Identification of RNA structures and their roles in RNA functions.


Journal

Nature reviews. Molecular cell biology
ISSN: 1471-0080
Titre abrégé: Nat Rev Mol Cell Biol
Pays: England
ID NLM: 100962782

Informations de publication

Date de publication:
26 Jun 2024
Historique:
accepted: 28 05 2024
medline: 27 6 2024
pubmed: 27 6 2024
entrez: 26 6 2024
Statut: aheadofprint

Résumé

The development of high-throughput RNA structure profiling methods in the past decade has greatly facilitated our ability to map and characterize different aspects of RNA structures transcriptome-wide in cell populations, single cells and single molecules. The resulting high-resolution data have provided insights into the static and dynamic nature of RNA structures, revealing their complexity as they perform their respective functions in the cell. In this Review, we discuss recent technical advances in the determination of RNA structures, and the roles of RNA structures in RNA biogenesis and functions, including in transcription, processing, translation, degradation, localization and RNA structure-dependent condensates. We also discuss the current understanding of how RNA structures could guide drug design for treating genetic diseases and battling pathogenic viruses, and highlight existing challenges and future directions in RNA structure research.

Identifiants

pubmed: 38926530
doi: 10.1038/s41580-024-00748-6
pii: 10.1038/s41580-024-00748-6
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. Springer Nature Limited.

Références

Hingerty, B., Brown, R. S. & Jack, A. Further refinement of the structure of yeast tRNAPhe. J. Mol. Biol. 124, 523–534 (1978).
pubmed: 361973 doi: 10.1016/0022-2836(78)90185-7
Chen, Y. & Pollack, L. SAXS studies of RNA: structures, dynamics, and interactions with partners. Wiley Interdiscip. Rev. RNA 7, 512–526 (2016).
pubmed: 27071649 pmcid: 4909577 doi: 10.1002/wrna.1349
Dagenais, P., Desjardins, G. & Legault, P. An integrative NMR–SAXS approach for structural determination of large RNAs defines the substrate-free state of a trans-cleaving Neurospora Varkud Satellite ribozyme. Nucleic Acids Res. 49, 11959–11973 (2021).
pubmed: 34718697 pmcid: 8599749 doi: 10.1093/nar/gkab963
Cheong, C. & Moore, P. B. Solution structure of an unusually stable RNA tetraplex containing G- and U-quartet structures. Biochemistry 31, 8406–8414 (1992).
pubmed: 1382577 doi: 10.1021/bi00151a003
Barnwal, R. P., Yang, F. & Varani, G. Applications of NMR to structure determination of RNAs large and small. Arch. Biochem. Biophys. 628, 42–56 (2017).
pubmed: 28600200 pmcid: 5555312 doi: 10.1016/j.abb.2017.06.003
Gabashvili, I. S. et al. Solution structure of the E. coli 70S ribosome at 11.5 Å resolution. Cell 100, 537–549 (2000).
pubmed: 10721991 doi: 10.1016/S0092-8674(00)80690-X
Wrede, P., Wurst, R., Vournakis, J. & Rich, A. Conformational changes of yeast tRNAPhe and E. coli tRNA2Glu as indicated by different nuclease digestion patterns. J. Biol. Chem. 254, 9608–9616 (1979).
pubmed: 114514 doi: 10.1016/S0021-9258(19)83559-7
Wurst, R. M., Vournakis, J. N. & Maxam, A. M. Structure mapping of 5′-
pubmed: 363143 doi: 10.1021/bi00614a021
Lockard, R. E. & Kumar, A. Mapping tRNA structure in solution using double-strand-specific ribonuclease V1 from cobra venom. Nucleic Acids Res. 9, 5125–5140 (1981).
pubmed: 7031604 pmcid: 327503 doi: 10.1093/nar/9.19.5125
Lempereur, L. et al. Conformation of yeast 18S rRNA. Direct chemical probing of the 5′ domain in ribosomal subunits and in deproteinized RNA by reverse transcriptase mapping of dimethyl sulfate-accessible. Nucleic Acids Res. 13, 8339–8357 (1985).
pubmed: 2417197 pmcid: 322138 doi: 10.1093/nar/13.23.8339
Merino, E. J., Wilkinson, K. A., Coughlan, J. L. & Weeks, K. M. RNA structure analysis at single nucleotide resolution by selective 2′-hydroxyl acylation and primer extension (SHAPE). J. Am. Chem. Soc. 127, 4223–4231 (2005).
pubmed: 15783204 doi: 10.1021/ja043822v
Wan, Y., Kertesz, M., Spitale, R. C., Segal, E. & Chang, H. Y. Understanding the transcriptome through RNA structure. Nat. Rev. Genet. 12, 641–655 (2011).
pubmed: 21850044 doi: 10.1038/nrg3049
Kertesz, M. et al. Genome-wide measurement of RNA secondary structure in yeast. Nature 467, 103–107 (2010).
pubmed: 20811459 doi: 10.1038/nature09322
Underwood, J. G. et al. FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing. Nat. Methods 7, 995–1001 (2010).
pubmed: 21057495 pmcid: 3247016 doi: 10.1038/nmeth.1529
Rouskin, S., Zubradt, M., Washietl, S., Kellis, M. & Weissman, J. S. Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature 505, 701–705 (2014).
pubmed: 24336214 doi: 10.1038/nature12894
Ding, Y. et al. In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature 505, 696–700 (2014).
pubmed: 24270811 doi: 10.1038/nature12756
Wan, Y. et al. Landscape and variation of RNA secondary structure across the human transcriptome. Nature 505, 706–709 (2014).
pubmed: 24476892 pmcid: 3973747 doi: 10.1038/nature12946
Homan, P. J. et al. Single-molecule correlated chemical probing of RNA. Proc. Natl Acad. Sci. USA 111, 13858–13863 (2014).
pubmed: 25205807 pmcid: 4183288 doi: 10.1073/pnas.1407306111
Spitale, R. C. & Incarnato, D. Probing the dynamic RNA structurome and its functions. Nat. Rev. Genet. 24, 178–196 (2023).
pubmed: 36348050 doi: 10.1038/s41576-022-00546-w
Strobel, E. J., Yu, A. M. & Lucks, J. B. High-throughput determination of RNA structures. Nat. Rev. Genet. 19, 615–634 (2018).
pubmed: 30054568 pmcid: 7388734 doi: 10.1038/s41576-018-0034-x
Corley, M. et al. Footprinting SHAPE-eCLIP reveals transcriptome-wide hydrogen bonds at RNA–protein interfaces. Mol. Cell 80, 903–914.e8 (2020).
pubmed: 33242392 pmcid: 8074864 doi: 10.1016/j.molcel.2020.11.014
Lee, B. et al. Comparison of SHAPE reagents for mapping RNA structures inside living cells. RNA 23, 169–174 (2017).
pubmed: 27879433 pmcid: 5238792 doi: 10.1261/rna.058784.116
Spitale, R. C. et al. RNA SHAPE analysis in living cells. Nat. Chem. Biol. 9, 18–20 (2013).
pubmed: 23178934 doi: 10.1038/nchembio.1131
Marinus, T., Fessler, A. B., Ogle, C. A. & Incarnato, D. A novel SHAPE reagent enables the analysis of RNA structure in living cells with unprecedented accuracy. Nucleic Acids Res. 49, e34 (2021).
pubmed: 33398343 pmcid: 8034653 doi: 10.1093/nar/gkaa1255
Siegfried, N. A., Busan, S., Rice, G. M., Nelson, J. A. & Weeks, K. M. RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP). Nat. Methods 11, 959–965 (2014).
pubmed: 25028896 pmcid: 4259394 doi: 10.1038/nmeth.3029
Zubradt, M. et al. DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo. Nat. Methods 14, 75–82 (2017).
pubmed: 27819661 doi: 10.1038/nmeth.4057
Aviran, S. & Incarnato, D. Computational approaches for RNA structure ensemble deconvolution from structure probing data. J. Mol. Biol. 434, 167635 (2022).
pubmed: 35595163 doi: 10.1016/j.jmb.2022.167635
Busan, S., Weidmann, C. A., Sengupta, A. & Weeks, K. M. Guidelines for SHAPE reagent choice and detection strategy for RNA structure probing studies. Biochemistry 58, 2655–2664 (2019).
pubmed: 31117385 doi: 10.1021/acs.biochem.8b01218
Guo, L. T. et al. Sequencing and structure probing of long RNAs using MarathonRT: a next-generation reverse transcriptase. J. Mol. Biol. 432, 3338–3352 (2020).
pubmed: 32259542 pmcid: 7556701 doi: 10.1016/j.jmb.2020.03.022
Mitchell, D., Cotter, J., Saleem, I. & Mustoe, A. M. Mutation signature filtering enables high-fidelity RNA structure probing at all four nucleobases with DMS. Nucleic Acids Res. 51, 8744–8757 (2023).
pubmed: 37334863 pmcid: 10484685 doi: 10.1093/nar/gkad522
Smola, M. J., Rice, G. M., Busan, S., Siegfried, N. A. & Weeks, K. M. Selective 2′-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) for direct, versatile and accurate RNA structure analysis. Nat. Protoc. 10, 1643–1669 (2015).
pubmed: 26426499 pmcid: 4900152 doi: 10.1038/nprot.2015.103
Liu, Z. et al. In vivo nuclear RNA structurome reveals RNA-structure regulation of mRNA processing in plants. Genome Biol. 22, 11 (2021).
pubmed: 33397430 pmcid: 7784297 doi: 10.1186/s13059-020-02236-4
Sun, L. et al. RNA structure maps across mammalian cellular compartments. Nat. Struct. Mol. Biol. 26, 322–330 (2019).
pubmed: 30886404 pmcid: 6640855 doi: 10.1038/s41594-019-0200-7
Yamagami, R., Sieg, J. P., Assmann, S. M. & Bevilacqua, P. C. Genome-wide analysis of the in vivo tRNA structurome reveals RNA structural and modification dynamics under heat stress. Proc. Natl Acad. Sci. USA 119, e2201237119 (2022).
pubmed: 35696576 pmcid: 9231505 doi: 10.1073/pnas.2201237119
Yang, M. et al. Intact RNA structurome reveals mRNA structure-mediated regulation of miRNA cleavage in vivo. Nucleic Acids Res. 48, 8767–8781 (2020).
pubmed: 32652041 pmcid: 7470952 doi: 10.1093/nar/gkaa577
Watters, K. E., Strobel, E. J., Yu, A. M., Lis, J. T. & Lucks, J. B. Cotranscriptional folding of a riboswitch at nucleotide resolution. Nat. Struct. Mol. Biol. 23, 1124–1131 (2016).
pubmed: 27798597 pmcid: 5497173 doi: 10.1038/nsmb.3316
Incarnato, D. et al. In vivo probing of nascent RNA structures reveals principles of cotranscriptional folding. Nucleic Acids Res. 45, 9716–9725 (2017).
pubmed: 28934475 pmcid: 5766169 doi: 10.1093/nar/gkx617
Saldi, T., Riemondy, K., Erickson, B. & Bentley, D. L. Alternative RNA structures formed during transcription depend on elongation rate and modify RNA processing. Mol. Cell 81, 1789–1801.e5 (2021).
pubmed: 33631106 pmcid: 8052309 doi: 10.1016/j.molcel.2021.01.040
Yu, G. et al. Genome-wide probing of eukaryotic nascent RNA structure elucidates cotranscriptional folding and its antimutagenic effect. Nat. Commun. 14, 5853 (2023).
pubmed: 37730811 pmcid: 10511511 doi: 10.1038/s41467-023-41550-w
Yang, M. et al. In vivo single-molecule analysis reveals COOLAIR RNA structural diversity. Nature 609, 394–399 (2022).
pubmed: 35978193 pmcid: 9452300 doi: 10.1038/s41586-022-05135-9
Bohn, P., Gribling-Burrer, A. S., Ambi, U. B. & Smyth, R. P. Nano-DMS-MaP allows isoform-specific RNA structure determination. Nat. Methods 20, 849–859 (2023).
pubmed: 37106231 pmcid: 10250195 doi: 10.1038/s41592-023-01862-7
Aw, J. G. A. et al. Determination of isoform-specific RNA structure with nanopore long reads. Nat. Biotechnol. 39, 336–346 (2021).
pubmed: 33106685 doi: 10.1038/s41587-020-0712-z
Bevilacqua, P. C., Ritchey, L. E., Su, Z. & Assmann, S. M. Genome-wide analysis of RNA secondary structure. Annu. Rev. Genet. 50, 235–266 (2016).
pubmed: 27648642 doi: 10.1146/annurev-genet-120215-035034
Wan, Y., Qu, K., Ouyang, Z. & Chang, H. Y. Genome-wide mapping of RNA structure using nuclease digestion and high-throughput sequencing. Nat. Protoc. 8, 849–869 (2013).
pubmed: 23558785 doi: 10.1038/nprot.2013.045
Mortimer, S. A. & Weeks, K. M. Time-resolved RNA SHAPE chemistry: quantitative RNA structure analysis in one-second snapshots and at single-nucleotide resolution. Nat. Protoc. 4, 1413–1421 (2009).
pubmed: 19745823 pmcid: 4950915 doi: 10.1038/nprot.2009.126
Rabin, D. & Crothers, D. M. Analysis of RNA secondary structure by photochemical reversal of psoralen crosslinks. Nucleic Acids Res. 7, 689–703 (1979).
pubmed: 116192 pmcid: 328048 doi: 10.1093/nar/7.3.689
Cordero, P., Kladwang, W., VanLang, C. C. & Das, R. The mutate-and-map protocol for inferring base pairs in structured RNA. Methods Mol. Biol. 1086, 53–77 (2014).
pubmed: 24136598 pmcid: 4080707 doi: 10.1007/978-1-62703-667-2_4
Lu, Z. et al. RNA duplex map in living cells reveals higher-order transcriptome structure. Cell 165, 1267–1279 (2016).
pubmed: 27180905 pmcid: 5029792 doi: 10.1016/j.cell.2016.04.028
Aw, J. G. A. et al. In vivo mapping of eukaryotic RNA interactomes reveals principles of higher-order organization and regulation. Mol. Cell 62, 603–617 (2016).
pubmed: 27184079 doi: 10.1016/j.molcel.2016.04.028
Sharma, E., Sterne-Weiler, T., O’Hanlon, D. & Blencowe, B. J. Global mapping of human RNA–RNA interactions. Mol. Cell 62, 618–626 (2016).
pubmed: 27184080 doi: 10.1016/j.molcel.2016.04.030
Ziv, O. et al. COMRADES determines in vivo RNA structures and interactions. Nat. Methods 15, 785–788 (2018).
pubmed: 30202058 pmcid: 6168409 doi: 10.1038/s41592-018-0121-0
Kudla, G., Granneman, S., Hahn, D., Beggs, J. D. & Tollervey, D. Cross-linking, ligation, and sequencing of hybrids reveals RNA–RNA interactions in yeast. Proc. Natl Acad. Sci. USA 108, 10010–10015 (2011).
pubmed: 21610164 pmcid: 3116431 doi: 10.1073/pnas.1017386108
Sugimoto, Y. et al. hiCLIP reveals the in vivo atlas of mRNA secondary structures recognized by Staufen 1. Nature 519, 491–494 (2015).
pubmed: 25799984 pmcid: 4376666 doi: 10.1038/nature14280
Ye, R. et al. Capture RIC-seq reveals positional rules of PTBP1-associated RNA loops in splicing regulation. Mol. Cell 83, 1311–1327.e7 (2023).
pubmed: 36958328 doi: 10.1016/j.molcel.2023.03.001
Cao, C. et al. Global in situ profiling of RNA–RNA spatial interactions with RIC-seq. Nat. Protoc. 16, 2916–2946 (2021).
pubmed: 34021296 doi: 10.1038/s41596-021-00524-2
Christy, T. W. et al. Direct mapping of higher-order RNA interactions by SHAPE-JuMP. Biochemistry 60, 1971–1982 (2021).
pubmed: 34121404 doi: 10.1021/acs.biochem.1c00270
Van Damme, R. et al. Chemical reversible crosslinking enables measurement of RNA 3D distances and alternative conformations in cells. Nat. Commun. 13, 911 (2022).
pubmed: 35177610 pmcid: 8854666 doi: 10.1038/s41467-022-28602-3
Xu, B. et al. Recent advances in RNA structurome. Sci. China Life Sci. 65, 1285–1324 (2022).
pubmed: 35717434 pmcid: 9206424 doi: 10.1007/s11427-021-2116-2
Gabryelska, M. M. et al. Global mapping of RNA homodimers in living cells. Genome Res. 32, 956–967 (2022).
pubmed: 35332098 pmcid: 9104694
Zhang, M. et al. Classification and clustering of RNA crosslink-ligation data reveal complex structures and homodimers. Genome Res. 32, 968–985 (2022).
pubmed: 35332099 pmcid: 9104705
Tants, J.-N. & Schlundt, A. Advances, applications, and perspectives in small-angle X-ray scattering of RNA. ChemBioChem 24, e202300110 (2023).
pubmed: 37466350 doi: 10.1002/cbic.202300110
Zhang, K. et al. Cryo-EM structure of a 40 kDa SAM-IV riboswitch RNA at 3.7 Å resolution. Nat. Commun. 10, 5511 (2019).
pubmed: 31796736 pmcid: 6890682 doi: 10.1038/s41467-019-13494-7
Kappel, K. et al. Accelerated cryo-EM-guided determination of three-dimensional RNA-only structures. Nat. Methods 17, 699–707 (2020).
pubmed: 32616928 pmcid: 7386730 doi: 10.1038/s41592-020-0878-9
Langeberg, C. J. & Kieft, J. S. A generalizable scaffold-based approach for structure determination of RNAs by cryo-EM. Nucleic Acids Res. 51, e100 (2023).
pubmed: 37791881 pmcid: 10639074 doi: 10.1093/nar/gkad784
Reuter, J. S. & Mathews, D. H. RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinforma. 11, 129 (2010).
doi: 10.1186/1471-2105-11-129
Lorenz, R. et al. ViennaRNA Package 2.0. Algorithms Mol. Biol. 6, 26 (2011).
pubmed: 22115189 pmcid: 3319429 doi: 10.1186/1748-7188-6-26
Hofacker, I. L. et al. Fast folding and comparison of RNA secondary structures. Monatshefte fur Chem. 125, 167–188 (1994).
doi: 10.1007/BF00818163
Hofacker, I. L., Fekete, M. & Stadler, P. F. Secondary structure prediction for aligned RNA sequences. J. Mol. Biol. 319, 1059–1066 (2002).
pubmed: 12079347 doi: 10.1016/S0022-2836(02)00308-X
Washietl, S., Hofacker, I. L. & Stadler, P. F. Fast and reliable prediction of noncoding RNAs. Proc. Natl Acad. Sci. USA 102, 2454–2459 (2005).
pubmed: 15665081 pmcid: 548974 doi: 10.1073/pnas.0409169102
Rivas, E., Clements, J. & Eddy, S. R. A statistical test for conserved RNA structure shows lack of evidence for structure in lncRNAs. Nat. Methods 14, 45–48 (2017).
pubmed: 27819659 doi: 10.1038/nmeth.4066
Tavares, R. C. A., Pyle, A. M. & Somarowthu, S. Phylogenetic analysis with improved parameters reveals conservation in lncRNA structures. J. Mol. Biol. 431, 1592–1603 (2019).
pubmed: 30890332 pmcid: 6515926 doi: 10.1016/j.jmb.2019.03.012
Yu, H., Qi, Y. & Ding, Y. Deep learning in RNA structure studies. Front. Mol. Biosci. 9, 869601 (2022).
pubmed: 35677883 pmcid: 9168262 doi: 10.3389/fmolb.2022.869601
Sato, K. & Hamada, M. Recent trends in RNA informatics: a review of machine learning and deep learning for RNA secondary structure prediction and RNA drug discovery. Brief. Bioinform 24, bbad186 (2023).
pubmed: 37232359 pmcid: 10359090 doi: 10.1093/bib/bbad186
Zhang, J., Fei, Y., Sun, L. & Zhang, Q. C. Advances and opportunities in RNA structure experimental determination and computational modeling. Nat. Methods 19, 1193–1207 (2022).
pubmed: 36203019 doi: 10.1038/s41592-022-01623-y
Aviran, S. et al. Modeling and automation of sequencing-based characterization of RNA structure. Proc. Natl Acad. Sci. USA 108, 11069–11074 (2011).
pubmed: 21642536 pmcid: 3131376 doi: 10.1073/pnas.1106541108
Selega, A., Sirocchi, C., Iosub, I., Granneman, S. & Sanguinetti, G. Robust statistical modeling improves sensitivity of high-throughput RNA structure probing experiments. Nat. Methods 14, 83–89 (2017).
pubmed: 27819660 doi: 10.1038/nmeth.4068
Choudhary, K., Lai, Y. H., Tran, E. J. & Aviran, S. dStruct: identifying differentially reactive regions from RNA structurome profiling data. Genome Biol. 20, 40 (2019).
pubmed: 30791935 pmcid: 6385470 doi: 10.1186/s13059-019-1641-3
Marangio, P., Law, K. Y. T., Sanguinetti, G. & Granneman, S. diffBUM-HMM: a robust statistical modeling approach for detecting RNA flexibility changes in high-throughput structure probing data. Genome Biol. 22, 165 (2021).
pubmed: 34044851 pmcid: 8157727 doi: 10.1186/s13059-021-02379-y
Yu, B., Li, P., Zhang, Q. C. & Hou, L. Differential analysis of RNA structure probing experiments at nucleotide resolution: uncovering regulatory functions of RNA structure. Nat. Commun. 13, 4227 (2022).
pubmed: 35869080 pmcid: 9307511 doi: 10.1038/s41467-022-31875-3
Gong, J., Xu, K., Ma, Z., Lu, Z. J. & Zhang, Q. C. A deep learning method for recovering missing signals in transcriptome-wide RNA structure profiles from probing experiments. Nat. Mach. Intell. 3, 995–1006 (2021).
doi: 10.1038/s42256-021-00412-0
Low, J. T. & Weeks, K. M. SHAPE-directed RNA secondary structure prediction. Methods 52, 150–158 (2010).
pubmed: 20554050 pmcid: 2941709 doi: 10.1016/j.ymeth.2010.06.007
Tomezsko, P. J. et al. Determination of RNA structural diversity and its role in HIV-1 RNA splicing. Nature 582, 438–442 (2020).
pubmed: 32555469 pmcid: 7310298 doi: 10.1038/s41586-020-2253-5
Olson, S. W. et al. Discovery of a large-scale, cell-state-responsive allosteric switch in the 7SK RNA using DANCE-MaP. Mol. Cell 82, 1708–1723.e10 (2022).
pubmed: 35320755 pmcid: 9081252 doi: 10.1016/j.molcel.2022.02.009
Morandi, E. et al. Genome-scale deconvolution of RNA structure ensembles. Nat. Methods 18, 249–252 (2021).
pubmed: 33619392 doi: 10.1038/s41592-021-01075-w
Goodarzi, H. et al. Systematic discovery of structural elements governing stability of mammalian messenger RNAs. Nature 485, 264–268 (2012).
pubmed: 22495308 pmcid: 3350620 doi: 10.1038/nature11013
Fish, L. et al. A prometastatic splicing program regulated by SNRPA1 interactions with structured RNA elements. Science 372, eabc7531 (2021).
pubmed: 33986153 pmcid: 8238114 doi: 10.1126/science.abc7531
Morandi, E., van Hemert, M. J. & Incarnato, D. SHAPE-guided RNA structure homology search and motif discovery. Nat. Commun. 13, 1722 (2022).
pubmed: 35361788 pmcid: 8971488 doi: 10.1038/s41467-022-29398-y
Yang, Z., Zeng, X., Zhao, Y. & Chen, R. AlphaFold2 and its applications in the fields of biology and medicine. Signal. Transduct. Target. Ther. 8, 115 (2023).
pubmed: 36918529 pmcid: 10011802 doi: 10.1038/s41392-023-01381-z
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
pubmed: 34265844 pmcid: 8371605 doi: 10.1038/s41586-021-03819-2
Westhof, E. & Leontis, N. B. An RNA-centric historical narrative around the Protein Data Bank. J. Biol. Chem. 296, 100555 (2021).
pubmed: 33744291 pmcid: 8080527 doi: 10.1016/j.jbc.2021.100555
Singh, J., Hanson, J., Paliwal, K. & Zhou, Y. RNA secondary structure prediction using an ensemble of two-dimensional deep neural networks and transfer learning. Nat. Commun. 10, 5407 (2019).
pubmed: 31776342 pmcid: 6881452 doi: 10.1038/s41467-019-13395-9
Danaee, P. et al. bpRNA: large-scale automated annotation and analysis of RNA secondary structure. Nucleic Acids Res. 46, 5381–5394 (2018).
pubmed: 29746666 pmcid: 6009582 doi: 10.1093/nar/gky285
Sato, K., Akiyama, M. & Sakakibara, Y. RNA secondary structure prediction using deep learning with thermodynamic integration. Nat. Commun. 12, 941 (2021).
pubmed: 33574226 pmcid: 7878809 doi: 10.1038/s41467-021-21194-4
Fu, L. et al. UFold: fast and accurate RNA secondary structure prediction with deep learning. Nucleic Acids Res. 50, e14 (2022).
pubmed: 34792173 doi: 10.1093/nar/gkab1074
Yang, E. et al. GCNfold: a novel lightweight model with valid extractors for RNA secondary structure prediction. Comput. Biol. Med. 164, 107246 (2023).
pubmed: 37487383 doi: 10.1016/j.compbiomed.2023.107246
Li, Y. et al. Integrating end-to-end learning with deep geometrical potentials for ab initio RNA structure prediction. Nat. Commun. 14, 5745 (2023).
pubmed: 37717036 pmcid: 10505173 doi: 10.1038/s41467-023-41303-9
Wang, W. et al. trRosettaRNA: automated prediction of RNA 3D structure with transformer network. Nat. Commun. 14, 7266 (2023).
pubmed: 37945552 pmcid: 10636060 doi: 10.1038/s41467-023-42528-4
Das, R. & Baker, D. Automated de novo prediction of native-like RNA tertiary structures. Proc. Natl Acad. Sci. USA 104, 14664–14669 (2007).
pubmed: 17726102 pmcid: 1955458 doi: 10.1073/pnas.0703836104
Townshend, R. J. et al. Geometric deep learning of RNA structure. Science 373, 1047–1051 (2021).
pubmed: 34446608 pmcid: 9829186 doi: 10.1126/science.abe5650
Watkins, A. M., Rangan, R. & Das, R. FARFAR2: improved de novo rosetta prediction of complex global RNA folds. Structure 28, 963–976.e966 (2020).
pubmed: 32531203 pmcid: 7415647 doi: 10.1016/j.str.2020.05.011
Pan, X., Rijnbeek, P., Yan, J. & Shen, H.-B. Prediction of RNA–protein sequence and structure binding preferences using deep convolutional and recurrent neural networks. BMC Genomics 19, 511 (2018).
pubmed: 29970003 pmcid: 6029131 doi: 10.1186/s12864-018-4889-1
Sun, L. et al. Predicting dynamic cellular protein–RNA interactions by deep learning using in vivo RNA structures. Cell Res. 31, 495–516 (2021).
pubmed: 33623109 pmcid: 7900654 doi: 10.1038/s41422-021-00476-y
Xu, Y. et al. PrismNet: predicting protein–RNA interaction using in vivo RNA structural information. Nucleic Acids Res. 51, W468–W477 (2023).
pubmed: 37140045 pmcid: 10320048 doi: 10.1093/nar/gkad353
Baek, M. et al. Accurate prediction of protein–nucleic acid complexes using RoseTTAFoldNA. Nat. Methods 21, 117–121 (2024).
pubmed: 37996753 doi: 10.1038/s41592-023-02086-5
Sun, W., Ding, L. & Zhang, H. The potential role of RNA structure in crop molecular breeding. Front. Plant. Sci. 13, 868771 (2022).
pubmed: 35586218 pmcid: 9108716 doi: 10.3389/fpls.2022.868771
Xiang, Y. et al. Pervasive downstream RNA hairpins dynamically dictate start-codon selection. Nature 621, 423–430 (2023).
pubmed: 37674078 pmcid: 10499604 doi: 10.1038/s41586-023-06500-y
Flamm, C. et al. Caveats to deep learning approaches to RNA secondary structure prediction. Front. Bioinform. 2, 835422 (2022).
pubmed: 36304289 pmcid: 9580944 doi: 10.3389/fbinf.2022.835422
Szikszai, M., Wise, M., Datta, A., Ward, M. & Mathews, D. H. Deep learning models for RNA secondary structure prediction (probably) do not generalize across families. Bioinformatics 38, 3892–3899 (2022).
pubmed: 35748706 pmcid: 9364374 doi: 10.1093/bioinformatics/btac415
Wayment-Steele, H. K. et al. RNA secondary structure packages evaluated and improved by high-throughput experiments. Nat. Methods 19, 1234–1242 (2022).
pubmed: 36192461 pmcid: 9839360 doi: 10.1038/s41592-022-01605-0
Gusarov, I. & Nudler, E. The mechanism of intrinsic transcription termination. Mol. Cell 3, 495–504 (1999).
pubmed: 10230402 doi: 10.1016/S1097-2765(00)80477-3
Zhang, J. & Landick, R. A two-way street: regulatory interplay between RNA polymerase and nascent RNA structure. Trends Biochem. Sci. 41, 293–310 (2016).
pubmed: 26822487 pmcid: 4911296 doi: 10.1016/j.tibs.2015.12.009
Perdrizet, G. A. et al. Transcriptional pausing coordinates folding of the aptamer domain and the expression platform of a riboswitch. Proc. Natl Acad. Sci. USA 109, 3323–3328 (2012).
pubmed: 22331895 pmcid: 3295289 doi: 10.1073/pnas.1113086109
Steinert, H. et al. Pausing guides RNA folding to populate transiently stable RNA structures for riboswitch-based transcription regulation. eLife 6, e21297 (2017).
pubmed: 28541183 pmcid: 5459577 doi: 10.7554/eLife.21297
Turowski, T. W. et al. Nascent transcript folding plays a major role in determining RNA polymerase elongation rates. Mol. Cell 79, 488–503.e11 (2020).
pubmed: 32585128 pmcid: 7427326 doi: 10.1016/j.molcel.2020.06.002
Long, Y., Wang, X., Youmans, D. T. & Cech, T. R. How do lncRNAs regulate transcription? Sci. Adv. 3, eaao2110 (2017).
pubmed: 28959731 pmcid: 5617379 doi: 10.1126/sciadv.aao2110
Yang, F. et al. Shape of promoter antisense RNAs regulates ligand-induced transcription activation. Nature 595, 444–449 (2021).
pubmed: 34194047 pmcid: 8439151 doi: 10.1038/s41586-021-03589-x
Liang, L. et al. Complementary Alu sequences mediate enhancer–promoter selectivity. Nature 619, 868–875 (2023).
pubmed: 37438529 doi: 10.1038/s41586-023-06323-x
Peterlin, B. M., Brogie, J. E. & Price, D. H. 7SK snRNA: a noncoding RNA that plays a major role in regulating eukaryotic transcription. Wiley Interdiscip. Rev. RNA 3, 92–103 (2012).
pubmed: 21853533 doi: 10.1002/wrna.106
AJ, C. Q., Bugai, A. & Barboric, M. Cracking the control of RNA polymerase II elongation by 7SK snRNP and P-TEFb. Nucleic Acids Res. 44, 7527–7539 (2016).
doi: 10.1093/nar/gkw585
Whittaker, C. & Dean, C. The FLC locus: a platform for discoveries in epigenetics and adaptation. Annu. Rev. Cell Dev. Biol. 33, 555–575 (2017).
pubmed: 28693387 doi: 10.1146/annurev-cellbio-100616-060546
Roca, X., Krainer, A. R. & Eperon, I. C. Pick one, but be quick: 5′ splice sites and the problems of too many choices. Genes Dev. 27, 129–144 (2013).
pubmed: 23348838 pmcid: 3566305 doi: 10.1101/gad.209759.112
Watakabe, A., Inoue, K., Sakamoto, H. & Shimura, Y. A secondary structure at the 3′ splice site affects the in vitro splicing reaction of mouse immunoglobulin mu chain pre-mRNAs. Nucleic Acids Res. 17, 8159–8169 (1989).
pubmed: 2510128 pmcid: 334955 doi: 10.1093/nar/17.20.8159
Varani, L. et al. Structure of tau exon 10 splicing regulatory element RNA and destabilization by mutations of frontotemporal dementia and parkinsonism linked to chromosome 17. Proc. Natl Acad. Sci. USA 96, 8229–8234 (1999).
pubmed: 10393977 pmcid: 22217 doi: 10.1073/pnas.96.14.8229
Singh, N. N., Singh, R. N. & Androphy, E. J. Modulating role of RNA structure in alternative splicing of a critical exon in the spinal muscular atrophy genes. Nucleic Acids Res. 35, 371–389 (2007).
pubmed: 17170000 doi: 10.1093/nar/gkl1050
Warf, M. B. & Berglund, J. A. Role of RNA structure in regulating pre-mRNA splicing. Trends Biochem. Sci. 35, 169–178 (2010).
pubmed: 19959365 doi: 10.1016/j.tibs.2009.10.004
Rubtsov, P. Role of pre-mRNA secondary structures in the regulation of alternative splicing. Mol. Biol. 50, 823–830 (2016).
doi: 10.1134/S0026893316060170
Kubodera, T. et al. Thiamine‐regulated gene expression of Aspergillus oryzae thiA requires splicing of the intron containing a riboswitch‐like domain in the 5′‐UTR. FEBS Lett. 555, 516–520 (2003).
pubmed: 14675766 doi: 10.1016/S0014-5793(03)01335-8
Cheah, M. T., Wachter, A., Sudarsan, N. & Breaker, R. R. Control of alternative RNA splicing and gene expression by eukaryotic riboswitches. Nature 447, 497–500 (2007).
pubmed: 17468745 doi: 10.1038/nature05769
Wachter, A. et al. Riboswitch control of gene expression in plants by splicing and alternative 3′ end processing of mRNAs. Plant. Cell 19, 3437–3450 (2007).
pubmed: 17993623 pmcid: 2174889 doi: 10.1105/tpc.107.053645
Warf, M. B., Diegel, J. V., von Hippel, P. H. & Berglund, J. A. The protein factors MBNL1 and U2AF65 bind alternative RNA structures to regulate splicing. Proc. Natl Acad. Sci. USA 106, 9203–9208 (2009).
pubmed: 19470458 pmcid: 2695092 doi: 10.1073/pnas.0900342106
Muro, A. F. et al. Regulation of fibronectin EDA exon alternative splicing: possible role of RNA secondary structure for enhancer display. Mol. Cell. Biol. 19, 2657–2671 (1999).
pubmed: 10082532 pmcid: 84059 doi: 10.1128/MCB.19.4.2657
Buratti, E. et al. RNA folding affects the recruitment of SR proteins by mouse and human polypurinic enhancer elements in the fibronectin EDA exon. Mol. Cell. Biol. 24, 1387–1400 (2004).
pubmed: 14729981 pmcid: 321440 doi: 10.1128/MCB.24.3.1387-1400.2004
McManus, C. J. & Graveley, B. R. RNA structure and the mechanisms of alternative splicing. Curr. Opin. Genet. Dev. 21, 373–379 (2011).
pubmed: 21530232 pmcid: 3149766 doi: 10.1016/j.gde.2011.04.001
Lin, C. L., Taggart, A. J. & Fairbrother, W. G. RNA structure in splicing: an evolutionary perspective. RNA Biol. 13, 766–771 (2016).
pubmed: 27454491 pmcid: 5014005 doi: 10.1080/15476286.2016.1208893
Graveley, B. R. Mutually exclusive splicing of the insect Dscam pre-mRNA directed by competing intronic RNA secondary structures. Cell 123, 65–73 (2005).
pubmed: 16213213 pmcid: 2366815 doi: 10.1016/j.cell.2005.07.028
Anastassiou, D., Liu, H. & Varadan, V. Variable window binding for mutually exclusive alternative splicing. Genome Biol. 7, 1–12 (2006).
doi: 10.1186/gb-2006-7-1-r2
Xu, B., Meng, Y. & Jin, Y. RNA structures in alternative splicing and back-splicing. Wiley Interdiscip. Rev. RNA 12, e1626 (2021).
pubmed: 32929887 doi: 10.1002/wrna.1626
Lovci, M. T. et al. Rbfox proteins regulate alternative mRNA splicing through evolutionarily conserved RNA bridges. Nat. Struct. Mol. Biol. 20, 1434–1442 (2013).
pubmed: 24213538 pmcid: 3918504 doi: 10.1038/nsmb.2699
Woodson, S. A., Panja, S. & Santiago-Frangos, A. Proteins that chaperone RNA regulation. Microbiol. Spectr. 6 https://doi.org/10.1128/microbiolspec.RWR-0026-2018 (2018).
Wu, J. Y. & Maniatis, T. Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell 75, 1061–1070 (1993).
pubmed: 8261509 doi: 10.1016/0092-8674(93)90316-I
Kalmykova, S. et al. Conserved long-range base pairings are associated with pre-mRNA processing of human genes. Nat. Commun. 12, 2300 (2021).
pubmed: 33863890 pmcid: 8052449 doi: 10.1038/s41467-021-22549-7
Zhang, Y. et al. The biogenesis of nascent circular RNAs. Cell Rep. 15, 611–624 (2016).
pubmed: 27068474 doi: 10.1016/j.celrep.2016.03.058
Zhang, X. O. et al. Complementary sequence-mediated exon circularization. Cell 159, 134–147 (2014).
pubmed: 25242744 doi: 10.1016/j.cell.2014.09.001
Johansson, J. et al. An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell 110, 551–561 (2002).
pubmed: 12230973 doi: 10.1016/S0092-8674(02)00905-4
Brito Querido, J., Diaz-Lopez, I. & Ramakrishnan, V. The molecular basis of translation initiation and its regulation in eukaryotes. Nat. Rev. Mol. Cell Biol. 25, 168–186 (2024).
pubmed: 38052923 doi: 10.1038/s41580-023-00624-9
Leppek, K., Das, R. & Barna, M. Functional 5′ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat. Rev. Mol. Cell Biol. 19, 158–174 (2018).
pubmed: 29165424 doi: 10.1038/nrm.2017.103
Spitale, R. C. et al. Structural imprints in vivo decode RNA regulatory mechanisms. Nature 519, 486–490 (2015).
pubmed: 25799993 pmcid: 4376618 doi: 10.1038/nature14263
Waldron, J. A. et al. mRNA structural elements immediately upstream of the start codon dictate dependence upon eIF4A helicase activity. Genome Biol. 20, 300 (2019).
pubmed: 31888698 pmcid: 6936103 doi: 10.1186/s13059-019-1901-2
Wang, J. et al. Rapid 40S scanning and its regulation by mRNA structure during eukaryotic translation initiation. Cell 185, 4474–4487.e17 (2022).
pubmed: 36334590 pmcid: 9691599 doi: 10.1016/j.cell.2022.10.005
Zhang, H., Wang, Y. & Lu, J. Function and evolution of upstream ORFs in eukaryotes. Trends Biochem. Sci. 44, 782–794 (2019).
pubmed: 31003826 doi: 10.1016/j.tibs.2019.03.002
Corley, M. et al. An RNA structure-mediated, posttranscriptional model of human ɑ-1-antitrypsin expression. Proc. Natl Acad. Sci. USA 114, E10244–E10253 (2017).
pubmed: 29109288 pmcid: 5703279 doi: 10.1073/pnas.1706539114
Jankowsky, E. & Guenther, U. P. A helicase links upstream ORFs and RNA structure. Curr. Genet. 65, 453–456 (2019).
pubmed: 30483885 doi: 10.1007/s00294-018-0911-z
Lyu, K. et al. An RNA G-quadruplex structure within the ADAR 5′UTR interacts with DHX36 helicase to regulate translation. Angew. Chem. Int. Ed. Engl. 61, e202203553 (2022).
pubmed: 36300875 doi: 10.1002/anie.202203553
Kwok, C. K., Ding, Y., Shahid, S., Assmann, S. M. & Bevilacqua, P. C. A stable RNA G-quadruplex within the 5′-UTR of Arabidopsis thaliana ATR mRNA inhibits translation. Biochem. J. 467, 91–102 (2015).
pubmed: 25793418 doi: 10.1042/BJ20141063
Cho, H. et al. Translational control of phloem development by RNA G-quadruplex-JULGI determines plant sink strength. Nat. Plants 4, 376–390 (2018).
pubmed: 29808026 doi: 10.1038/s41477-018-0157-2
Kikinis, Z., Eisenstein, R. S., Bettany, A. J. & Munro, H. N. Role of RNA secondary structure of the iron-responsive element in translational regulation of ferritin synthesis. Nucleic Acids Res. 23, 4190–4195 (1995).
pubmed: 7479083 pmcid: 307361 doi: 10.1093/nar/23.20.4190
Zhou, Z. D. & Tan, E. K. Iron regulatory protein (IRP)–iron responsive element (IRE) signaling pathway in human neurodegenerative diseases. Mol. Neurodegener. 12, 75 (2017).
pubmed: 29061112 pmcid: 5654065 doi: 10.1186/s13024-017-0218-4
Pestova, T. V., Shatsky, I. N., Fletcher, S. P., Jackson, R. J. & Hellen, C. U. A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs. Genes Dev. 12, 67–83 (1998).
pubmed: 9420332 pmcid: 316404 doi: 10.1101/gad.12.1.67
Kieft, J. S., Zhou, K., Jubin, R. & Doudna, J. A. Mechanism of ribosome recruitment by hepatitis C IRES RNA. RNA 7, 194–206 (2001).
pubmed: 11233977 pmcid: 1370078 doi: 10.1017/S1355838201001790
Otto, G. A. & Puglisi, J. D. The pathway of HCV IRES-mediated translation initiation. Cell 119, 369–380 (2004).
pubmed: 15507208 doi: 10.1016/j.cell.2004.09.038
Weingarten-Gabbay, S. et al. Comparative genetics. Systematic discovery of cap-independent translation sequences in human and viral genomes. Science 351, aad4939 (2016).
pubmed: 26816383 doi: 10.1126/science.aad4939
Beaudoin, J. D. et al. Analyses of mRNA structure dynamics identify embryonic gene regulatory programs. Nat. Struct. Mol. Biol. 25, 677–686 (2018).
pubmed: 30061596 pmcid: 6690192 doi: 10.1038/s41594-018-0091-z
Mustoe, A. M. et al. Pervasive regulatory functions of mRNA structure revealed by high-resolution SHAPE probing. Cell 173, 181–195.e18 (2018).
pubmed: 29551268 pmcid: 5866243 doi: 10.1016/j.cell.2018.02.034
Farabaugh, P. J. Programmed translational frameshifting. Microbiol. Rev. 60, 103–134 (1996).
pubmed: 8852897 pmcid: 239420 doi: 10.1128/mr.60.1.103-134.1996
Kudla, G., Murray, A. W., Tollervey, D. & Plotkin, J. B. Coding-sequence determinants of gene expression in Escherichia coli. Science 324, 255–258 (2009).
pubmed: 19359587 pmcid: 3902468 doi: 10.1126/science.1170160
Goodman, D. B., Church, G. M. & Kosuri, S. Causes and effects of N-terminal codon bias in bacterial genes. Science 342, 475–479 (2013).
pubmed: 24072823 doi: 10.1126/science.1241934
Caliskan, N., Katunin, V. I., Belardinelli, R., Peske, F. & Rodnina, M. V. Programmed –1 frameshifting by kinetic partitioning during impeded translocation. Cell 157, 1619–1631 (2014).
pubmed: 24949973 pmcid: 7112342 doi: 10.1016/j.cell.2014.04.041
Caliskan, N., Peske, F. & Rodnina, M. V. Changed in translation: mRNA recoding by −1 programmed ribosomal frameshifting. Trends Biochem. Sci. 40, 265–274 (2015).
pubmed: 25850333 pmcid: 7126180 doi: 10.1016/j.tibs.2015.03.006
Jungfleisch, J. et al. A novel translational control mechanism involving RNA structures within coding sequences. Genome Res. 27, 95–106 (2017).
pubmed: 27821408 pmcid: 5204348 doi: 10.1101/gr.209015.116
Mao, Y. et al. m
pubmed: 31767846 pmcid: 6877647 doi: 10.1038/s41467-019-13317-9
Yang, X. et al. RNA G-quadruplex structures exist and function in vivo in plants. Genome Biol. 21, 226 (2020).
pubmed: 32873317 pmcid: 7466424 doi: 10.1186/s13059-020-02142-9
Arif, A. et al. The GAIT translational control system. WIREs RNA 9, e1441 (2018).
pubmed: 29152905 doi: 10.1002/wrna.1441
Chaudhury, A. et al. TGF-β-mediated phosphorylation of hnRNP E1 induces EMT via transcript-selective translational induction of Dab2 and ILEI. Nat. Cell Biol. 12, 286–293 (2010).
pubmed: 20154680 pmcid: 2830561 doi: 10.1038/ncb2029
Hussey, GeorgeS. et al. Identification of an mRNP complex regulating tumorigenesis at the translational elongation step. Mol. Cell 41, 419–431 (2011).
pubmed: 21329880 pmcid: 3061437 doi: 10.1016/j.molcel.2011.02.003
Brown, J. A. et al. Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix. Nat. Struct. Mol. Biol. 21, 633–640 (2014).
pubmed: 24952594 pmcid: 4096706 doi: 10.1038/nsmb.2844
Brown, J. A. Unraveling the structure and biological functions of RNA triple helices. Wiley Interdiscip. Rev. RNA 11, e1598 (2020).
pubmed: 32441456 pmcid: 7583470 doi: 10.1002/wrna.1598
Wan, Y. et al. Genome-wide measurement of RNA folding energies. Mol. Cell 48, 169–181 (2012).
pubmed: 22981864 pmcid: 3483374 doi: 10.1016/j.molcel.2012.08.008
Yang, X. et al. RNA G-quadruplex structure contributes to cold adaptation in plants. Nat. Commun. 13, 6224 (2022).
pubmed: 36266343 pmcid: 9585020 doi: 10.1038/s41467-022-34040-y
Kharel, P. et al. Stress promotes RNA G-quadruplex folding in human cells. Nat. Commun. 14, 205 (2023).
pubmed: 36639366 pmcid: 9839774 doi: 10.1038/s41467-023-35811-x
Marzluff, W. F., Wagner, E. J. & Duronio, R. J. Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. Nat. Rev. Genet. 9, 843–854 (2008).
pubmed: 18927579 pmcid: 2715827 doi: 10.1038/nrg2438
Fischer, J. W., Busa, V. F., Shao, Y. & Leung, A. K. L. Structure-mediated RNA decay by UPF1 and G3BP1. Mol. Cell 78, 70–84.e6 (2020).
pubmed: 32017897 pmcid: 8055448 doi: 10.1016/j.molcel.2020.01.021
Meisner, N.-C. et al. mRNA openers and closers: modulating AU-rich element-controlled mRNA stability by a molecular switch in mRNA secondary structure. ChemBioChem 5, 1432–1447 (2004).
pubmed: 15457527 doi: 10.1002/cbic.200400219
Carthew, R. W. & Sontheimer, E. J. Origins and mechanisms of miRNAs and siRNAs. Cell 136, 642–655 (2009).
pubmed: 19239886 pmcid: 2675692 doi: 10.1016/j.cell.2009.01.035
Yadav, D. K. et al. Staufen1 reads out structure and sequence features in ARF1 dsRNA for target recognition. Nucleic Acids Res. 48, 2091–2106 (2019).
pmcid: 7038937 doi: 10.1093/nar/gkz1163
Mino, T. et al. Regnase-1 and roquin regulate a common element in inflammatory mRNAs by spatiotemporally distinct mechanisms. Cell 161, 1058–1073 (2015).
pubmed: 26000482 doi: 10.1016/j.cell.2015.04.029
Leppek, K. et al. Roquin promotes constitutive mRNA decay via a conserved class of stem-loop recognition motifs. Cell 153, 869–881 (2013).
pubmed: 23663784 doi: 10.1016/j.cell.2013.04.016
Binas, O. et al. Structural basis for the recognition of transiently structured AU-rich elements by Roquin. Nucleic Acids Res. 48, 7385–7403 (2020).
pubmed: 32491174 pmcid: 7367199
Shi, B. et al. RNA structural dynamics regulate early embryogenesis through controlling transcriptome fate and function. Genome Biol. 21, 120 (2020).
pubmed: 32423473 pmcid: 7236375 doi: 10.1186/s13059-020-02022-2
Mauger, D. M. et al. mRNA structure regulates protein expression through changes in functional half-life. Proc. Natl Acad. Sci. USA 116, 24075–24083 (2019).
pubmed: 31712433 pmcid: 6883848 doi: 10.1073/pnas.1908052116
Gonzalez, I., Buonomo, S. B., Nasmyth, K. & von Ahsen, U. ASH1 mRNA localization in yeast involves multiple secondary structural elements and Ash1 protein translation. Curr. Biol. 9, 337–340 (1999).
pubmed: 10209099 doi: 10.1016/S0960-9822(99)80145-6
Macdonald, P. M., Kerr, K., Smith, J. L. & Leask, A. RNA regulatory element BLE1 directs the early steps of bicoid mRNA localization. Development 118, 1233–1243 (1993).
pubmed: 8269850 doi: 10.1242/dev.118.4.1233
St Johnston, D., Beuchle, D. & Nusslein-Volhard, C. Staufen, a gene required to localize maternal RNAs in the Drosophila egg. Cell 66, 51–63 (1991).
doi: 10.1016/0092-8674(91)90138-O
Ferrandon, D., Elphick, L., Nusslein-Volhard, C. & St Johnston, D. Staufen protein associates with the 3′UTR of bicoid mRNA to form particles that move in a microtubule-dependent manner. Cell 79, 1221–1232 (1994).
pubmed: 8001156 doi: 10.1016/0092-8674(94)90013-2
Bergsten, S. E., Huang, T., Chatterjee, S. & Gavis, E. R. Recognition and long-range interactions of a minimal nanos RNA localization signal element. Development 128, 427–435 (2001).
pubmed: 11152641 doi: 10.1242/dev.128.3.427
Kim-Ha, J., Webster, P. J., Smith, J. L. & Macdonald, P. M. Multiple RNA regulatory elements mediate distinct steps in localization of oskar mRNA. Development 119, 169–178 (1993).
pubmed: 8275853 doi: 10.1242/dev.119.1.169
Van De Bor, V., Hartswood, E., Jones, C., Finnegan, D. & Davis, I. gurken and the I factor retrotransposon RNAs share common localization signals and machinery. Dev. Cell 9, 51–62 (2005).
pubmed: 15992540 doi: 10.1016/j.devcel.2005.04.012
Bullock, S. L., Ringel, I., Ish-Horowicz, D. & Lukavsky, P. J. A′-form RNA helices are required for cytoplasmic mRNA transport in Drosophila. Nat. Struct. Mol. Biol. 17, 703–709 (2010).
pubmed: 20473315 pmcid: 2997434 doi: 10.1038/nsmb.1813
Chao, J. A. et al. ZBP1 recognition of β-actin zipcode induces RNA looping. Genes Dev. 24, 148–158 (2010).
pubmed: 20080952 pmcid: 2807350 doi: 10.1101/gad.1862910
Patel, V. L. et al. Spatial arrangement of an RNA zipcode identifies mRNAs under post-transcriptional control. Genes Dev. 26, 43–53 (2012).
pubmed: 22215810 pmcid: 3258965 doi: 10.1101/gad.177428.111
Fernandez-Moya, S. M. et al. RGS4 RNA secondary structure mediates Staufen2 RNP assembly in neurons. Int. J. Mol. Sci. 22, 13021 (2021).
pubmed: 34884825 pmcid: 8657808 doi: 10.3390/ijms222313021
Wang, T. et al. RNA motifs and modification involve in RNA long-distance transport in plants. Front. Cell Dev. Biol. 9, 651278 (2021).
pubmed: 33869208 pmcid: 8047152 doi: 10.3389/fcell.2021.651278
Zhang, W. et al. tRNA-related sequences trigger systemic mRNA transport in plants. Plant Cell 28, 1237–1249 (2016).
pubmed: 27268430 pmcid: 4944404 doi: 10.1105/tpc.15.01056
Fernandes, J., Jayaraman, B. & Frankel, A. The HIV-1 Rev response element: an RNA scaffold that directs the cooperative assembly of a homo-oligomeric ribonucleoprotein complex. RNA Biol. 9, 6–11 (2012).
pubmed: 22258145 pmcid: 3342944 doi: 10.4161/rna.9.1.18178
Malim, M. H., Hauber, J., Le, S. Y., Maizel, J. V. & Cullen, B. R. The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature 338, 254–257 (1989).
pubmed: 2784194 doi: 10.1038/338254a0
Pasquinelli, A. E. et al. The constitutive transport element (CTE) of Mason–Pfizer monkey virus (MPMV) accesses a cellular mRNA export pathway. EMBO J. 16, 7500–7510 (1997).
pubmed: 9405378 pmcid: 1170349 doi: 10.1093/emboj/16.24.7500
Gruter, P. et al. TAP, the human homolog of Mex67p, mediates CTE-dependent RNA export from the nucleus. Mol. Cell 1, 649–659 (1998).
pubmed: 9660949 doi: 10.1016/S1097-2765(00)80065-9
Aibara, S., Katahira, J., Valkov, E. & Stewart, M. The principal mRNA nuclear export factor NXF1:NXT1 forms a symmetric binding platform that facilitates export of retroviral CTE-RNA. Nucleic Acids Res. 43, 1883–1893 (2015).
pubmed: 25628361 pmcid: 4330390 doi: 10.1093/nar/gkv032
Van Treeck, B. et al. RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome. Proc. Natl Acad. Sci. USA 115, 2734–2739 (2018).
pubmed: 29483269 pmcid: 5856561 doi: 10.1073/pnas.1800038115
Poudyal, R. R., Sieg, J. P., Portz, B., Keating, C. D. & Bevilacqua, P. C. RNA sequence and structure control assembly and function of RNA condensates. RNA 27, 1589–1601 (2021).
pubmed: 34551999 pmcid: 8594466 doi: 10.1261/rna.078875.121
Jain, A. & Vale, R. D. RNA phase transitions in repeat expansion disorders. Nature 546, 243–247 (2017).
pubmed: 28562589 pmcid: 5555642 doi: 10.1038/nature22386
Zhang, Y. et al. G-quadruplex structures trigger RNA phase separation. Nucleic Acids Res. 47, 11746–11754 (2019).
pubmed: 31722410 pmcid: 7145655
Langdon, E. M. & Gladfelter, A. S. A new lens for RNA localization: liquid–liquid phase separation. Annu. Rev. Microbiol. 72, 255–271 (2018).
pubmed: 30200855 doi: 10.1146/annurev-micro-090817-062814
Roden, ChristineA. et al. Double-stranded RNA drives SARS-CoV-2 nucleocapsid protein to undergo phase separation at specific temperatures. Nucleic Acids Res. 50, 8168–8192 (2022).
pubmed: 35871289 pmcid: 9371935 doi: 10.1093/nar/gkac596
Clemson, C. M. et al. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol. Cell 33, 717–726 (2009).
pubmed: 19217333 pmcid: 2696186 doi: 10.1016/j.molcel.2009.01.026
Yamazaki, T. et al. Functional domains of NEAT1 architectural lncRNA induce paraspeckle assembly through phase separation. Mol. Cell 70, 1038–1053.e7 (2018).
pubmed: 29932899 doi: 10.1016/j.molcel.2018.05.019
Asamitsu, S. et al. RNA G-quadruplex organizes stress granule assembly through DNAPTP6 in neurons. Sci. Adv. 9, eade2035 (2023).
pubmed: 36827365 pmcid: 9956113 doi: 10.1126/sciadv.ade2035
Mimura, M. et al. Quadruplex folding promotes the condensation of linker histones and DNAs via liquid–liquid phase separation. J. Am. Chem. Soc. 143, 9849–9857 (2021).
pubmed: 34152774 doi: 10.1021/jacs.1c03447
Warner, K. D., Hajdin, C. E. & Weeks, K. M. Principles for targeting RNA with drug-like small molecules. Nat. Rev. Drug Discov. 17, 547–558 (2018).
pubmed: 29977051 pmcid: 6420209 doi: 10.1038/nrd.2018.93
Childs-Disney, J. L. et al. Targeting RNA structures with small molecules. Nat. Rev. Drug Discov. 21, 736–762 (2022).
pubmed: 35941229 pmcid: 9360655 doi: 10.1038/s41573-022-00521-4
Abulwerdi, F. A. et al. Development of small molecules with a noncanonical binding mode to HIV-1 trans activation response (TAR) RNA. J. Med. Chem. 59, 11148–11160 (2016).
pubmed: 28002966 pmcid: 5525537 doi: 10.1021/acs.jmedchem.6b01450
Prado, S. et al. A small-molecule inhibitor of HIV-1 Rev function detected by a diversity screen based on RRE–Rev interference. Biochem. Pharmacol. 156, 68–77 (2018).
pubmed: 30071201 doi: 10.1016/j.bcp.2018.07.040
Howe, J. A. et al. Selective small-molecule inhibition of an RNA structural element. Nature 526, 672–677 (2015).
pubmed: 26416753 doi: 10.1038/nature15542
Blount Kenneth, F. et al. Novel riboswitch-binding flavin analog that protects mice against Clostridium difficile infection without inhibiting cecal flora. Antimicrob. Agents Chemother. 59, 5736–5746 (2015).
pubmed: 26169403 pmcid: 4538501 doi: 10.1128/AAC.01282-15
Balaratnam, S. et al. Investigating the NRAS 5′ UTR as a target for small molecules. Cell Chem. Biol. 30, 643–657.e8 (2023).
pubmed: 37257453 doi: 10.1016/j.chembiol.2023.05.004
Aguilar, R. et al. Targeting Xist with compounds that disrupt RNA structure and X inactivation. Nature 604, 160–166 (2022).
pubmed: 35355011 doi: 10.1038/s41586-022-04537-z
Dhillon, S. Risdiplam: first approval. Drugs 80, 1853–1858 (2020).
pubmed: 33044711 doi: 10.1007/s40265-020-01410-z
Naryshkin, N. A. et al. SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy. Science 345, 688–693 (2014).
pubmed: 25104390 doi: 10.1126/science.1250127
Ratni, H. et al. Discovery of risdiplam, a selective survival of motor neuron-2 (SMN2) gene splicing modifier for the treatment of spinal muscular atrophy (SMA). J. Med. Chem. 61, 6501–6517 (2018).
pubmed: 30044619 doi: 10.1021/acs.jmedchem.8b00741
Sivaramakrishnan, M. et al. Binding to SMN2 pre-mRNA–protein complex elicits specificity for small molecule splicing modifiers. Nat. Commun. 8, 1476 (2017).
pubmed: 29133793 pmcid: 5684323 doi: 10.1038/s41467-017-01559-4
Campagne, S. et al. Structural basis of a small molecule targeting RNA for a specific splicing correction. Nat. Chem. Biol. 15, 1191–1198 (2019).
pubmed: 31636429 doi: 10.1038/s41589-019-0384-5
Wang, J., Schultz, P. G. & Johnson, K. A. Mechanistic studies of a small-molecule modulator of SMN2 splicing. Proc. Natl Acad. Sci. USA 115, E4604–E4612 (2018).
pubmed: 29712837 pmcid: 5960314
Velagapudi, S. P., Gallo, S. M. & Disney, M. D. Sequence-based design of bioactive small molecules that target precursor microRNAs. Nat. Chem. Biol. 10, 291–297 (2014).
pubmed: 24509821 pmcid: 3962094 doi: 10.1038/nchembio.1452
Costales, M. G. et al. A designed small molecule inhibitor of a non-coding RNA sensitizes HER2 negative cancers to herceptin. J. Am. Chem. Soc. 141, 2960–2974 (2019).
pubmed: 30726072 pmcid: 6400281 doi: 10.1021/jacs.8b10558
Fang, L. et al. Pervasive transcriptome interactions of protein-targeted drugs. Nat. Chem. 15, 1374–1383 (2023).
pubmed: 37653232 doi: 10.1038/s41557-023-01309-8
Costales, M. G., Matsumoto, Y., Velagapudi, S. P. & Disney, M. D. Small molecule targeted recruitment of a nuclease to RNA. J. Am. Chem. Soc. 140, 6741–6744 (2018).
pubmed: 29792692 pmcid: 6100793 doi: 10.1021/jacs.8b01233
Costales, M. G. et al. Small-molecule targeted recruitment of a nuclease to cleave an oncogenic RNA in a mouse model of metastatic cancer. Proc. Natl Acad. Sci. USA 117, 2406–2411 (2020).
pubmed: 31964809 pmcid: 7007575 doi: 10.1073/pnas.1914286117
Tong, Y. et al. Programming inactive RNA-binding small molecules into bioactive degraders. Nature 618, 169–179 (2023).
pubmed: 37225982 pmcid: 10232370 doi: 10.1038/s41586-023-06091-8
McCown, P. J., Corbino, K. A., Stav, S., Sherlock, M. E. & Breaker, R. R. Riboswitch diversity and distribution. RNA 23, 995–1011 (2017).
pubmed: 28396576 pmcid: 5473149 doi: 10.1261/rna.061234.117

Auteurs

Xinang Cao (X)

Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore, Singapore.

Yueying Zhang (Y)

Department of Cell and Developmental Biology, John Innes Centre, Norwich, UK.

Yiliang Ding (Y)

Department of Cell and Developmental Biology, John Innes Centre, Norwich, UK. yiliang.ding@jic.ac.uk.

Yue Wan (Y)

Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore, Singapore. wany@gis.a-star.edu.sg.
Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. wany@gis.a-star.edu.sg.

Classifications MeSH