Analysis of particles containing alpha emitters in stagnant water in Fukushima Daiichi Nuclear Power Station's Unit 3 reactor building.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
28 Jun 2024
28 Jun 2024
Historique:
received:
28
02
2024
accepted:
20
06
2024
medline:
29
6
2024
pubmed:
29
6
2024
entrez:
28
6
2024
Statut:
epublish
Résumé
Particles containing alpha (α) nuclides were identified from sediment in stagnant water in the Unit 3 reactor building of the Fukushima Daiichi Nuclear Power Station (FDiNPS). We analyzed different concentrations of α-nuclide samples collected at two sampling sites, the torus room and the main steam isolation valve (MSIV) room. The solids in the stagnant water samples were classified, and the uranium (U) and total alpha concentrations of each fraction were measured by dissolution followed by inductively coupled plasma mass spectrometry and α-spectrometry. Most of the α-nuclides in the stagnant water samples from the torus and MSIV rooms were in particle fractions larger than 10 μm. We detected uranium-bearing particles ranging from sub-µm to 10 µm in size by scanning electron microscopy-energy-dispersive X-ray (SEM-EDX) observations. The chemical forms of U particles were determined in U-Zr oxides, oxidized UO
Identifiants
pubmed: 38942918
doi: 10.1038/s41598-024-65522-2
pii: 10.1038/s41598-024-65522-2
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
14945Informations de copyright
© 2024. The Author(s).
Références
IAEA. International fact finding expert mission of Fukushima Daiichi NPP accident following great East Japan earthquake and tsunami. In IAEA Mission Report) (IAEA, 2011).
Tokyo Electric Power Company (TEPCO). https://www.tepco.co.jp/decommission/information/committee/evaluation_review/pdf/2019/evaluation_review_2019061703.pdf (2019). (in Japanese)
Steinhauser, G., Brandl, A. & Johnson, T. E. Comparison of the Chernobyl and Fukushima nuclear accidents: A review of the environmental impacts. Sci. Total Environ. 470–471, 800–817 (2014).
doi: 10.1016/j.scitotenv.2013.10.029
pubmed: 24189103
Tcherkezian, V., Shkinev, V., Khitrov, L. & Kolesov, G. Experimental approach to chernobyl hot particles. J. Environ. Radioact. 22, 127–139 (1994).
doi: 10.1016/0265-931X(94)90018-3
Yanase, N. et al. Characterization of hot particles in surface soil around the Chernobyl NPP. J. Radioanal. Nucl. Chem. 252, 233–239 (2002).
doi: 10.1023/A:1015793601033
Sakaguchi, A., Steier, P., Takahashi, Y. & Yamamoto, M. Isotopic compositions of
doi: 10.1021/es405294s
pubmed: 24601520
Abe, Y. et al. Detection of uranium and chemical state analysis of individual radioactive microparticles emitted from the Fukushima nuclear accident using multiple synchrotron radiation X-ray analyses. Anal. Chem. 86, 8521–8525 (2014).
doi: 10.1021/ac501998d
pubmed: 25084242
Imoto, J. et al. Isotopic signature and nano-texture of cesium-rich micro-particles: Release of uranium and fission products from the Fukushima Daiichi Nuclear Power Plant. Sci. Rep. 7, 5409 (2017).
doi: 10.1038/s41598-017-05910-z
pubmed: 28710475
pmcid: 5511200
Ochiai, A. et al. Uranium dioxides and debris fragments released to the environment with cesium-rich microparticles from the Fukushima Daiichi Nuclear Power Plant. Environ. Sci. Technol. 52, 2586–2594 (2018).
doi: 10.1021/acs.est.7b06309
pubmed: 29378406
Kurihara, Y. et al. Isotopic ratios of uranium and caesium in spherical radioactive caesium-bearing microparticles derived from the Fukushima Dai-ichi Nuclear Power Plant. Sci. Rep. 10, 3281 (2020).
doi: 10.1038/s41598-020-59933-0
pubmed: 32094430
pmcid: 7039901
Yamamoto, M. et al. Isotopic Pu, Am and Cm signatures in environmental samples contaminated by the Fukushima Dai-ichi Nuclear Power Plant accident. J. Environ. Radioact. 132, 31–46 (2014).
doi: 10.1016/j.jenvrad.2014.01.013
pubmed: 24531259
Shinonaga, T., Steier, P., Lagos, M. & Ohkura, T. Airborne Plutonium and non-natural Uranium from the Fukushima DNPP found at 120 km distance a few days after reactor hydrogen explosions. Environ. Sci. Technol. 48, 3808–3814 (2014).
doi: 10.1021/es404961w
pubmed: 24621142
Bu, W. et al. A method of measurement of
doi: 10.1021/es403500e
pubmed: 24328266
Igarashi, J. et al. First determination of Pu isotopes (
doi: 10.1038/s41598-019-48210-4
pubmed: 31413276
pmcid: 6694128
Kurihara, E. et al. Particulate plutonium released from the Fukushima Daiichi meltdowns. Sci. Tot. Environ. 743, 140539 (2020).
doi: 10.1016/j.scitotenv.2020.140539
Oikawa, S., Watabe, T., Takata, H., Misonoo, J. & Kusakabe, M. Plutonium isotopes and 241Am in surface sediments off the coast of the Japanese islands before and soon after the Fukushima Dai-ichi nuclear power plant accident. J. Radioanal. Nucl. Chem. 303, 1513–1518 (2015).
doi: 10.1007/s10967-014-3530-2
Yamada, M., Oikawa, S., Shirotani, Y., Kusakabe, M. & Shindo, K. Transuranic nuclides Pu, Am and Cm isotopes, and 90Sr in seafloor sediments off the Fukushima Daiichi Nuclear Power Plant during the period from 2012 to 2019. J. Environ. Radioact. 227, 106459 (2021).
doi: 10.1016/j.jenvrad.2020.106459
pubmed: 33221564
Morishita, Y. et al. Detection of alpha particle emitters originating from nuclear fuel inside reactor building of Fukushima Daiichi Nuclear Power Plant. Sci. Rep. 9, 581 (2019).
doi: 10.1038/s41598-018-36962-4
pubmed: 30679575
pmcid: 6346089
Yomogida, T. et al. Analysis of particles containing alpha-emitters in stagnant water at torus room of Fukushima Dai-ichi Nuclear Power Station’s Unit 2 reactor. Sci. Rep. 12, 7191 (2022).
doi: 10.1038/s41598-022-11334-1
pubmed: 35577810
pmcid: 9110416
Romanchuk, A. Y., Vlasova, I. E. & Kalmykov, S. N. Speciation of uranium and plutonium from nuclear legacy sites to the environment: a mini review. Front. Chem. 8, 630 (2020).
doi: 10.3389/fchem.2020.00630
pubmed: 32903456
pmcid: 7434977
Nishihara, K., Iwamoto, H. & Suyama, K. Estimation of fuel compositions in Fukushima-Daiichi nuclear power plant (in Japanese) 2012–018 (JAEA, 2012).
Pointurier, F. & Marie, O. Identification of the chemical forms of uranium compounds in micrometer-size particles by means of micro-Raman spectrometry and scanning electron microscope. Spectrochim. Acta B At. Spectrosc. 65, 797–804 (2010).
doi: 10.1016/j.sab.2010.06.008
Allen, G. C., Butler, I. S. & Tuan, N. A. Characterization of uranium-oxides by micro-Raman spectroscopy. J. Nucl. Mater. 144, 17–19 (1987).
doi: 10.1016/0022-3115(87)90274-1
Jégou, C. et al. Raman spectroscopy characterization of actinide oxides (U
doi: 10.1016/j.jnucmat.2010.08.005
Pointurier, F. & Marie, O. Use of micro-Raman spectrometry coupled with scanning electron microscopy to determine the chemical form of uranium compounds in micrometer-size particles. J. Raman Spectrosc. 44, 1753–1759 (2013).
doi: 10.1002/jrs.4392
Stefaniak, E. A. et al. Recognition of uranium oxides in soil particulate matter by means of μ-Raman spectrometry. J. Nucl. Mater. 381, 278–283 (2008).
doi: 10.1016/j.jnucmat.2008.08.036
Senanayake, S. D., Rousseau, R., Colegrave, D. & Idriss, H. The reaction of water on polycrystalline UO
doi: 10.1016/j.jnucmat.2005.04.060
Ho Mer Lin, D., Manara, D., Lindqvist-Reis, P., Fanghänel, T. & Mayer, K. The use of different dispersive Raman spectrometers for the analysis of uranium compounds. Vib. Spectrosc. 73, 102–110 (2014).
doi: 10.1016/j.vibspec.2014.05.002
Manara, D. & Renker, B. Raman spectra of stoichiometric and hyperstoichiometric uranium dioxide. J. Nucl. Mater. 321, 233–237 (2003).
doi: 10.1016/S0022-3115(03)00248-4
Elorrieta, J. M., Bonales, L. J., Rodriguez-Villagra, N., Baonza, V. G. & Cobos, J. A detailed Raman and X-ray study of UO
doi: 10.1039/C6CP03800J
pubmed: 27722274
Kusaka, R. et al. Raman identification and characterization of chemical components included in simulated nuclear fuel debris synthesized from uranium, stainless steel, and zirconium. J. Nucl. Sci. Technol. 60, 603–613 (2023).
doi: 10.1080/00223131.2022.2128460
Fews, A. P. & Henshaw, D. L. High-resolution alpha-particle spectroscopy using CR-39 plastic track detector. Nucl. Instrum. Methods Phys. Res. 223, 609–616 (1984).
doi: 10.1016/0167-5087(84)90720-8
Lee, C. G., Suzuki, D., Esaka, F., Magara, M. & Kimura, T. Combined application of alpha-track and fission-track techniques for detection of plutonium particles in environmental samples prior to isotopic measurement using thermo-ionization mass spectrometry. Talanta 85, 644–649 (2011).
doi: 10.1016/j.talanta.2011.04.042
pubmed: 21645753
Ilton, E. S. et al. Reduction of U(VI) incorporated in the structure of hematite. Environ. Sci. Technol. 46, 9428–9436 (2012).
doi: 10.1021/es3015502
pubmed: 22834714
Wang, Y. et al. The adsorption of U(VI) on magnetite, ferrihydrite and goethite. Environ. Technol. Innov. 23, 101615 (2021).
doi: 10.1016/j.eti.2021.101615
Kirsch, R. et al. Oxidation state and local structure of plutonium reacted with magnetite, mackinawite, and chukanovite. Environ. Sci. Technol. 45, 7267–7274 (2011).
doi: 10.1021/es200645a
pubmed: 21755920
Felmy, A. R. et al. Heterogeneous reduction of PuO(2) with Fe(II): Importance of the Fe(III) reaction product. Environ. Sci. Technol. 45, 3952–3958 (2011).
doi: 10.1021/es104212g
pubmed: 21469710
Romanchuk, A. Y. et al. Formation of crystalline PuO
doi: 10.1016/j.gca.2013.07.016
Finck, N. et al. XAS signatures of Am(III) adsorbed onto magnetite and maghemite. In 16th International Conference on X-ray Absorption Fine Structure (XAFS) (2015).
Burns, P. C., Ewing, R. C. & Navrotsky, A. Nuclear fuel in a reactor accident. Science 335, 1184–1188 (2012).
doi: 10.1126/science.1211285
pubmed: 22403382
Ewing, R. C. Long-term storage of spent nuclear fuel. Nat. Mater. 14, 252–257 (2015).
doi: 10.1038/nmat4226
pubmed: 25698421
Esaka, F. & Magara, M. Uranium particle identification with SEM–EDX for isotopic analysis by secondary ion mass spectrometry. Mass Spectrom. Lett. 7, 41–44 (2016).
doi: 10.5478/MSL.2016.7.2.41