Identification of z-axis filopodia in growth cones using super-resolution microscopy.
actin cytoskeleton
cofilin
growth cone
neuropilin‐1
structured illumination microscopy (SIM)
super‐resolution microscopy
Journal
Journal of neurochemistry
ISSN: 1471-4159
Titre abrégé: J Neurochem
Pays: England
ID NLM: 2985190R
Informations de publication
Date de publication:
01 Jul 2024
01 Jul 2024
Historique:
revised:
02
05
2024
received:
20
12
2023
accepted:
10
06
2024
medline:
1
7
2024
pubmed:
1
7
2024
entrez:
1
7
2024
Statut:
aheadofprint
Résumé
A growth cone is a highly motile tip of an extending axon that is crucial for neural network formation. Three-dimensional-structured illumination microscopy, a type of super-resolution light microscopy with a resolution that overcomes the optical diffraction limitation (ca. 200 nm) of conventional light microscopy, is well suited for studying the molecular dynamics of intracellular events. Using this technique, we discovered a novel type of filopodia distributed along the z-axis ("z-filopodia") within the growth cone. Z-filopodia were typically oriented in the direction of axon growth, not attached to the substratum, protruded spontaneously without microtubule invasion, and had a lifetime that was considerably shorter than that of conventional filopodia. Z-filopodia formation and dynamics were regulated by actin-regulatory proteins, such as vasodilator-stimulated phosphoprotein, fascin, and cofilin. Chromophore-assisted laser inactivation of cofilin induced the rapid turnover of z-filopodia. An axon guidance receptor, neuropilin-1, was concentrated in z-filopodia and was transported together with them, whereas its ligand, semaphorin-3A, was selectively bound to them. Membrane domains associated with z-filopodia were also specialized and resembled those of lipid rafts, and their behaviors were closely related to those of neuropilin-1. The results suggest that z-filopodia have unique turnover properties, and unlike xy-filopodia, do not function as force-generating structures for axon extension.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Ministry of Education, Culture, Sports, Science and Technology
ID : #18H04013
Organisme : Japan Agency for Medical Research and Development
ID : #19gm1210007s0101
Organisme : Japan Agency for Medical Research and Development
ID : #20gm1210007s0102
Organisme : Japan Agency for Medical Research and Development
ID : #21gm1210007s0103
Organisme : Japan Agency for Medical Research and Development
ID : #22gm1210007s0104
Organisme : Japan Agency for Medical Research and Development
ID : #23gm1210007s0105
Organisme : Japan Agency for Medical Research and Development
ID : #24gm1210007s0106
Organisme : Japan Society for the Promotion of Science
ID : ##20H03597
Organisme : Japan Society for the Promotion of Science
ID : #17KK0144
Organisme : Japan Society for the Promotion of Science
ID : #18H04670
Organisme : Japan Society for the Promotion of Science
ID : #18K06459
Organisme : Japan Society for the Promotion of Science
ID : #21K19305
Organisme : Takeda Medical Research Foundation (to M.N.)
Organisme : the Sumitomo Foundation (to M.N.)
Organisme : Yujin Memorial Grant from Niigata University School of Medicine (to M.N.)
Organisme : Takahashi Industrial and Economic Reseach Foundation (to M.N)
Informations de copyright
© 2024 International Society for Neurochemistry.
Références
Applewhite, D. A., Barzik, M., Kojima, S., Svitkina, T. M., Gertler, F. B., & Borisy, G. G. (2007). Ena/VASP proteins have an anti‐capping independent function in filopodia formation. Molecular Biology of the Cell, 18, 2579–2591.
Baines, A. J. (2010). The spectrin‐ankyrin‐4.1‐adducin membrane skeleton: Adapting eukaryotic cells to the demands of animal life. Protoplasma, 244, 99–131.
Bear, J. E., Svitkina, T. M., Krause, M., Schafer, D. A., Loureiro, J. J., Strasser, G. A., Maly, I. V., Chaga, O. Y., Cooper, J. A., Borisy, G. G., & Gertler, F. B. (2002). Antagonism between Ena/VASP proteins and Actin filament capping regulates fibroblast motility. Cell, 109, 509–521.
Bohil, A. B., Robertson, B. W., & Cheney, R. E. (2006). Myosin‐X is a molecular motor that functions in filopodia formation. Proceedings of the National Academy of Sciences of the United States of America, 103, 12411–12416.
Bornschlögl, T. (2013). How filopodia pull: What we know about the mechanics and dynamics of filopodia. Cytoskeleton (Hoboken), 70, 590–603.
Casemento, A., & Boucrot, E. (2020). Molecular mechanism of fast endophilin‐mediated endocytosis. The Biochemical Journal, 477, 2327–2345.
Choi, J. H., Wang, W., Park, D., Kim, S. H., Kim, K. T., & Min, K. T. (2018). IRES‐mediated translation of cofilin regulates axonal growth cone extension and turning. The EMBO Journal, 37, e95266.
Dang, P., & Furley, A. J. (2017). Tracking differential endocytosis and trafficking of Semaphorin receptor complexes in responding nerve growth cones. Methods in Molecular Biology, 1493, 299–309.
Dang, P., Smythe, E., & Furley, A. J. (2012). TAG1 regulates the endocytic trafficking and signaling of the semaphorin3A receptor complex. The Journal of Neuroscience, 32, 10370–10382.
Denny, J. B. (2006). Molecular mechanisms, biological actions, and neuropharmacology of the growth‐associated protein GAP‐43. Current Neuropharmacology, 4, 293–304.
Diakowski, W., Grzybek, M., & Sikorski, A. F. (2006). Protein 4.1, a component of the erythrocyte membrane skeleton and its related homologue proteins forming the protein 4.1/FERM superfamily. Folia Histochemica et Cytobiologica, 44, 231–248.
Edwards, M., Zwolak, A., Schafer, D. A., Sept, D., Dominguez, R., & Cooper, J. A. (2014). Capping protein regulators fine‐tune Actin assembly dynamics. Nature Reviews. Molecular Cell Biology, 15, 677–689.
Fukatsu, K., Bannai, H., Zhang, S., Nakamura, H., Inoue, T., & Mikoshiba, K. (2004). Lateral diffusion of inositol 1,4,5‐trisphosphate receptor type 1 is regulated by Actin filaments and 4.1N in neuronal dendrites. The Journal of Biological Chemistry, 279, 48976–48982.
Gallo, G., & Letourneau, P. C. (2004). Regulation of growth cone Actin filaments by guidance cues. Journal of Neurobiology, 58, 92–102.
Gallop, J. L. (2020). Filopodia and their links with membrane traffic and cell adhesion. Seminars in Cell & Developmental Biology, 102, 81–89.
Geraldo, S., & Gordon‐Weeks, P. R. (2009). Cytoskeletal dynamics in growth‐cone steering. Journal of Cell Science, 122, 3595–3604.
Giannone, G., Mège, R. M., & Thoumine, O. (2009). Multi‐level molecular clutches in motile cell processes. Trends in Cell Biology, 19, 475–486.
Goshima, Y., & Takei, K. (2017). Micro‐CALI to study localized roles of the semaphorin signaling component CRMP in axon growth. Methods in Molecular Biology, 1493, 265–275.
Goshima, Y., Yamashita, N., Nakamura, F., & Sasaki, Y. (2016). Regulation of dendritic development by semaphorin 3A through novel intracellular remote signaling. Cell Adhesion & Migration, 10, 627–640.
Grassi, S., Giussani, P., Mauri, L., Prioni, S., Sonnino, S., & Prinetti, A. (2020). Lipid rafts and neurodegeneration: Structural and functional roles in physiologic aging and neurodegenerative diseases. Journal of Lipid Research, 61, 636–654.
Heintzmann, R., & Huser, T. (2017). Super‐resolution structured illumination microscopy. Chemical Reviews, 117, 13890–13908.
Hirano, Y., Matsuda, A., & Hiraoka, Y. (2015). Recent advancements in structured‐illumination microscopy toward live‐cell imaging. Microscopy (Oxford), 64, 237–249.
Honda, A., Ito, Y., Takahashi‐Niki, K., Matsushita, N., Nozumi, M., Tabata, H., Takeuchi, K., & Igarashi, M. (2017). Extracellular signals induce glycoprotein M6a clustering of lipid rafts and associated signaling molecules. The Journal of Neuroscience, 37, 4046–4064.
Honda, A, Nozumi, M, Ito, Y, Natsume, R, Kawasaki, A, Nakatsu, F, Abe, M, Uchino, H, Matsushita, N, Ikeda, K, Arita, M, Sakimura, K, Igarashi, M. (2023). Very‐long‐chain fatty acids are crucial to neuronal polarity by providing sphingolipids to lipid rafts. Cell Reports, 42, 113195.
Hou, X., Nozumi, M., Nakamura, H., Igarashi, M., & Sugiyama, S. (2021). Coactosin promotes F‐Actin protrusion in growth cones under Cofilin‐related signaling pathway. Frontiers in Cell and Development Biology, 9, 660349.
Igarashi, M. (2019). Molecular basis of the functions of the mammalian neuronal growth cone revealed using new methods. Proc. Proceedings of the Japan Academy. Series B, Physical and Biology Science, 95, 358–377.
Igarashi, M., Honda, A., Kawasaki, A., & Nozumi, M. (2020). Neuronal signaling involved in neuronal polarization and growth: Lipid rafts and phosphorylation. Frontiers in Molecular Neuroscience, 13, 150.
Igarashi, M., Nozumi, M., Wu, L. G., Cella Zanacchi, F., Katona, I., Barna, L., Xu, P., Zhang, M., Xue, F., & Boyden, E. (2018). New observations in neuroscience using superresolution microscopy. The Journal of Neuroscience, 38, 9459–9467.
Kawasaki, A., Okada, M., Tamada, A., Okuda, S., Nozumi, M., Ito, Y., Kobayashi, D., Yamasaki, T., Yokoyama, R., Shibata, T., Nishina, H., Yoshida, Y., Fujii, Y., Takeuchi, K., & Igarashi, M. (2018). Growth cone Phosphoproteomics reveals that GAP‐43 phosphorylated by JNK is a marker of axon growth and regeneration. iScience, 4, 190–203).
Kim, J., Sullivan, G. J., & Park, I. H. (2021). How well do brain organoids capture your brain? iScience, 24, 102063.
Kittel, R. J., Wichmann, C., Rasse, T. M., Fouquet, W., Schmidt, M., Schmid, A., Wagh, D. A., Pawlu, C., Kellner, R. R., Willig, K. I., Hell, S. W., Buchner, E., Heckmann, M., & Sigrist, S. J. (2006). Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science, 312, 1051–1054.
Lamb, M. C., & Tootle, T. L. (2020). Fascin in cell migration: More than an Actin bundling protein. Biology (Basel), 9, 403.
Lebrand, C., Dent, E. W., Strasser, G. A., Lanier, L. M., Krause, M., Svitkina, T. M., Borisy, G. G., & Gertler, F. B. (2004). Critical role of Ena/VASP proteins for filopodia formation in neurons and in function downstream of netrin‐1. Neuron, 42, 37–49.
Leite, S. C., Pinto‐Costa, R., & Sousa, M. M. (2021). Actin dynamics in the growth cone: A key player in axon regeneration. Current Opinion in Neurobiology, 69, 11–18.
Lingwood, D., & Simon, K. (2010). Lipid rafts as a membanre‐organizing principle. Science, 327, 46–50.
Mallavarapu, A., & Mitchison, T. (1999). Regulated Actin cytoskeleton assembly at filopodium tips controls their extension and retraction. The Journal of Cell Biology, 146, 1097–1106.
Maloney, M. T., & Bamburg, J. R. (2011). Mechanisms of neuronal growth cone guidance: An historical perspective. Developmental Neurobiology, 71, 795–800.
Marx, A., Godinez, W. J., Tsimashchuk, V., Bankhead, P., Rohr, K., & Engel, U. (2013). Xenopus cytoplasmic linker‐associated protein 1 (XCLASP1) promotes axon elongation and advance of pioneer microtubules. Molecular Biology of the Cell, 24, 1544–1558.
McCormick, L. E., & Gupton, S. L. (2020). Mechanistic advances in axon pathfinding. Current Opinion in Cell Biology, 63, 11–19.
Midorikawa, M. (2018). Real‐time imaging of synaptic vesicle exocytosis by total internal reflection fluorescence (TIRF) microscopy. Neuroscience Research, 136, 1–5.
Mitchison, T., & Kirschner, M. (1988). Cytoskeletal dynamics and nerve growth. Neuron, 1, 761–772.
Mizui, T., Kojima, N., Yamazaki, H., Katayama, M., Hanamura, K., & Shirao, T. (2009). Drebrin E is involved in the regulation of axonal growth through Actin‐myosin interactions. Journal of Neurochemistry, 109, 611–622.
Neukirchen, D., & Bradke, F. (2011). Cytoplasmic linker proteins regulate neuronal polarization through microtubule and growth cone dynamics. The Journal of Neuroscience, 31, 1528–1538.
Nozumi, M., & Igarashi, M. (2018). Vesicular movements of the growth cone. Neurochemistry International, 119, 71–76.
Nozumi, M., Nakagawa, H., Miki, H., Takenawa, T., & Miyamoto, S. (2003). Differential localization of WAVE isoforms in filopodia and lamellipodia of the neuronal growth cone. Journal of Cell Science, 116, 239–246.
Nozumi, M., Nakatsu, F., Katoh, K., & Igarashi, M. (2017). Coordinated movement of vesicles and Actin bundles during nerve growth revealed by Superresolution microscopy. Cell Reports, 18, 2203–2216.
Okada, M., Kawagoe, Y., Sato, Y., Nozumi, M., Ishikawa, Y., Tamada, A., Yamazaki, H., Sekino, Y., Kanemura, Y., Shinmyo, Y., Kawasaki, H., Kaneko, N., Sawamoto, K., Fujii, Y., & Igarashi, M. (2021). Phosphorylation of GAP‐43 T172 is a molecular marker of growing axons in a wide range of mammals including primates. Molecular Brain, 14, 66.
Okada, M., Kawagoe, Y., Takasugi, T., Nozumi, M., Ito, Y., Fukusumi, H., Kanemura, Y., Fujii, Y., & Igarashi, M. (2022). JNK1‐dependent phosphorylation of GAP‐43 serine 142 is a novel molecular marker for axonal growth. Neurochemical Research, 47, 2668–2682.
Oser, M., & Condeelis, J. (2009). The cofilin activity cycle in lamellipodia and invadopodia. Journal of Cellular Biochemistry, 108, 1252–1262.
Papandréou, M. J., & Leterrier, C. (2018). The functional architecture of axonal Actin. Molecular and Cellular Neurosciences, 91, 151–159.
Rivard, R. L., Birger, M., Gaston, K. J., & Howe, A. K. (2009). AKAP‐independent localization of type‐II protein kinase a to dynamic Actin microspikes. Cell Motility and the Cytoskeleton, 66, 693–709.
Sanchez‐Soriano, N., Travis, M., Dajas‐Bailador, F., Gonçalves‐Pimentel, C., Whitmarsh, A. J., & Prokop, A. (2009). Mouse ACF7 and drosophila short stop modulate filopodia formation and microtubule organisation during neuronal growth. Journal of Cell Science, 122, 2534–2542.
Sano, Y., Watanabe, W., & Matsunaga, S. (2014). Chromophore‐assisted laser inactivation—towards a spatiotemporal‐functional analysis of proteins, and the ablation of chromatin, organelle and cell function. Journal of Cell Science, 127, 1621–1629.
Sasaki, Y., Hayashi, K., Shirao, T., Ishikawa, R., & Kohama, K. (1996). Inhibition by drebrin of the Actin‐bundling activity of brain fascin, a protein localized in filopodia of growth cones. Journal of Neurochemistry, 66, 980–988.
Schermelleh, L., Ferrand, A., Huser, T., Eggeling, C., Sauer, M., Biehlmaier, O., & Drummen, G. P. C. (2019). Super‐resolution microscopy demystified. Nature Cell Biology, 21, 72–84.
Sudhaharan, T., Sem, K. P., Liew, H. F., Yu, Y. H., Goh, W. I., Chou, A. M., & Ahmed, S. (2016). The rho GTPase Rif signals through IRTKS, Eps8 and WAVE2 to generate dorsal membrane ruffles and filopodia. Journal of Cell Science, 129, 2829–2840.
Takemoto, K., Matsuda, T., Sakai, N., Fu, D., Noda, M., Uchiyama, S., Kotera, I., Arai, Y., Horiuchi, M., Fukui, K., Ayabe, T., Inagaki, F., Suzuki, H., & Nagai, T. (2013). SuperNova, a monomeric photosensitizing fluorescent protein for chromophore‐assisted light inactivation. Scientific Reports, 3, 2629.
Tamada, H. (2023). Three‐dimensional ultrastructure analysis of organelles in injured motor neuron. Anatomical Science International, 98, 360–369.
Tanaka, M., Fujii, Y., Hirano, K., Higaki, T., Nagasaki, A., Ishikawa, R., Okajima, T., & Katoh, K. (2019). Fascin in lamellipodia contributes to cell elasticity by controlling the orientation of filamentous Actin. Genes to Cells, 24, 202–213.
Worth, D. C., Daly, C. N., Geraldo, S., Oozeer, F., & Gordon‐Weeks, P. R. (2013). Drebrin contains a cryptic F‐Actin‐bundling activity regulated by Cdk5 phosphorylation. The Journal of Cell Biology, 202, 793–806.
Xu, K., Zhong, G., & Zhuang, X. (2013). Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science, 339, 452–456.
Zhou, F. Q., & Cohan, C. S. (2004). How Actin filaments and microtubules steer growth cones to their targets. Journal of Neurobiology, 58, 84–89.