A fluorescent perilipin 2 knock-in mouse model reveals a high abundance of lipid droplets in the developing and adult brain.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
28 Jun 2024
Historique:
received: 20 07 2022
accepted: 03 06 2024
medline: 29 6 2024
pubmed: 29 6 2024
entrez: 28 6 2024
Statut: epublish

Résumé

Lipid droplets (LDs) are dynamic lipid storage organelles. They are tightly linked to metabolism and can exert protective functions, making them important players in health and disease. Most LD studies in vivo rely on staining methods, providing only a snapshot. We therefore developed a LD-reporter mouse by labelling the endogenous LD coat protein perilipin 2 (PLIN2) with tdTomato, enabling staining-free fluorescent LD visualisation in living and fixed tissues and cells. Here we validate this model under standard and high-fat diet conditions and demonstrate that LDs are highly abundant in various cell types in the healthy brain, including neurons, astrocytes, ependymal cells, neural stem/progenitor cells and microglia. Furthermore, we also show that LDs are abundant during brain development and can be visualized using live imaging of embryonic slices. Taken together, our tdTom-Plin2 mouse serves as a novel tool to study LDs and their dynamics under both physiological and diseased conditions in all tissues expressing Plin2.

Identifiants

pubmed: 38942786
doi: 10.1038/s41467-024-49449-w
pii: 10.1038/s41467-024-49449-w
doi:

Substances chimiques

Perilipin-2 0
Plin2 protein, mouse 0
Luminescent Proteins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

5489

Subventions

Organisme : Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
ID : 31003A_175570

Informations de copyright

© 2024. The Author(s).

Références

Walther, T. C. & Farese, R. V. Lipid droplets and cellular lipid metabolism. Annu. Rev. Biochem. 81, 687–714 (2012).
pubmed: 22524315 pmcid: 3767414 doi: 10.1146/annurev-biochem-061009-102430
Jarc, E. & Petan, T. Lipid droplets and the management of cellular stress. Yale J. Biol. Med. 92, 435–452 (2019).
pubmed: 31543707 pmcid: 6747940
Islimye, E., Girard, V. & Gould, A. P. Functions of stress-induced lipid droplets in the nervous system. Front. Cell Dev. Biol. 10, 863907 (2022).
pubmed: 35493070 pmcid: 9047859 doi: 10.3389/fcell.2022.863907
Welte, M. A. & Gould, A. P. Lipid droplet functions beyond energy storage. Biochimica Et. Biophysica Acta Bba - Mol. Cell Biol. Lipids 1862, 1260–1272 (2017).
Welte, M. A. Expanding roles for lipid droplets. Curr. Biol. 25, R470–R481 (2015).
pubmed: 26035793 pmcid: 4452895 doi: 10.1016/j.cub.2015.04.004
Pereira-Dutra, F. S. & Bozza, P. T. Lipid droplets diversity and functions in inflammation and immune response. Expert Rev. Proteomic 18, 809–825 (2021).
doi: 10.1080/14789450.2021.1995356
Gluchowski, N. L., Becuwe, M., Walther, T. C. & Farese, R. V. Lipid droplets and liver disease: from basic biology to clinical implications. Nat. Rev. Gastroenterol. Hepatol. 14, 343–355 (2017).
pubmed: 28428634 pmcid: 6319657 doi: 10.1038/nrgastro.2017.32
Cruz, A. L. S. et al. Lipid droplets: platforms with multiple functions in cancer hallmarks. Cell Death Dis. 11, 105 (2020).
pubmed: 32029741 pmcid: 7005265 doi: 10.1038/s41419-020-2297-3
Krahmer, N. et al. Balancing the fat: lipid droplets and human disease. EMBO Mol. Med. 5, 973–983 (2013).
pubmed: 23740690 doi: 10.1002/emmm.201100671
Seibert, J. T., Najt, C. P., Heden, T. D., Mashek, D. G. & Chow, L. S. Muscle lipid droplets: cellular signaling to exercise physiology and beyond. Trends Endocrinol. Metab. 31, 928–938 (2020).
pubmed: 32917515 pmcid: 7704552 doi: 10.1016/j.tem.2020.08.002
Farmer, B. C., Walsh, A. E., Kluemper, J. C. & Johnson, L. A. Lipid droplets in neurodegenerative disorders. Front Neurosci. 14, 742 (2020).
pubmed: 32848541 pmcid: 7403481 doi: 10.3389/fnins.2020.00742
Teixeira, V., Maciel, P. & Costa, V. Leading the way in the nervous system: Lipid Droplets as new players in health and disease. Biochim Biophys. Acta Mol. Cell Biol. Lipids 1866, 158820 (2020).
pubmed: 33010453 doi: 10.1016/j.bbalip.2020.158820
Liu, L. et al. Glial lipid droplets and ros induced by mitochondrial defects promote neurodegeneration. Cell 160, 177–190 (2015).
pubmed: 25594180 pmcid: 4377295 doi: 10.1016/j.cell.2014.12.019
Liu, L., MacKenzie, K. R., Putluri, N., Maletic-Savatic, M. & Bellen, H. J. The glia-neuron lactate shuttle and elevated ros promote lipid synthesis in neurons and lipid droplet accumulation in Glia via APOE/D. Cell Metab. 26, 719–737.e6 (2017).
pubmed: 28965825 pmcid: 5677551 doi: 10.1016/j.cmet.2017.08.024
Hamilton, L. K. et al. Aberrant lipid metabolism in the forebrain niche suppresses adult neural stem cell proliferation in an animal model of Alzheimer’s Disease. Cell Stem Cell 17, 397–411 (2015).
pubmed: 26321199 doi: 10.1016/j.stem.2015.08.001
Ioannou, M. S. et al. Neuron-Astrocyte Metabolic Coupling Protects against Activity-Induced Fatty Acid Toxicity. Cell 177, 1522–1535.e14 (2019).
pubmed: 31130380 doi: 10.1016/j.cell.2019.04.001
Haynes, P. R. et al. A neuron–glia lipid metabolic cycle couples daily sleep to mitochondrial homeostasis. Nat. Neurosci. 27, 666–678 (2024).
Shimabukuro, M. K. et al. Lipid-laden cells differentially distributed in the aging brain are functionally active and correspond to distinct phenotypes. Sci. Rep. 6, 23795 (2016).
pubmed: 27029648 pmcid: 4814830 doi: 10.1038/srep23795
Marschallinger, J. et al. Lipid droplet accumulating microglia represent a dysfunctional and pro-inflammatory state in the aging brain. Nat. Neurosci. 23, 194–208 (2020).
pubmed: 31959936 pmcid: 7595134 doi: 10.1038/s41593-019-0566-1
Maya-Monteiro, C. M. et al. Lipid droplets accumulate in the hypothalamus of mice and humans with and without metabolic diseases. Neuroendocrinology 111, 263–272 (2021).
pubmed: 32422642 doi: 10.1159/000508735
Bouab, M., Paliouras, G. N., Aumont, A., Forest-Bérard, K. & Fernandes, K. J. L. Aging of the subventricular zone neural stem cell niche: evidence for quiescence-associated changes between early and mid-adulthood. Neuroscience 173, 135–149 (2011).
pubmed: 21094223 doi: 10.1016/j.neuroscience.2010.11.032
Capilla‐Gonzalez, V., Cebrian‐Silla, A., Guerrero‐Cazares, H., Garcia‐Verdugo, J. M. & Quiñones‐Hinojosa, A. Age‐related changes in astrocytic and ependymal cells of the subventricular zone. Glia 62, 790–803 (2014).
pubmed: 24677590 pmcid: 4322944 doi: 10.1002/glia.22642
Ramosaj, M. et al. Lipid droplet availability affects neural stem/progenitor cell metabolism and proliferation. Nat. Commun. 12, 7362 (2021).
pubmed: 34934077 pmcid: 8692608 doi: 10.1038/s41467-021-27365-7
Kriegstein, A. & Alvarez-Buylla, A. The glial nature of embryonic and adult neural stem cells. Annu. Rev. Neurosci. 32, 149–184 (2009).
pubmed: 19555289 pmcid: 3086722 doi: 10.1146/annurev.neuro.051508.135600
Denoth-Lippuner, A. & Jessberger, S. Formation and integration of new neurons in the adult hippocampus. Nat. Rev. Neurosci. 22, 223–236 (2021).
pubmed: 33633402 doi: 10.1038/s41583-021-00433-z
Knobloch, M. et al. Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature 493, 226–230 (2013).
pubmed: 23201681 doi: 10.1038/nature11689
Chorna, N. E. et al. Fatty acid synthase as a factor required for exercise-induced cognitive enhancement and dentate gyrus cellular proliferation. PloS one 8, e77845 (2013).
pubmed: 24223732 pmcid: 3818398 doi: 10.1371/journal.pone.0077845
Knobloch, M. et al. A Fatty Acid Oxidation-Dependent Metabolic Shift Regulates Adult Neural Stem Cell Activity. Cell Rep. 20, 2144–2155 (2017).
pubmed: 28854364 pmcid: 5583518 doi: 10.1016/j.celrep.2017.08.029
Stoll, E. A. et al. Neural stem cells in the adult subventricular zone oxidize fatty acids to produce energy and support neurogenic activity. Stem Cells 33, 2306–2319 (2015).
pubmed: 25919237 doi: 10.1002/stem.2042
Xie, Z., Jones, A., Deeney, J. T., Hur, S. K. & Bankaitis, V. A. Inborn errors of long-chain fatty acid beta-oxidation link neural stem cell self-renewal to autism. Cell Rep. 142, 991–999 (2016).
doi: 10.1016/j.celrep.2016.01.004
Madsen, S., Ramosaj, M. & Knobloch, M. Lipid metabolism in focus: how the build-up and breakdown of lipids affects stem cells. Development 148, dev191924 (2021).
pubmed: 34042969 doi: 10.1242/dev.191924
Ralhan, I., Chang, C.-L., Lippincott-Schwartz, J. & Ioannou, M. S. Lipid droplets in the nervous system. J. Cell Biol. 220, e202102136 (2021).
pubmed: 34152362 pmcid: 8222944 doi: 10.1083/jcb.202102136
Daemen, S., Zandvoort, M. A. M. J., van, Parekh, S. H. & Hesselink, M. K. C. Microscopy tools for the investigation of intracellular lipid storage and dynamics. Mol. Metab. 5, 153–163 (2016).
pubmed: 26977387 doi: 10.1016/j.molmet.2015.12.005
DiDonato, D. & Brasaemle, D. L. Fixation Methods for the Study of Lipid Droplets by Immunofluorescence Microscopy. J. Histochem Cytochem 51, 773–780 (2003).
pubmed: 12754288 doi: 10.1177/002215540305100608
Sztalryd, C. & Brasaemle, D. L. The perilipin family of lipid droplet proteins: Gatekeepers of intracellular lipolysis. Biochim Biophys. Acta Mol. Cell Biol. Lipids 1862, 1221–1232 (2017).
pubmed: 28754637 doi: 10.1016/j.bbalip.2017.07.009
Listenberger, L. L., Ostermeyer-Fay, A. G., Goldberg, E. B., Brown, W. J. & Brown, D. A. Adipocyte differentiation-related protein reduces the lipid droplet association of adipose triglyceride lipase and slows triacylglycerol turnover. J. Lipid Res. 48, 2751–2761 (2007).
pubmed: 17872589 doi: 10.1194/jlr.M700359-JLR200
Schaum, N. et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367–372 (2018).
pmcid: 6642641 doi: 10.1038/s41586-018-0590-4
Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).
pubmed: 11086982 doi: 10.1016/S0896-6273(00)00084-2
Gong, S. et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425, 917–925 (2003).
pubmed: 14586460 doi: 10.1038/nature02033
Petrelli, F. et al. An optimized method to visualize lipid droplets in brain tissue demonstrates their substantial accumulation in aged brains. BioRxiv https://doi.org/10.1101/2024.06.12.598519 (2024).
Chen, Y. & Colonna, M. Microglia in Alzheimer’s disease at single-cell level. Are there common patterns in humans and mice? J. Exp. Med 218, e20202717 (2021).
pubmed: 34292312 pmcid: 8302448 doi: 10.1084/jem.20202717
Yamaguchi, M., Saito, H., Suzuki, M. & Mori, K. Visualization of neurogenesis in the central nervous system using nestin promoter-GFP transgenic mice. Neuroreport 11, 1991–1996 (2000).
pubmed: 10884058 doi: 10.1097/00001756-200006260-00037
LaManno, G. et al. Molecular architecture of the developing mouse brain. Nature 596, 92–96 (2021).
doi: 10.1038/s41586-021-03775-x
Listenberger, L. L. & Brown, D. A. Fluorescent detection of lipid droplets and associated proteins. Curr. Protoc. Cell Biol. Chapter 24, Unit 24.2.1–24.2.11 (2007).
Fam, T. K., Klymchenko, A. S. & Collot, M. Recent advances in fluorescent probes for lipid droplets. Materials 11, 1768 (2018).
pubmed: 30231571 pmcid: 6163203 doi: 10.3390/ma11091768
Yu, Y., Ramachandran, P. V. & Wang, M. C. Shedding new light on lipid functions with CARS and SRS microscopy. Biochim Biophys. Acta Mol. Cell Biol. Lipids 1841, 1120–1129 (2014).
doi: 10.1016/j.bbalip.2014.02.003
Targett-Adams, P. et al. Live cell analysis and targeting of the lipid droplet-binding adipocyte differentiation-related protein. J. Biol. Chem. 278, 15998–16007 (2003).
pubmed: 12591929 doi: 10.1074/jbc.M211289200
Liu, Z., Li, X., Ge, Q., Ding, M. & Huang, X. A lipid droplet-associated gfp reporter-based screen identifies new fat storage regulators in C. elegans. J. Genet Genomics 41, 305–313 (2014).
pubmed: 24894357 doi: 10.1016/j.jgg.2014.03.002
Beller, M. et al. PERILIPIN-dependent control of lipid droplet structure and fat storage in drosophila. Cell Metab. 12, 521–532 (2010).
pubmed: 21035762 doi: 10.1016/j.cmet.2010.10.001
Lumaquin, D. et al. An in vivo reporter for tracking lipid droplet dynamics in transparent zebrafish. Elife 10, e64744 (2021).
pubmed: 34114952 pmcid: 8195600 doi: 10.7554/eLife.64744
Wilson, M. H., Ekker, S. C. & Farber, S. A. Imaging cytoplasmic lipid droplets in vivo with fluorescent perilipin 2 and perilipin 3 knock-in zebrafish. Elife 10, e66393 (2021).
pubmed: 34387191 pmcid: 8460263 doi: 10.7554/eLife.66393
Kwon, Y. et al. Hypothalamic lipid‐laden astrocytes induce microglia migration and activation. Febs Lett. 591, 1742–1751 (2017).
pubmed: 28542876 doi: 10.1002/1873-3468.12691
Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s Disease. Cell 169, 1276–1290.e17 (2017).
pubmed: 28602351 doi: 10.1016/j.cell.2017.05.018
Seebacher, F., Zeigerer, A., Kory, N. & Krahmer, N. Hepatic lipid droplet homeostasis and fatty liver disease. Semin Cell Dev. Biol. 108, 72–81 (2020).
pubmed: 32444289 doi: 10.1016/j.semcdb.2020.04.011
Lee, J. C. et al. High-fat diet-induced lipidome perturbations in the cortex, hippocampus, hypothalamus, and olfactory bulb of mice. Biochimica Et. Biophysica Acta Bba - Mol. Cell Biol. Lipids 1863, 980–990 (2018).
Fitzner, D. et al. Cell-type- and brain-region-resolved mouse brain lipidome. Cell Rep. 32, 108132 (2020).
pubmed: 32937123 doi: 10.1016/j.celrep.2020.108132
Ogrodnik, M. et al. Obesity-induced cellular senescence drives anxiety and impairs neurogenesis. Cell Metab. 29, 1061–1077.e8 (2019).
pubmed: 30612898 pmcid: 6509403 doi: 10.1016/j.cmet.2018.12.008
Gonzalez-Bohorquez, D. et al. FASN-dependent de novo lipogenesis is required for brain development. PNAS 119, e2112040119 (2022).
pubmed: 34996870 pmcid: 8764667 doi: 10.1073/pnas.2112040119
Bowers, M. et al. FASN-dependent lipid metabolism links neurogenic stem/progenitor cell activity to learning and memory deficits. Cell Stem Cell 27, 98–109.e11 (2020).
pubmed: 32386572 doi: 10.1016/j.stem.2020.04.002
Telley, L. et al. Temporal patterning of apical progenitors and their daughter neurons in the developing neocortex. Science 364, eaav2522 (2019).
pubmed: 31073041 doi: 10.1126/science.aav2522
Saito, K. et al. Ablation of cholesterol biosynthesis in neural stem cells increases their VEGF expression and angiogenesis but causes neuron apoptosis. PNAS 106, 8350–8355 (2009).
pubmed: 19416849 pmcid: 2688855 doi: 10.1073/pnas.0903541106
Mirzadeh, Z., Doetsch, F., Sawamoto, K., Wichterle, H. & Alvarez-Buylla, A. The subventricular zone en-face: wholemount staining and ependymal flow. J. Vis. Exp. https://doi.org/10.3791/1938-v (2010).
Doetsch, F. & Alvarez-Buylla, A. Network of tangential pathways for neuronal migration in adult mammalian brain. Proc. Natl Acad. Sci. USA 93, 14895–14900 (1996).
pubmed: 8962152 pmcid: 26233 doi: 10.1073/pnas.93.25.14895
Mattei, D. et al. Enzymatic dissociation induces transcriptional and proteotype bias in brain cell populations. Int. J. Mol. Sci. 21, 7944 (2020).
pubmed: 33114694 pmcid: 7663484 doi: 10.3390/ijms21217944
Kulak, N. A., Pichler, G., Paron, I., Nagaraj, N. & Mann, M. Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat. Methods 11, 319–324 (2014).
pubmed: 24487582 doi: 10.1038/nmeth.2834
Wiśniewski, J. R. & Gaugaz, F. Z. Fast and sensitive total protein and peptide assays for proteomic analysis. Anal. Chem. 87, 4110–4116 (2015).
pubmed: 25837572 doi: 10.1021/ac504689z
Meier, F. et al. Online parallel accumulation–serial fragmentation (pasef) with a novel trapped ion mobility mass spectrometer. Mol. Cell. Proteom.: MCP 17, 2534–2545 (2018).
pubmed: 30385480 doi: 10.1074/mcp.TIR118.000900
Meier, F. et al. diaPASEF: parallel accumulation–serial fragmentation combined with data-independent acquisition. Nat. Methods 17, 1229–1236 (2020).
pubmed: 33257825 doi: 10.1038/s41592-020-00998-0
Cox, J. & Mann, M. 1D and 2D annotation enrichment: a statistical method integrating quantitative proteomics with complementary high-throughput data. BMC Bioinform 13, S12 (2012).
doi: 10.1186/1471-2105-13-S16-S12
Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016).
pubmed: 27348712 doi: 10.1038/nmeth.3901
Medina, J. et al. Single-step extraction coupled with targeted hilic-ms/ms approach for comprehensive analysis of human plasma lipidome and polar metabolome. Metabolites 10, 495 (2020).
pubmed: 33276464 pmcid: 7760228 doi: 10.3390/metabo10120495

Auteurs

Sofia Madsen (S)

Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.

Ana C Delgado (AC)

Biozentrum, University of Basel, Basel, Switzerland.

Christelle Cadilhac (C)

Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland.

Vanille Maillard (V)

Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.

Fabrice Battiston (F)

Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.

Carla Marie Igelbüscher (CM)

Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.

Simon De Neck (S)

Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland.

Elia Magrinelli (E)

Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.

Denis Jabaudon (D)

Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland.

Ludovic Telley (L)

Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.

Fiona Doetsch (F)

Biozentrum, University of Basel, Basel, Switzerland.

Marlen Knobloch (M)

Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland. marlen.knobloch@unil.ch.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH