Temporal dynamics of woolly mammoth genome erosion prior to extinction.
Mammuthus primigenius
Wrangel Island
ancient DNA
bottleneck
climate
extinction
inbreeding
mutation load
paleogenomics
woolly mammoth
Journal
Cell
ISSN: 1097-4172
Titre abrégé: Cell
Pays: United States
ID NLM: 0413066
Informations de publication
Date de publication:
17 Jun 2024
17 Jun 2024
Historique:
received:
02
10
2023
revised:
08
02
2024
accepted:
17
05
2024
medline:
29
6
2024
pubmed:
29
6
2024
entrez:
28
6
2024
Statut:
aheadofprint
Résumé
A number of species have recently recovered from near-extinction. Although these species have avoided the immediate extinction threat, their long-term viability remains precarious due to the potential genetic consequences of population declines, which are poorly understood on a timescale beyond a few generations. Woolly mammoths (Mammuthus primigenius) became isolated on Wrangel Island around 10,000 years ago and persisted for over 200 generations before becoming extinct around 4,000 years ago. To study the evolutionary processes leading up to the mammoths' extinction, we analyzed 21 Siberian woolly mammoth genomes. Our results show that the population recovered quickly from a severe bottleneck and remained demographically stable during the ensuing six millennia. We find that mildly deleterious mutations gradually accumulated, whereas highly deleterious mutations were purged, suggesting ongoing inbreeding depression that lasted for hundreds of generations. The time-lag between demographic and genetic recovery has wide-ranging implications for conservation management of recently bottlenecked populations.
Identifiants
pubmed: 38942016
pii: S0092-8674(24)00577-4
doi: 10.1016/j.cell.2024.05.033
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of interests The authors declare no competing interests.