Early intermediates in bacterial RNA polymerase promoter melting visualized by time-resolved cryo-electron microscopy.


Journal

Nature structural & molecular biology
ISSN: 1545-9985
Titre abrégé: Nat Struct Mol Biol
Pays: United States
ID NLM: 101186374

Informations de publication

Date de publication:
01 Jul 2024
Historique:
received: 08 08 2023
accepted: 06 06 2024
medline: 2 7 2024
pubmed: 2 7 2024
entrez: 1 7 2024
Statut: aheadofprint

Résumé

During formation of the transcription-competent open complex (RPo) by bacterial RNA polymerases (RNAPs), transient intermediates pile up before overcoming a rate-limiting step. Structural descriptions of these interconversions in real time are unavailable. To address this gap, here we use time-resolved cryogenic electron microscopy (cryo-EM) to capture four intermediates populated 120 ms or 500 ms after mixing Escherichia coli σ

Identifiants

pubmed: 38951624
doi: 10.1038/s41594-024-01349-9
pii: 10.1038/s41594-024-01349-9
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.

Références

Feklistov, A., Sharon, B. D., Darst, S. A. & Gross, C. A. Bacterial sigma factors: a historical, structural, and genomic perspective. Annu. Rev. Microbiol. 68, 357–376 (2014).
pubmed: 25002089 doi: 10.1146/annurev-micro-092412-155737
Gruber, T. M. & Gross, C. A. Multiple sigma subunits and the partitioning of bacterial transcription space. Annu. Rev. Microbiol. 57, 441–466 (2003).
pubmed: 14527287 doi: 10.1146/annurev.micro.57.030502.090913
Zhang, G. et al. Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 Å resolution. Cell 98, 811–824 (1999).
pubmed: 10499798 doi: 10.1016/S0092-8674(00)81515-9
Shultzaberger, R. K., Chen, Z., Lewis, K. A. & Schneider, T. D. Anatomy of Escherichia coli σ
pubmed: 17189297 doi: 10.1093/nar/gkl956
Haugen, S. P. et al. rRNA promoter regulation by nonoptimal binding of σ region 1.2: an additional recognition element for RNA polymerase. Cell 125, 1069–1082 (2006).
pubmed: 16777598 doi: 10.1016/j.cell.2006.04.034
Ruff, E. F., Record, M. T. Jr & Artsimovitch, I. Initial events in bacterial transcription initiation. Biomolecules 5, 1035–1062 (2015).
pubmed: 26023916 pmcid: 4496709 doi: 10.3390/biom5021035
Saecker, R. M., Record, M. T. Jr & deHaseth, P. L. Mechanism of bacterial transcription initiation: RNA polymerase–promoter binding, isomerization to initiation-competent open complexes, and initiation of RNA synthesis. J. Mol. Biol. 412, 754–771 (2011).
pubmed: 21371479 pmcid: 3440003 doi: 10.1016/j.jmb.2011.01.018
Saecker, R. M. et al. Structural origins of Escherichia coli RNA polymerase open promoter complex stability. Proc. Natl Acad. Sci. USA 118, e2112877118 (2021).
pubmed: 34599106 pmcid: 8501879 doi: 10.1073/pnas.2112877118
Basu, R. S. et al. Structural basis of transcription initiation by bacterial RNA polymerase holoenzyme. J. Biol. Chem. 289, 24549–24559 (2014).
pubmed: 24973216 pmcid: 4148879 doi: 10.1074/jbc.M114.584037
McClure, W. R. Rate-limiting steps in RNA chain initiation. Proc. Natl Acad. Sci. USA 77, 5634–5638 (1980).
pubmed: 6160577 pmcid: 350123 doi: 10.1073/pnas.77.10.5634
Chen, J. et al. Stepwise promoter melting by bacterial RNA polymerase. Mol. Cell 78, 275–288.e6 (2020).
pubmed: 32160514 pmcid: 7166197 doi: 10.1016/j.molcel.2020.02.017
Hubin, E. A. et al. Structure and function of the mycobacterial transcription initiation complex with the essential regulator RbpA. eLife 6, e22520 (2017).
pubmed: 28067618 pmcid: 5302886 doi: 10.7554/eLife.22520
Campbell, E. A. et al. Structure of the bacterial RNA polymerase promoter specificity σ subunit. Mol. Cell 9, 527–539 (2002).
pubmed: 11931761 doi: 10.1016/S1097-2765(02)00470-7
Feklistov, A. & Darst, S. A. Structural basis for promoter −10 element recognition by the bacterial RNA polymerase σ subunit. Cell 147, 1257–1269 (2011).
pubmed: 22136875 pmcid: 3245737 doi: 10.1016/j.cell.2011.10.041
Bae, B., Feklistov, A., Lass-Napiorkowska, A., Landick, R. & Darst, S. A. Structure of a bacterial RNA polymerase holoenzyme open promoter complex. eLife 4, e08504 (2015).
pubmed: 26349032 pmcid: 4593229 doi: 10.7554/eLife.08504
Mekler, V. et al. Structural organization of bacterial RNA polymerase holoenzyme and the RNA polymerase–promoter open complex. Cell 108, 599–614 (2002).
pubmed: 11893332 doi: 10.1016/S0092-8674(02)00667-0
Bae, B. et al. Phage T7 Gp2 inhibition of Escherichia coli RNA polymerase involves misappropriation of σ
pubmed: 24218560 pmcid: 3856789 doi: 10.1073/pnas.1314576110
Hubin, E. A., Lilic, M., Darst, S. A. & Campbell, E. A. Structural insights into the mycobacteria transcription initiation complex from analysis of X-ray crystal structures. Nat. Commun. 8, 16072 (2017).
pubmed: 28703128 pmcid: 5511352 doi: 10.1038/ncomms16072
Chen, J., Boyaci, H. & Campbell, E. A. Diverse and unified mechanisms of transcription initiation in bacteria. Nat. Rev. Microbiol. 19, 95–109 (2021).
pubmed: 33122819 doi: 10.1038/s41579-020-00450-2
Boyaci, H., Chen, J., Jansen, R., Darst, S. A. & Campbell, E. A. Structures of an RNA polymerase promoter melting intermediate elucidate DNA unwinding. Nature 565, 382–385 (2019).
pubmed: 30626968 pmcid: 6399747 doi: 10.1038/s41586-018-0840-5
Dandey, V. P. et al. Time-resolved cryo-EM using Spotiton. Nat. Methods 17, 897–900 (2020).
pubmed: 32778833 pmcid: 7799389 doi: 10.1038/s41592-020-0925-6
Punjani, A. & Fleet, D. J. 3D variability analysis: resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM. J. Struct. Biol. 213, 107702 (2021).
pubmed: 33582281 doi: 10.1016/j.jsb.2021.107702
Wei, H. et al. Optimizing ‘self-wicking’ nanowire grids. J. Struct. Biol. 202, 170–174 (2018).
pubmed: 29317278 pmcid: 5864531 doi: 10.1016/j.jsb.2018.01.001
Wu, J. L. Y., Tellkamp, F., Khajehpour, M., Robertson, W. D. & Miller, R. J. D. Rapid mixing of colliding picoliter liquid droplets delivered through-space from piezoelectric-actuated pipettes characterized by time-resolved fluorescence monitoring. Rev. Sci. Instrum. 90, 055109 (2019).
pubmed: 31153275 doi: 10.1063/1.5050270
Chen, J., Noble, A. J., Kang, J. Y. & Darst, S. A. Eliminating effects of particle adsorption to the air/water interface in single-particle cryo-electron microscopy: bacterial RNA polymerase and CHAPSO. J. Struct. Biol. X 1, 100005 (2019).
pubmed: 32285040 pmcid: 7153306
Tsodikov, O. V. & Record, M. T. Jr General method of analysis of kinetic equations for multistep reversible mechanisms in the single-exponential regime: application to kinetics of open complex formation between Eσ
pubmed: 10049315 pmcid: 1300111 doi: 10.1016/S0006-3495(99)77294-2
Saecker, R. M. et al. Kinetic studies and structural models of the association of E. coli σ
pubmed: 12054861 doi: 10.1016/S0022-2836(02)00293-0
Gnatt, A. L., Cramer, P., Fu, J., Bushnell, D. A. & Kornberg, R. D. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 Å resolution. Science 292, 1876–1882 (2001).
pubmed: 11313499 doi: 10.1126/science.1059495
Landick, R. RNA polymerase clamps down. Cell 105, 567–570 (2001).
pubmed: 11389826 doi: 10.1016/S0092-8674(01)00381-6
Darst, S. A. et al. Conformational flexibility of bacterial RNA polymerase. Proc. Natl Acad. Sci. USA 99, 4296–4301 (2002).
pubmed: 11904365 pmcid: 123642 doi: 10.1073/pnas.052054099
Weixlbaumer, A., Leon, K., Landick, R. & Darst, S. A. Structural basis of transcriptional pausing in bacteria. Cell 152, 431–441 (2013).
pubmed: 23374340 pmcid: 3564060 doi: 10.1016/j.cell.2012.12.020
Chakraborty, A. et al. Opening and closing of the bacterial RNA polymerase clamp. Science 337, 591–595 (2012).
pubmed: 22859489 pmcid: 3626110 doi: 10.1126/science.1218716
Chen, J. et al. E. coli TraR allosterically regulates transcription initiation by altering RNA polymerase conformation. eLife 8, e49375 (2019).
pubmed: 31841111 pmcid: 6970531 doi: 10.7554/eLife.49375
Unarta, I. C. et al. Role of bacterial RNA polymerase gate opening dynamics in DNA loading and antibiotics inhibition elucidated by quasi-Markov state model. Proc. Natl Acad. Sci. USA 118, e2024324118 (2021).
pubmed: 33883282 pmcid: 8092612 doi: 10.1073/pnas.2024324118
Dey, S. et al. Structural insights into RNA-mediated transcription regulation in bacteria. Mol. Cell 82, 3885–3900.e10 (2022).
pubmed: 36220101 doi: 10.1016/j.molcel.2022.09.020
Mukhopadhyay, J. et al. The RNA polymerase ‘switch region’ is a target for inhibitors. Cell 135, 295–307 (2008).
pubmed: 18957204 pmcid: 2580802 doi: 10.1016/j.cell.2008.09.033
Belogurov, G. A. et al. Transcription inactivation through local refolding of the RNA polymerase structure. Nature 457, 332–335 (2008).
pubmed: 18946472 pmcid: 2628454 doi: 10.1038/nature07510
Srivastava, A. et al. New target for inhibition of bacterial RNA polymerase: a ’switch region
pubmed: 21862392 pmcid: 3196380 doi: 10.1016/j.mib.2011.07.030
Lin, W. et al. Structural basis of transcription inhibition by fidaxomicin (lipiarmycin A3). Mol. Cell 70, 60–71.e15 (2018).
pubmed: 29606590 pmcid: 6205224 doi: 10.1016/j.molcel.2018.02.026
Boyaci, H. et al. Fidaxomicin jams Mycobacterium tuberculosis RNA polymerase motions needed for initiation via RbpA contacts. eLife 7, e34823 (2018).
pubmed: 29480804 pmcid: 5837556 doi: 10.7554/eLife.34823
Cao, X. et al. Basis of narrow-spectrum activity of fidaxomicin on Clostridioides difficile. Nature 604, 541–545 (2022).
pubmed: 35388215 pmcid: 9635844 doi: 10.1038/s41586-022-04545-z
Endres, D. M. & Schindelin, J. E. A new metric for probability distributions. IEEE Trans. Inf. Theory 49, 1858 (2003).
doi: 10.1109/TIT.2003.813506
Sreenivasan, R. et al. Fluorescence-detected conformational changes in duplex DNA in open complex formation by Escherichia coli RNA polymerase: upstream wrapping and downstream bending precede clamp opening and insertion of the downstream duplex. Biochemistry 59, 1565–1581 (2020).
pubmed: 32216369 doi: 10.1021/acs.biochem.0c00098
Davis, C. A., Bingman, C. A., Landick, R., Record, M. T. Jr & Saecker, R. M. Real-time footprinting of DNA in the first kinetically significant intermediate in open complex formation by Escherichia coli RNA polymerase. Proc. Natl Acad. Sci. USA 104, 7833–7838 (2007).
pubmed: 17470797 pmcid: 1876533 doi: 10.1073/pnas.0609888104
Craig, M. L. et al. DNA footprints of the two kinetically significant intermediates in formation of an RNA polymerase–promoter open complex: evidence that interactions with start site and downstream DNA induce sequential conformational changes in polymerase and DNA. J. Mol. Biol. 283, 741–756 (1998).
pubmed: 9790837 doi: 10.1006/jmbi.1998.2129
Roy, S., Lim, H. M., Liu, M. & Adhya, S. Asynchronous basepair openings in transcription initiation: CRP enhances the rate-limiting step. EMBO J. 23, 869–875 (2004).
pubmed: 14963488 pmcid: 381006 doi: 10.1038/sj.emboj.7600098
Heyduk, E. & Heyduk, T. Next generation sequencing-based parallel analysis of melting kinetics of 4096 variants of a bacterial promoter. Biochemistry 53, 282–292 (2014).
pubmed: 24359527 doi: 10.1021/bi401277w
Callaci, S., Heyduk, E. & Heyduk, T. Conformational changes of Escherichia coli RNA polymerase σ
pubmed: 9830052 doi: 10.1074/jbc.273.49.32995
Lilic, M., Darst, S. A. & Campbell, E. A. Structural basis of transcriptional activation by the Mycobacterium tuberculosis intrinsic antibiotic-resistance transcription factor WhiB7. Mol. Cell 81, 2875–2886.e5 (2021).
pubmed: 34171296 pmcid: 8311663 doi: 10.1016/j.molcel.2021.05.017
Feklistov, A. et al. RNA polymerase motions during promoter melting. Science 356, 863–866 (2017).
pubmed: 28546214 pmcid: 5696265 doi: 10.1126/science.aam7858
He, Y., Fang, J., Taatjes, D. J. & Nogales, E. Structural visualization of key steps in human transcription initiation. Nature 495, 481–486 (2013).
pubmed: 23446344 pmcid: 3612373 doi: 10.1038/nature11991
Schulz, S. et al. TFE and Spt4/5 open and close the RNA polymerase clamp during the transcription cycle. Proc. Natl Acad. Sci. USA 113, E1816–E1825 (2016).
pubmed: 26979960 pmcid: 4822635 doi: 10.1073/pnas.1515817113
Cramer, P., Bushnell, D. A. & Kornberg, R. D. Structural basis of transcription: RNA polymerase II at 2.8 Ångstrom resolution. Science 292, 1863–1876 (2001).
pubmed: 11313498 doi: 10.1126/science.1059493
Lane, W. J. & Darst, S. A. Molecular evolution of multisubunit RNA polymerases: structural analysis. J. Mol. Biol. 395, 686–704 (2010).
pubmed: 19895816 doi: 10.1016/j.jmb.2009.10.063
Travers, A. A. Promoter sequence for stringent control of bacterial ribonucleic acid synthesis. J. Bacteriol. 141, 973–976 (1980).
pubmed: 6154042 pmcid: 293725 doi: 10.1128/jb.141.2.973-976.1980
Haugen, S. P., Ross, W., Manrique, M. & Gourse, R. L. Fine structure of the promoter–σ region 1.2 interaction. Proc. Natl Acad. Sci. USA 105, 3292–3297 (2008).
pubmed: 18287032 pmcid: 2265156 doi: 10.1073/pnas.0709513105
Vvedenskaya, I. O. et al. Massively Systematic Transcript End Readout, ‘MASTER’: transcription start site selection, transcriptional slippage, and transcript yields. Mol. Cell 60, 953–965 (2015).
pubmed: 26626484 pmcid: 4688149 doi: 10.1016/j.molcel.2015.10.029
Winkelman, J. T. et al. Multiplexed protein–DNA cross-linking: scrunching in transcription start site selection. Science 351, 1090–1093 (2016).
pubmed: 26941320 pmcid: 4797950 doi: 10.1126/science.aad6881
Gourse, R. L. et al. Transcriptional responses to ppGpp and DksA. Annu. Rev. Microbiol. 72, 163–184 (2018).
pubmed: 30200857 pmcid: 6586590 doi: 10.1146/annurev-micro-090817-062444
Roche, J. & Royer, C. A. Lessons from pressure denaturation of proteins. J. R. Soc. Interface 15, 20180244 (2018).
pubmed: 30282759 pmcid: 6228469 doi: 10.1098/rsif.2018.0244
Guvench, O. & Brooks, C. L. Tryptophan side chain electrostatic interactions determine edge-to-face vs parallel-displaced tryptophan side chain geometries in the designed β-hairpin ‘trpzip2’. J. Am. Chem. Soc. 127, 4668–4674 (2005).
pubmed: 15796532 doi: 10.1021/ja043492e
Kovacic, R. T. The 0°C closed complexes between Escherichia coli RNA polymerase and two promoters, T7-A3 and lacUV5. J. Biol. Chem. 262, 13654–13661 (1987).
pubmed: 3308880 doi: 10.1016/S0021-9258(19)76477-1
Cowing, D. W., Mecsas, J., Record, M. T. & Gross, C. A. Intermediates in the formation of the open complex by RNA polymerase holoenzyme containing the sigma factor σ
pubmed: 2693737 doi: 10.1016/0022-2836(89)90128-9
Schickor, P., Metzger, W., Werel, W., Lederer, H. & Heumann, H. Topography of intermediates in transcription initiation of E. coli. EMBO J. 9, 2215–2220 (1990).
pubmed: 2192861 pmcid: 551945 doi: 10.1002/j.1460-2075.1990.tb07391.x
Rutherford, S. T., Villers, C. L., Lee, J.-H., Ross, W. & Gourse, R. L. Allosteric control of Escherichia coli rRNA promoter complexes by DksA. Genes Dev. 23, 236–248 (2009).
pubmed: 19171784 pmcid: 2648540 doi: 10.1101/gad.1745409
Sasse-Dwight, S. & Gralla, J. D. KMnO4 as a probe for lac promoter DNA melting and mechanism in vivo. J. Biol. Chem. 264, 8074–8081 (1989).
pubmed: 2722774 doi: 10.1016/S0021-9258(18)83152-0
Galas, D. J. & Schmitz, A. DNAse footprinting: a simple method for the detection of protein–DNA binding specificity. Nucleic Acids Res. 5, 3157–3170 (1978).
pubmed: 212715 pmcid: 342238 doi: 10.1093/nar/5.9.3157
Tullius, T. D. DNA footprinting with hydroxyl radical. Nature 332, 663–664 (1988).
pubmed: 2833707 doi: 10.1038/332663a0
Gries, T. J., Kontur, W. S., Capp, M. W., Saecker, R. M. & Record, M. T. Jr One-step DNA melting in the RNA polymerase cleft opens the initiation bubble to form an unstable open complex. Proc. Natl Acad. Sci. USA 107, 10418–10423 (2010).
pubmed: 20483995 pmcid: 2890804 doi: 10.1073/pnas.1000967107
Altan-Bonnet, G., Libchaber, A. & Krichevsky, O. Bubble dynamics in double-stranded DNA. Phys. Rev. Lett. 90, 138101 (2003).
pubmed: 12689326 doi: 10.1103/PhysRevLett.90.138101
Nicy, Chakraborty, D. & Wales, D. J. Energy landscapes for base-flipping in a model DNA duplex. J. Phys. Chem. B 126, 3012–3028 (2022).
pubmed: 35427136 pmcid: 9098180 doi: 10.1021/acs.jpcb.2c00340
Łoziński, T. & Wierzchowski, K. L. Inactivation and destruction by KMnO
pubmed: 12927830 doi: 10.1016/S0003-2697(03)00381-6
Rogozina, A., Zaychikov, E., Buckle, M., Heumann, H. & Sclavi, B. DNA melting by RNA polymerase at the T7A1 promoter precedes the rate-limiting step at 37°C and results in the accumulation of an off-pathway intermediate. Nucleic Acids Res. 37, 5390–5404 (2009).
pubmed: 19578065 pmcid: 2760793 doi: 10.1093/nar/gkp560
Schroeder, L. A. et al. Evidence for a tyrosine–adenine stacking interaction and for a short-lived open intermediate subsequent to initial binding of Escherichia coli RNA polymerase to promoter DNA. J. Mol. Biol. 385, 339–349 (2009).
pubmed: 18976666 doi: 10.1016/j.jmb.2008.10.023
Zivanov, J., Nakane, T. & Scheres, S. H. W. A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis. IUCrJ 6, 5–17 (2018).
doi: 10.1107/S205225251801463X
Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).
pubmed: 17681537 doi: 10.1016/j.jmb.2007.05.022
Cardone, G., Heymann, J. B. & Steven, A. C. One number does not fit all: mapping local variations in resolution in cryo-EM reconstructions. J. Struct. Biol. 184, 226–236 (2013).
pubmed: 23954653 doi: 10.1016/j.jsb.2013.08.002
Davis, C. A., Capp, M. W., Record, M. T. Jr & Saecker, R. M. The effects of upstream DNA on open complex formation by Escherichia coli RNA polymerase. Proc. Natl Acad. Sci. USA 102, 285–290 (2005).
pubmed: 15626761 doi: 10.1073/pnas.0405779102
Budell, W. C., Allegri, L., Dandey, V., Potter, C. S. & Carragher, B. Cryo-electron microscopic grid preparation for time-resolved studies using a novel robotic system, Spotiton. J. Vis. Exp. https://doi.org/10.3791/62271 (2021).
doi: 10.3791/62271 pubmed: 33720116
Razinkov, I. et al. A new method for vitrifying samples for cryoEM. J. Struct. Biol. 195, 190–198 (2016).
pubmed: 27288865 pmcid: 5464370 doi: 10.1016/j.jsb.2016.06.001
Morin, A. et al. Collaboration gets the most out of software. eLife 2, e01456 (2013).
pubmed: 24040512 pmcid: 3771563 doi: 10.7554/eLife.01456
Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151, 41–60 (2005).
pubmed: 15890530 doi: 10.1016/j.jsb.2005.03.010
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).
pubmed: 28250466 pmcid: 5494038 doi: 10.1038/nmeth.4193
Scheres, S. H. W. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).
pubmed: 23000701 pmcid: 3690530 doi: 10.1016/j.jsb.2012.09.006
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
pubmed: 28165473 doi: 10.1038/nmeth.4169
Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).
pubmed: 33257830 doi: 10.1038/s41592-020-00990-8
Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).
pubmed: 30412051 pmcid: 6250425 doi: 10.7554/eLife.42166
Bai, X., Rajendra, E., Yang, G., Shi, Y. & Scheres, S. H. W. Sampling the conformational space of the catalytic subunit of human γ-secretase. eLife 4, e11182 (2015).
pubmed: 26623517 pmcid: 4718806 doi: 10.7554/eLife.11182
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
pubmed: 15264254 doi: 10.1002/jcc.20084
Tan, Y. Z. et al. Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nat. Methods 14, 793–796 (2017).
pubmed: 28671674 pmcid: 5533649 doi: 10.1038/nmeth.4347
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).
pubmed: 20124702 pmcid: 2815670 doi: 10.1107/S0907444909052925
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).
pubmed: 20383002 pmcid: 2852313 doi: 10.1107/S0907444910007493
Kang, J. Y. et al. An ensemble of interconverting conformations of the elemental paused transcription complex creates regulatory options. Proc. Natl Acad. Sci. USA 120, e2215945120 (2023).
pubmed: 36795753 pmcid: 9974457 doi: 10.1073/pnas.2215945120
Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).
pubmed: 20057044 doi: 10.1107/S0907444909042073
Henderson, R. et al. Outcome of the first electron microscopy validation task force meeting. Structure 20, 205–214 (2012).
pubmed: 22325770 doi: 10.1016/j.str.2011.12.014

Auteurs

Ruth M Saecker (RM)

Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA.

Andreas U Mueller (AU)

Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA.

Brandon Malone (B)

Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA.
Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, New York, NY, USA.

James Chen (J)

Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA.
Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA.

William C Budell (WC)

The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA.

Venkata P Dandey (VP)

The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA.
National Institute of Environmental Health Sciences, Durham, NC, USA.

Kashyap Maruthi (K)

The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA.

Joshua H Mendez (JH)

The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA.

Nina Molina (N)

Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA.

Edward T Eng (ET)

The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA.

Laura Y Yen (LY)

The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA.

Clinton S Potter (CS)

The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA.
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
Chan Zuckerberg Imaging Institute, San Francisco, CA, USA.

Bridget Carragher (B)

The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA.
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
Chan Zuckerberg Imaging Institute, San Francisco, CA, USA.

Seth A Darst (SA)

Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA. darst@rockefeller.edu.

Classifications MeSH