355838201001790
Otto, G. A. & Puglisi, J. D. The pathway of HCV IRES-mediated translation initiation. Cell 119, 369–380 (2004).
pubmed: 15507208
doi: 10.1016/j.cell.2004.09.038
Weingarten-Gabbay, S. et al. Comparative genetics. Systematic discovery of cap-independent translation sequences in human and viral genomes. Science 351, aad4939 (2016).
pubmed: 26816383
doi: 10.1126/science.aad4939
Beaudoin, J. D. et al. Analyses of mRNA structure dynamics identify embryonic gene regulatory programs. Nat. Struct. Mol. Biol. 25, 677–686 (2018).
pubmed: 30061596
pmcid: 6690192
doi: 10.1038/s41594-018-0091-z
Mustoe, A. M. et al. Pervasive regulatory functions of mRNA structure revealed by high-resolution SHAPE probing. Cell 173, 181–195.e18 (2018).
pubmed: 29551268
pmcid: 5866243
doi: 10.1016/j.cell.2018.02.034
Farabaugh, P. J. Programmed translational frameshifting. Microbiol. Rev. 60, 103–134 (1996).
pubmed: 8852897
pmcid: 239420
doi: 10.1128/mr.60.1.103-134.1996
Kudla, G., Murray, A. W., Tollervey, D. & Plotkin, J. B. Coding-sequence determinants of gene expression in Escherichia coli. Science 324, 255–258 (2009).
pubmed: 19359587
pmcid: 3902468
doi: 10.1126/science.1170160
Goodman, D. B., Church, G. M. & Kosuri, S. Causes and effects of N-terminal codon bias in bacterial genes. Science 342, 475–479 (2013).
pubmed: 24072823
doi: 10.1126/science.1241934
Caliskan, N., Katunin, V. I., Belardinelli, R., Peske, F. & Rodnina, M. V. Programmed –1 frameshifting by kinetic partitioning during impeded translocation. Cell 157, 1619–1631 (2014).
pubmed: 24949973
pmcid: 7112342
doi: 10.1016/j.cell.2014.04.041
Caliskan, N., Peske, F. & Rodnina, M. V. Changed in translation: mRNA recoding by −1 programmed ribosomal frameshifting. Trends Biochem. Sci. 40, 265–274 (2015).
pubmed: 25850333
pmcid: 7126180
doi: 10.1016/j.tibs.2015.03.006
Jungfleisch, J. et al. A novel translational control mechanism involving RNA structures within coding sequences. Genome Res. 27, 95–106 (2017).
pubmed: 27821408
pmcid: 5204348
doi: 10.1101/gr.209015.116
Mao, Y. et al. m
pubmed: 31767846
pmcid: 6877647
doi: 10.1038/s41467-019-13317-9
Yang, X. et al. RNA G-quadruplex structures exist and function in vivo in plants. Genome Biol. 21, 226 (2020).
pubmed: 32873317
pmcid: 7466424
doi: 10.1186/s13059-020-02142-9
Arif, A. et al. The GAIT translational control system. WIREs RNA 9, e1441 (2018).
pubmed: 29152905
doi: 10.1002/wrna.1441
Chaudhury, A. et al. TGF-β-mediated phosphorylation of hnRNP E1 induces EMT via transcript-selective translational induction of Dab2 and ILEI. Nat. Cell Biol. 12, 286–293 (2010).
pubmed: 20154680
pmcid: 2830561
doi: 10.1038/ncb2029
Hussey, GeorgeS. et al. Identification of an mRNP complex regulating tumorigenesis at the translational elongation step. Mol. Cell 41, 419–431 (2011).
pubmed: 21329880
pmcid: 3061437
doi: 10.1016/j.molcel.2011.02.003
Brown, J. A. et al. Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix. Nat. Struct. Mol. Biol. 21, 633–640 (2014).
pubmed: 24952594
pmcid: 4096706
doi: 10.1038/nsmb.2844
Brown, J. A. Unraveling the structure and biological functions of RNA triple helices. Wiley Interdiscip. Rev. RNA 11, e1598 (2020).
pubmed: 32441456
pmcid: 7583470
doi: 10.1002/wrna.1598
Wan, Y. et al. Genome-wide measurement of RNA folding energies. Mol. Cell 48, 169–181 (2012).
pubmed: 22981864
pmcid: 3483374
doi: 10.1016/j.molcel.2012.08.008
Yang, X. et al. RNA G-quadruplex structure contributes to cold adaptation in plants. Nat. Commun. 13, 6224 (2022).
pubmed: 36266343
pmcid: 9585020
doi: 10.1038/s41467-022-34040-y
Kharel, P. et al. Stress promotes RNA G-quadruplex folding in human cells. Nat. Commun. 14, 205 (2023).
pubmed: 36639366
pmcid: 9839774
doi: 10.1038/s41467-023-35811-x
Marzluff, W. F., Wagner, E. J. & Duronio, R. J. Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. Nat. Rev. Genet. 9, 843–854 (2008).
pubmed: 18927579
pmcid: 2715827
doi: 10.1038/nrg2438
Fischer, J. W., Busa, V. F., Shao, Y. & Leung, A. K. L. Structure-mediated RNA decay by UPF1 and G3BP1. Mol. Cell 78, 70–84.e6 (2020).
pubmed: 32017897
pmcid: 8055448
doi: 10.1016/j.molcel.2020.01.021
Meisner, N.-C. et al. mRNA openers and closers: modulating AU-rich element-controlled mRNA stability by a molecular switch in mRNA secondary structure. ChemBioChem 5, 1432–1447 (2004).
pubmed: 15457527
doi: 10.1002/cbic.200400219
Carthew, R. W. & Sontheimer, E. J. Origins and mechanisms of miRNAs and siRNAs. Cell 136, 642–655 (2009).
pubmed: 19239886
pmcid: 2675692
doi: 10.1016/j.cell.2009.01.035
Yadav, D. K. et al. Staufen1 reads out structure and sequence features in ARF1 dsRNA for target recognition. Nucleic Acids Res. 48, 2091–2106 (2019).
pmcid: 7038937
doi: 10.1093/nar/gkz1163
Mino, T. et al. Regnase-1 and roquin regulate a common element in inflammatory mRNAs by spatiotemporally distinct mechanisms. Cell 161, 1058–1073 (2015).
pubmed: 26000482
doi: 10.1016/j.cell.2015.04.029
Leppek, K. et al. Roquin promotes constitutive mRNA decay via a conserved class of stem-loop recognition motifs. Cell 153, 869–881 (2013).
pubmed: 23663784
doi: 10.1016/j.cell.2013.04.016
Binas, O. et al. Structural basis for the recognition of transiently structured AU-rich elements by Roquin. Nucleic Acids Res. 48, 7385–7403 (2020).
pubmed: 32491174
pmcid: 7367199
Shi, B. et al. RNA structural dynamics regulate early embryogenesis through controlling transcriptome fate and function. Genome Biol. 21, 120 (2020).
pubmed: 32423473
pmcid: 7236375
doi: 10.1186/s13059-020-02022-2
Mauger, D. M. et al. mRNA structure regulates protein expression through changes in functional half-life. Proc. Natl Acad. Sci. USA 116, 24075–24083 (2019).
pubmed: 31712433
pmcid: 6883848
doi: 10.1073/pnas.1908052116
Gonzalez, I., Buonomo, S. B., Nasmyth, K. & von Ahsen, U. ASH1 mRNA localization in yeast involves multiple secondary structural elements and Ash1 protein translation. Curr. Biol. 9, 337–340 (1999).
pubmed: 10209099
doi: 10.1016/S0960-9822(99)80145-6
Macdonald, P. M., Kerr, K., Smith, J. L. & Leask, A. RNA regulatory element BLE1 directs the early steps of bicoid mRNA localization. Development 118, 1233–1243 (1993).
pubmed: 8269850
doi: 10.1242/dev.118.4.1233
St Johnston, D., Beuchle, D. & Nusslein-Volhard, C. Staufen, a gene required to localize maternal RNAs in the Drosophila egg. Cell 66, 51–63 (1991).
doi: 10.1016/0092-8674(91)90138-O
Ferrandon, D., Elphick, L., Nusslein-Volhard, C. & St Johnston, D. Staufen protein associates with the 3′UTR of bicoid mRNA to form particles that move in a microtubule-dependent manner. Cell 79, 1221–1232 (1994).
pubmed: 8001156
doi: 10.1016/0092-8674(94)90013-2
Bergsten, S. E., Huang, T., Chatterjee, S. & Gavis, E. R. Recognition and long-range interactions of a minimal nanos RNA localization signal element. Development 128, 427–435 (2001).
pubmed: 11152641
doi: 10.1242/dev.128.3.427
Kim-Ha, J., Webster, P. J., Smith, J. L. & Macdonald, P. M. Multiple RNA regulatory elements mediate distinct steps in localization of oskar mRNA. Development 119, 169–178 (1993).
pubmed: 8275853
doi: 10.1242/dev.119.1.169
Van De Bor, V., Hartswood, E., Jones, C., Finnegan, D. & Davis, I. gurken and the I factor retrotransposon RNAs share common localization signals and machinery. Dev. Cell 9, 51–62 (2005).
pubmed: 15992540
doi: 10.1016/j.devcel.2005.04.012
Bullock, S. L., Ringel, I., Ish-Horowicz, D. & Lukavsky, P. J. A′-form RNA helices are required for cytoplasmic mRNA transport in Drosophila. Nat. Struct. Mol. Biol. 17, 703–709 (2010).
pubmed: 20473315
pmcid: 2997434
doi: 10.1038/nsmb.1813
Chao, J. A. et al. ZBP1 recognition of β-actin zipcode induces RNA looping. Genes Dev. 24, 148–158 (2010).
pubmed: 20080952
pmcid: 2807350
doi: 10.1101/gad.1862910
Patel, V. L. et al. Spatial arrangement of an RNA zipcode identifies mRNAs under post-transcriptional control. Genes Dev. 26, 43–53 (2012).
pubmed: 22215810
pmcid: 3258965
doi: 10.1101/gad.177428.111
Fernandez-Moya, S. M. et al. RGS4 RNA secondary structure mediates Staufen2 RNP assembly in neurons. Int. J. Mol. Sci. 22, 13021 (2021).
pubmed: 34884825
pmcid: 8657808
doi: 10.3390/ijms222313021
Wang, T. et al. RNA motifs and modification involve in RNA long-distance transport in plants. Front. Cell Dev. Biol. 9, 651278 (2021).
pubmed: 33869208
pmcid: 8047152
doi: 10.3389/fcell.2021.651278
Zhang, W. et al. tRNA-related sequences trigger systemic mRNA transport in plants. Plant Cell 28, 1237–1249 (2016).
pubmed: 27268430
pmcid: 4944404
doi: 10.1105/tpc.15.01056
Fernandes, J., Jayaraman, B. & Frankel, A. The HIV-1 Rev response element: an RNA scaffold that directs the cooperative assembly of a homo-oligomeric ribonucleoprotein complex. RNA Biol. 9, 6–11 (2012).
pubmed: 22258145
pmcid: 3342944
doi: 10.4161/rna.9.1.18178
Malim, M. H., Hauber, J., Le, S. Y., Maizel, J. V. & Cullen, B. R. The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature 338, 254–257 (1989).
pubmed: 2784194
doi: 10.1038/338254a0
Pasquinelli, A. E. et al. The constitutive transport element (CTE) of Mason–Pfizer monkey virus (MPMV) accesses a cellular mRNA export pathway. EMBO J. 16, 7500–7510 (1997).
pubmed: 9405378
pmcid: 1170349
doi: 10.1093/emboj/16.24.7500
Gruter, P. et al. TAP, the human homolog of Mex67p, mediates CTE-dependent RNA export from the nucleus. Mol. Cell 1, 649–659 (1998).
pubmed: 9660949
doi: 10.1016/S1097-2765(00)80065-9
Aibara, S., Katahira, J., Valkov, E. & Stewart, M. The principal mRNA nuclear export factor NXF1:NXT1 forms a symmetric binding platform that facilitates export of retroviral CTE-RNA. Nucleic Acids Res. 43, 1883–1893 (2015).
pubmed: 25628361
pmcid: 4330390
doi: 10.1093/nar/gkv032
Van Treeck, B. et al. RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome. Proc. Natl Acad. Sci. USA 115, 2734–2739 (2018).
pubmed: 29483269
pmcid: 5856561
doi: 10.1073/pnas.1800038115
Poudyal, R. R., Sieg, J. P., Portz, B., Keating, C. D. & Bevilacqua, P. C. RNA sequence and structure control assembly and function of RNA condensates. RNA 27, 1589–1601 (2021).
pubmed: 34551999
pmcid: 8594466
doi: 10.1261/rna.078875.121
Jain, A. & Vale, R. D. RNA phase transitions in repeat expansion disorders. Nature 546, 243–247 (2017).
pubmed: 28562589
pmcid: 5555642
doi: 10.1038/nature22386
Zhang, Y. et al. G-quadruplex structures trigger RNA phase separation. Nucleic Acids Res. 47, 11746–11754 (2019).
pubmed: 31722410
pmcid: 7145655
Langdon, E. M. & Gladfelter, A. S. A new lens for RNA localization: liquid–liquid phase separation. Annu. Rev. Microbiol. 72, 255–271 (2018).
pubmed: 30200855
doi: 10.1146/annurev-micro-090817-062814
Roden, ChristineA. et al. Double-stranded RNA drives SARS-CoV-2 nucleocapsid protein to undergo phase separation at specific temperatures. Nucleic Acids Res. 50, 8168–8192 (2022).
pubmed: 35871289
pmcid: 9371935
doi: 10.1093/nar/gkac596
Clemson, C. M. et al. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol. Cell 33, 717–726 (2009).
pubmed: 19217333
pmcid: 2696186
doi: 10.1016/j.molcel.2009.01.026
Yamazaki, T. et al. Functional domains of NEAT1 architectural lncRNA induce paraspeckle assembly through phase separation. Mol. Cell 70, 1038–1053.e7 (2018).
pubmed: 29932899
doi: 10.1016/j.molcel.2018.05.019
Asamitsu, S. et al. RNA G-quadruplex organizes stress granule assembly through DNAPTP6 in neurons. Sci. Adv. 9, eade2035 (2023).
pubmed: 36827365
pmcid: 9956113
doi: 10.1126/sciadv.ade2035
Mimura, M. et al. Quadruplex folding promotes the condensation of linker histones and DNAs via liquid–liquid phase separation. J. Am. Chem. Soc. 143, 9849–9857 (2021).
pubmed: 34152774
doi: 10.1021/jacs.1c03447
Warner, K. D., Hajdin, C. E. & Weeks, K. M. Principles for targeting RNA with drug-like small molecules. Nat. Rev. Drug Discov. 17, 547–558 (2018).
pubmed: 29977051
pmcid: 6420209
doi: 10.1038/nrd.2018.93
Childs-Disney, J. L. et al. Targeting RNA structures with small molecules. Nat. Rev. Drug Discov. 21, 736–762 (2022).
pubmed: 35941229
pmcid: 9360655
doi: 10.1038/s41573-022-00521-4
Abulwerdi, F. A. et al. Development of small molecules with a noncanonical binding mode to HIV-1 trans activation response (TAR) RNA. J. Med. Chem. 59, 11148–11160 (2016).
pubmed: 28002966
pmcid: 5525537
doi: 10.1021/acs.jmedchem.6b01450
Prado, S. et al. A small-molecule inhibitor of HIV-1 Rev function detected by a diversity screen based on RRE–Rev interference. Biochem. Pharmacol. 156, 68–77 (2018).
pubmed: 30071201
doi: 10.1016/j.bcp.2018.07.040
Howe, J. A. et al. Selective small-molecule inhibition of an RNA structural element. Nature 526, 672–677 (2015).
pubmed: 26416753
doi: 10.1038/nature15542
Blount Kenneth, F. et al. Novel riboswitch-binding flavin analog that protects mice against Clostridium difficile infection without inhibiting cecal flora. Antimicrob. Agents Chemother. 59, 5736–5746 (2015).
pubmed: 26169403
pmcid: 4538501
doi: 10.1128/AAC.01282-15
Balaratnam, S. et al. Investigating the NRAS 5′ UTR as a target for small molecules. Cell Chem. Biol. 30, 643–657.e8 (2023).
pubmed: 37257453
doi: 10.1016/j.chembiol.2023.05.004
Aguilar, R. et al. Targeting Xist with compounds that disrupt RNA structure and X inactivation. Nature 604, 160–166 (2022).
pubmed: 35355011
doi: 10.1038/s41586-022-04537-z
Dhillon, S. Risdiplam: first approval. Drugs 80, 1853–1858 (2020).
pubmed: 33044711
doi: 10.1007/s40265-020-01410-z
Naryshkin, N. A. et al. SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy. Science 345, 688–693 (2014).
pubmed: 25104390
doi: 10.1126/science.1250127
Ratni, H. et al. Discovery of risdiplam, a selective survival of motor neuron-2 (SMN2) gene splicing modifier for the treatment of spinal muscular atrophy (SMA). J. Med. Chem. 61, 6501–6517 (2018).
pubmed: 30044619
doi: 10.1021/acs.jmedchem.8b00741
Sivaramakrishnan, M. et al. Binding to SMN2 pre-mRNA–protein complex elicits specificity for small molecule splicing modifiers. Nat. Commun. 8, 1476 (2017).
pubmed: 29133793
pmcid: 5684323
doi: 10.1038/s41467-017-01559-4
Campagne, S. et al. Structural basis of a small molecule targeting RNA for a specific splicing correction. Nat. Chem. Biol. 15, 1191–1198 (2019).
pubmed: 31636429
doi: 10.1038/s41589-019-0384-5
Wang, J., Schultz, P. G. & Johnson, K. A. Mechanistic studies of a small-molecule modulator of SMN2 splicing. Proc. Natl Acad. Sci. USA 115, E4604–E4612 (2018).
pubmed: 29712837
pmcid: 5960314
Velagapudi, S. P., Gallo, S. M. & Disney, M. D. Sequence-based design of bioactive small molecules that target precursor microRNAs. Nat. Chem. Biol. 10, 291–297 (2014).
pubmed: 24509821
pmcid: 3962094
doi: 10.1038/nchembio.1452
Costales, M. G. et al. A designed small molecule inhibitor of a non-coding RNA sensitizes HER2 negative cancers to herceptin. J. Am. Chem. Soc. 141, 2960–2974 (2019).
pubmed: 30726072
pmcid: 6400281
doi: 10.1021/jacs.8b10558
Fang, L. et al. Pervasive transcriptome interactions of protein-targeted drugs. Nat. Chem. 15, 1374–1383 (2023).
pubmed: 37653232
doi: 10.1038/s41557-023-01309-8
Costales, M. G., Matsumoto, Y., Velagapudi, S. P. & Disney, M. D. Small molecule targeted recruitment of a nuclease to RNA. J. Am. Chem. Soc. 140, 6741–6744 (2018).
pubmed: 29792692
pmcid: 6100793
doi: 10.1021/jacs.8b01233
Costales, M. G. et al. Small-molecule targeted recruitment of a nuclease to cleave an oncogenic RNA in a mouse model of metastatic cancer. Proc. Natl Acad. Sci. USA 117, 2406–2411 (2020).
pubmed: 31964809
pmcid: 7007575
doi: 10.1073/pnas.1914286117
Tong, Y. et al. Programming inactive RNA-binding small molecules into bioactive degraders. Nature 618, 169–179 (2023).
pubmed: 37225982
pmcid: 10232370
doi: 10.1038/s41586-023-06091-8
McCown, P. J., Corbino, K. A., Stav, S., Sherlock, M. E. & Breaker, R. R. Riboswitch diversity and distribution. RNA 23, 995–1011 (2017).
pubmed: 28396576
pmcid: 5473149
doi: 10.1261/rna.061234.117