Epigenetic scores derived in saliva are associated with gestational age at birth.
Epigenetic
Inflammation
Neonatal
Preterm birth
Socioeconomic status
Journal
Clinical epigenetics
ISSN: 1868-7083
Titre abrégé: Clin Epigenetics
Pays: Germany
ID NLM: 101516977
Informations de publication
Date de publication:
29 Jun 2024
29 Jun 2024
Historique:
received:
21
12
2023
accepted:
22
06
2024
medline:
2
7
2024
pubmed:
2
7
2024
entrez:
2
7
2024
Statut:
epublish
Résumé
Epigenetic scores (EpiScores), reflecting DNA methylation (DNAm)-based surrogates for complex traits, have been developed for multiple circulating proteins. EpiScores for pro-inflammatory proteins, such as C-reactive protein (DNAm CRP), are associated with brain health and cognition in adults and with inflammatory comorbidities of preterm birth in neonates. Social disadvantage can become embedded in child development through inflammation, and deprivation is overrepresented in preterm infants. We tested the hypotheses that preterm birth and socioeconomic status (SES) are associated with alterations in a set of EpiScores enriched for inflammation-associated proteins. In total, 104 protein EpiScores were derived from saliva samples of 332 neonates born at gestational age (GA) 22.14 to 42.14 weeks. Saliva sampling was between 36.57 and 47.14 weeks. Forty-three (41%) EpiScores were associated with low GA at birth (standardised estimates |0.14 to 0.88|, Bonferroni-adjusted p-value < 8.3 × 10 Low birth GA is substantially associated with a set of EpiScores. The set was enriched for inflammatory proteins, providing new insights into immune dysregulation in preterm infants. SES had fewer associations with EpiScores; these tended to have small effect sizes and were not statistically significant after adjusting for inflammatory comorbidities. This suggests that inflammation is unlikely to be the primary axis through which SES becomes embedded in the development of preterm infants in the neonatal period.
Sections du résumé
BACKGROUND
BACKGROUND
Epigenetic scores (EpiScores), reflecting DNA methylation (DNAm)-based surrogates for complex traits, have been developed for multiple circulating proteins. EpiScores for pro-inflammatory proteins, such as C-reactive protein (DNAm CRP), are associated with brain health and cognition in adults and with inflammatory comorbidities of preterm birth in neonates. Social disadvantage can become embedded in child development through inflammation, and deprivation is overrepresented in preterm infants. We tested the hypotheses that preterm birth and socioeconomic status (SES) are associated with alterations in a set of EpiScores enriched for inflammation-associated proteins.
RESULTS
RESULTS
In total, 104 protein EpiScores were derived from saliva samples of 332 neonates born at gestational age (GA) 22.14 to 42.14 weeks. Saliva sampling was between 36.57 and 47.14 weeks. Forty-three (41%) EpiScores were associated with low GA at birth (standardised estimates |0.14 to 0.88|, Bonferroni-adjusted p-value < 8.3 × 10
CONCLUSIONS
CONCLUSIONS
Low birth GA is substantially associated with a set of EpiScores. The set was enriched for inflammatory proteins, providing new insights into immune dysregulation in preterm infants. SES had fewer associations with EpiScores; these tended to have small effect sizes and were not statistically significant after adjusting for inflammatory comorbidities. This suggests that inflammation is unlikely to be the primary axis through which SES becomes embedded in the development of preterm infants in the neonatal period.
Identifiants
pubmed: 38951914
doi: 10.1186/s13148-024-01701-2
pii: 10.1186/s13148-024-01701-2
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
84Subventions
Organisme : MRC Clinician Scientist Fellowship
ID : MR/X019535/1
Organisme : Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society
ID : 221890/Z/20/Z
Organisme : UKRI MRC Programme Grant
ID : MR/X003434/1
Informations de copyright
© 2024. The Author(s).
Références
Ohuma EO, Moller A-B, Bradley E, Chakwera S, Hussain-Alkhateeb L, Lewin A, et al. National, regional, and global estimates of preterm birth in 2020, with trends from 2010: a systematic analysis. Lancet. 2023;402:1261–71.
pubmed: 37805217
doi: 10.1016/S0140-6736(23)00878-4
Johnson S, Marlow N. Early and long-term outcome of infants born extremely preterm. Arch Dis Child. 2017;102:97–102.
pubmed: 27512082
doi: 10.1136/archdischild-2015-309581
Agrawal S, Rao SC, Bulsara MK, Patole SK. Prevalence of autism spectrum disorder in preterm infants: a meta-analysis. Pediatrics. 2018;142:1–14.
doi: 10.1542/peds.2018-0134
Twilhaar ES, Wade RM, deKieviet JF, vanGoudoever JB, vanElburg RM, Oosterlaan J. Cognitive outcomes of children born extremely or very preterm since the 1990s and associated risk factors: a meta-analysis and meta-regression. Jama Pediatr. 2018;172:361.
pubmed: 29459939
pmcid: 5875339
doi: 10.1001/jamapediatrics.2017.5323
Crump C. An overview of adult health outcomes after preterm birth. Early Hum Dev. 2020;150: 105187.
pubmed: 32948365
pmcid: 7480736
doi: 10.1016/j.earlhumdev.2020.105187
Hagberg H, Mallard C, Ferriero DM, Vannucci SJ, Levison SW, Vexler ZS, et al. The role of inflammation in perinatal brain injury. Nat Rev Neurol. 2015;11:192–208.
pubmed: 25686754
pmcid: 4664161
doi: 10.1038/nrneurol.2015.13
Sullivan G, Galdi P, Blesa-Cábez M, Borbye-Lorenzen N, Stoye DQ, Lamb GJ, et al. Interleukin-8 dysregulation is implicated in brain dysmaturation following preterm birth. Brain Behav Immun. 2020;90:311–8.
pubmed: 32920182
doi: 10.1016/j.bbi.2020.09.007
Raisi-Estabragh Z, Cooper J, Bethell MS, McCracken C, Lewandowski AJ, Leeson P, et al. Lower birth weight is linked to poorer cardiovascular health in middle-aged population-based adults. Heart. 2023;109:535–41.
pubmed: 36384749
Farah MJ. The neuroscience of socioeconomic status: correlates, causes, and consequences. Neuron. 2017;96:56–71.
pubmed: 28957676
doi: 10.1016/j.neuron.2017.08.034
Kivimäki M, Batty GD, Pentti J, Shipley MJ, Sipilä PN, Nyberg ST, et al. Association between socioeconomic status and the development of mental and physical health conditions in adulthood: a multi-cohort study. Lancet Public Heal. 2020;5:e140–9.
doi: 10.1016/S2468-2667(19)30248-8
Duncan GJ, Ziol-Guest KM, Kalil A. Early-childhood poverty and adult attainment, behavior, and health. Child Dev. 2010;81:306–25.
pubmed: 20331669
doi: 10.1111/j.1467-8624.2009.01396.x
Pillas D, Marmot M, Naicker K, Goldblatt P, Morrison J, Pikhart H. Social inequalities in early childhood health and development: a European-wide systematic review. Pediatr Res. 2014;76:418–24.
pubmed: 25122581
doi: 10.1038/pr.2014.122
Thomson K, Moffat M, Arisa O, Jesurasa A, Richmond C, Odeniyi A, et al. Socioeconomic inequalities and adverse pregnancy outcomes in the UK and Republic of Ireland: a systematic review and meta-analysis. BMJ Open. 2021;11: e042753.
pubmed: 33722867
pmcid: 7959237
doi: 10.1136/bmjopen-2020-042753
Ruiz M, Goldblatt P, Morrison J, Kukla L, Švancara J, Riitta-Järvelin M, et al. Mother’s education and the risk of preterm and small for gestational age birth: a DRIVERS meta-analysis of 12 European cohorts. J Epidemiol Commun H. 2015;69:826–33.
doi: 10.1136/jech-2014-205387
Muscatell KA, Brosso SN, Humphreys KL. Socioeconomic status and inflammation: a meta-analysis. Mol Psychiatr. 2020;25:2189–99.
doi: 10.1038/s41380-018-0259-2
Broyles ST, Staiano AE, Drazba KT, Gupta AK, Sothern M, Katzmarzyk PT. Elevated C-reactive protein in children from risky neighborhoods: evidence for a stress pathway linking neighborhoods and inflammation in children. PLoS ONE. 2012;7: e45419.
pubmed: 23049799
pmcid: 3458094
doi: 10.1371/journal.pone.0045419
Dowd JB, Zajacova A, Aiello AE. Predictors of inflammation in U.S. children Aged 3–16 Years. Am J Prev Med. 2010;39:314–20.
pubmed: 20837281
pmcid: 2952932
doi: 10.1016/j.amepre.2010.05.014
Schmeer KK, Yoon AJ. Home sweet home? Home physical environment and inflammation in children. Soc Sci Res. 2016;60:236–48.
pubmed: 27712682
pmcid: 5116303
doi: 10.1016/j.ssresearch.2016.04.001
Schmeer KK, Yoon A. Socioeconomic status inequalities in low-grade inflammation during childhood. Arch Dis Child. 2016;101:1043.
pubmed: 27371708
doi: 10.1136/archdischild-2016-310837
Chiesa C, Natale F, Pascone R, Osborn JF, Pacifico L, Bonci E, et al. C reactive protein and procalcitonin: reference intervals for preterm and term newborns during the early neonatal period. Clin Chim Acta. 2011;412:1053–9.
pubmed: 21338596
doi: 10.1016/j.cca.2011.02.020
Brown JVE, Meader N, Cleminson J, McGuire W. C-reactive protein for diagnosing late-onset infection in newborn infants. Cochrane Database Syst Rev. 2019;10:16–78.
Bower JK, Lazo M, Juraschek SP, Selvin E. Within-Person variability in high-sensitivity C-reactive protein. Arch Intern Med. 2012;172:1519–21.
pubmed: 22945505
pmcid: 3613132
doi: 10.1001/archinternmed.2012.3712
Dammann O, Leviton A. Intermittent or sustained systemic inflammation and the preterm brain. Pediatr Res. 2014;75:376–80.
pubmed: 24429547
doi: 10.1038/pr.2013.238
Stevenson AJ, McCartney DL, Harris SE, Taylor AM, Redmond P, Starr JM, et al. Trajectories of inflammatory biomarkers over the eighth decade and their associations with immune cell profiles and epigenetic ageing. Clin Epigenet. 2018;10:159.
doi: 10.1186/s13148-018-0585-x
Stevenson AJ, McCartney DL, Hillary RF, Campbell A, Morris SW, Bermingham ML, et al. Characterisation of an inflammation-related epigenetic score and its association with cognitive ability. Clin Epigenetics. 2020;12:113.
pubmed: 32718350
pmcid: 7385981
doi: 10.1186/s13148-020-00903-8
Gadd DA, Hillary RF, McCartney DL, Zaghlool SB, Stevenson AJ, Cheng Y, et al. Epigenetic scores for the circulating proteome as tools for disease prediction. Elife. 2022;11: e71802.
pubmed: 35023833
pmcid: 8880990
doi: 10.7554/eLife.71802
Ligthart S, Marzi C, Aslibekyan S, Mendelson MM, Conneely KN, Tanaka T, et al. DNA methylation signatures of chronic low-grade inflammation are associated with complex diseases. Genome Biol. 2016;17:255.
pubmed: 27955697
pmcid: 5151130
doi: 10.1186/s13059-016-1119-5
Stevenson AJ, Gadd DA, Hillary RF, McCartney DL, Campbell A, Walker RM, et al. Creating and validating a DNA methylation-based proxy for interleukin-6. J Gerontol Ser Biol Sci Med Sci. 2021;76:2284–92.
doi: 10.1093/gerona/glab046
Conole ELS, Stevenson AJ, Maniega SM, Harris SE, Green C, del Hernández M, CV, et al. DNA methylation and protein markers of chronic inflammation and their associations with brain and cognitive aging. Neurology. 2021;97:e2340–52.
pubmed: 34789543
pmcid: 8665430
doi: 10.1212/WNL.0000000000012997
Green C, Shen X, Stevenson AJ, Conole ELS, Harris MA, Barbu MC, et al. Structural brain correlates of serum and epigenetic markers of inflammation in major depressive disorder. Brain Behav Immun. 2021;92:39–48.
pubmed: 33221487
pmcid: 7910280
doi: 10.1016/j.bbi.2020.11.024
Barker ED, Cecil CAM, Walton E, Houtepen LC, O’Connor TG, Danese A, et al. Inflammation-related epigenetic risk and child and adolescent mental health: a prospective study from pregnancy to middle adolescence. Dev Psychopathol. 2018;30:1145–56.
pubmed: 30068408
pmcid: 7612578
doi: 10.1017/S0954579418000330
Conole ELS, Vaher K, Blesa-Cábez M, Sullivan G, Stevenson AJ, Hall J, et al. Immuno-epigenetic signature derived in saliva associates with the encephalopathy of prematurity and perinatal inflammatory disorders. Brain Behav Immun. 2023;110:322–38.
pubmed: 36948324
doi: 10.1016/j.bbi.2023.03.011
Needham BL, Smith JA, Zhao W, Wang X, Mukherjee B, Kardia SLR, et al. Life course socioeconomic status and DNA methylation in genes related to stress reactivity and inflammation: the multi-ethnic study of atherosclerosis. Epigenetics. 2015;10:958–69.
pubmed: 26295359
pmcid: 4844216
doi: 10.1080/15592294.2015.1085139
Stringhini S, Polidoro S, Sacerdote C, Kelly RS, van Veldhoven K, Agnoli C, et al. Life-course socioeconomic status and DNA methylation of genes regulating inflammation. Int J Epidemiol. 2015;44:1320–30.
pubmed: 25889032
doi: 10.1093/ije/dyv060
McDade TW, Ryan C, Jones MJ, MacIsaac JL, Morin AM, Meyer JM, et al. Social and physical environments early in development predict DNA methylation of inflammatory genes in young adulthood. Proc Nat Acad Sci. 2017;114:7611–6.
pubmed: 28673994
pmcid: 5530653
doi: 10.1073/pnas.1620661114
Smith JA, Zhao W, Wang X, Ratliff SM, Mukherjee B, Kardia SLR, et al. Neighborhood characteristics influence DNA methylation of genes involved in stress response and inflammation: the multi-ethnic study of atherosclerosis. Epigenetics. 2017;12:662–73.
pubmed: 28678593
pmcid: 5687339
doi: 10.1080/15592294.2017.1341026
Joubert BR, Felix JF, Yousefi P, Bakulski KM, Just AC, Breton C, et al. DNA methylation in newborns and maternal smoking in pregnancy: genome-wide consortium meta-analysis. Am J Hum Genet. 2016;98:680–96.
pubmed: 27040690
pmcid: 4833289
doi: 10.1016/j.ajhg.2016.02.019
Howe CG, Cox B, Fore R, Jungius J, Kvist T, Lent S, et al. Maternal gestational diabetes mellitus and newborn DNA methylation: findings from the pregnancy and childhood epigenetics consortium. Diabetes Care. 2019;43:98–105.
pubmed: 31601636
pmcid: 6925578
doi: 10.2337/dc19-0524
Tobi EW, Juvinao-Quintero DL, Ronkainen J, Ott R, Alfano R, Canouil M, et al. Maternal glycemic dysregulation during pregnancy and neonatal blood DNA methylation: meta-analyses of epigenome-wide association studies. Diabetes Care. 2022;45:614–23.
pubmed: 35104326
pmcid: 8918264
doi: 10.2337/dc21-1701
Sasaki A, Murphy KE, Briollais L, McGowan PO, Matthews SG. DNA methylation profiles in the blood of newborn term infants born to mothers with obesity. PLoS ONE. 2022;17: e0267946.
pubmed: 35500004
pmcid: 9060365
doi: 10.1371/journal.pone.0267946
Godfrey KM, Reynolds RM, Prescott SL, Nyirenda M, Jaddoe VWV, Eriksson JG, et al. Influence of maternal obesity on the long-term health of offspring. Lancet Diabetes Endocrinol. 2017;5:53–64.
pubmed: 27743978
doi: 10.1016/S2213-8587(16)30107-3
Krumpolec P, Kodada D, Hadžega D, Petrovič O, Babišová K, Dosedla E, et al. Changes in DNA methylation associated with a specific mode of delivery: a pilot study. Front Med. 2024;11:1291429.
doi: 10.3389/fmed.2024.1291429
Chen Q, Ming Y, Gan Y, Huang L, Zhao Y, Wang X, et al. The impact of cesarean delivery on infant DNA methylation. BMC Pregnancy Childbirth. 2021;21:265.
pubmed: 33785011
pmcid: 8011183
doi: 10.1186/s12884-021-03748-y
Wheater ENW, Galdi P, McCartney DL, Blesa-Cábez M, Sullivan G, Stoye DQ, et al. DNA methylation in relation to gestational age and brain dysmaturation in preterm infants. Brain Commun. 2022;4(2):fcac056.
pubmed: 35402911
pmcid: 8984700
doi: 10.1093/braincomms/fcac056
Gadd DA, Smith HM, Mullin D, Chybowska O, Hillary RF, Kimenai DM, et al. DNAm scores for serum GDF15 and NT-proBNP levels associate with a range of traits affecting the body and brain. Medrxiv. 2023;43:1715.
Boardman JP, Hall J, Thrippleton MJ, Reynolds RM, Bogaert D, Davidson DJ, et al. Impact of preterm birth on brain development and long-term outcome: protocol for a cohort study in Scotland. BMJ Open. 2020;10: e035854.
pubmed: 32139495
pmcid: 7059503
doi: 10.1136/bmjopen-2019-035854
Scottish National Statistics. SIMD—Scottish index of multiple deprivation: SIMD16 technical notes. Edinburgh: Scottish National Statistics; 2016 pp 1–69
National Records of Scotland. Scotland’s Census [Internet]. 2020 [cited 2023 Nov 23]. Available from: https://www.scotlandscensus.gov.uk/search-the-census/
Lowe R, Gemma C, Beyan H, Hawa MI, Bazeos A, Leslie RD, et al. Buccals are likely to be a more informative surrogate tissue than blood for epigenome-wide association studies. Epigenetics. 2013;8:445–54.
pubmed: 23538714
pmcid: 3674053
doi: 10.4161/epi.24362
Braun PR, Han S, Hing B, Nagahama Y, Gaul LN, Heinzman JT, et al. Genome-wide DNA methylation comparison between live human brain and peripheral tissues within individuals. Transl Psychiat. 2019;9:47.
doi: 10.1038/s41398-019-0376-y
Pidsley R, Wong CCY, Volta M, Lunnon K, Mill J, Schalkwyk LC. A data-driven approach to preprocessing Illumina 450K methylation array data. BMC Genom. 2013;14:293.
doi: 10.1186/1471-2164-14-293
Zheng SC, Webster AP, Dong D, Feber A, Graham DG, Sullivan R, et al. A novel cell-type deconvolution algorithm reveals substantial contamination by immune cells in saliva, buccal and cervix. Epigenomics. 2018;10:925–40.
pubmed: 29693419
doi: 10.2217/epi-2018-0037
Katz DH, Robbins JM, Deng S, Tahir UA, Bick AG, Pampana A, et al. Proteomic profiling platforms head to head: leveraging genetics and clinical traits to compare aptamer- and antibody-based methods. Sci Adv. 2022;8:eabm5164.
pubmed: 35984888
pmcid: 9390994
doi: 10.1126/sciadv.abm5164
Haslam DE, Li J, Dillon ST, Gu X, Cao Y, Zeleznik OA, et al. Stability and reproducibility of proteomic profiles in epidemiological studies: comparing the Olink and SOMAscan platforms. Proteomics. 2022;22: e2100170.
pubmed: 35598103
pmcid: 9923770
doi: 10.1002/pmic.202100170
Raffield LM, Dang H, Pratte KA, Jacobson S, Gillenwater LA, Ampleford E, et al. Comparison of proteomic assessment methods in multiple cohort studies. Proteomics. 2020;20:1900278.
doi: 10.1002/pmic.201900278
Joshi A, Mayr M. In aptamers they trust: the caveats of the SOMAscan biomarker discovery platform from SomaLogic. Circulation. 2018;138:2482–5.
pubmed: 30524136
pmcid: 6277005
doi: 10.1161/CIRCULATIONAHA.118.036823
Hillary RF, Marioni RE. MethylDetectR: a software for methylation-based health profiling. Wellcome Open Res. 2021;5:283.
pubmed: 33969230
pmcid: 8080939
doi: 10.12688/wellcomeopenres.16458.2
Preacher KJ. Extreme groups designs. Encycl Clin Psychol. 2015;2015:1–4.
Fisher JE, Guha A, Heller W, Miller GA. Extreme-groups designs in studies of dimensional phenomena: advantages, caveats, and recommendations. J Abnorm Psychol. 2020;129:14–20.
pubmed: 31657600
doi: 10.1037/abn0000480
Mckinnon K, Conole ELS, Vaher K, Binkowska J, Sullivan G, Hillary R, et al. The relationship between socioeconomic status, preterm birth and systemic inflammation using DNA methylation proxies. 2023. OSF. https://doi.org/10.17605/OSF.IO/4JNFV .
Gao X, Becker LC, Becker DM, Starmer JD, Province MA. Avoiding the high Bonferroni penalty in genome-wide association studies. Genet Epidemiol. 2010;34:100–5.
pubmed: 19434714
pmcid: 2796708
doi: 10.1002/gepi.20430
Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, et al. The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2022;51:D638–46.
pmcid: 9825434
doi: 10.1093/nar/gkac1000
Kandasamy J, Roane C, Szalai A, Ambalavanan N. Serum eotaxin-1 is increased in extremely-low-birth-weight infants with bronchopulmonary dysplasia or death. Pediatr Res. 2015;78:498–504.
pubmed: 26270578
pmcid: 4628573
doi: 10.1038/pr.2015.152
Almudares F, Hagan J, Chen X, Devaraj S, Moorthy B, Lingappan K. Growth and differentiation factor 15 (GDF15) levels predict adverse respiratory outcomes in premature neonates. Pediatr Pulmonol. 2023;58:271–8.
pubmed: 36205439
doi: 10.1002/ppul.26197
Al-Mudares F, Reddick S, Ren J, Venkatesh A, Zhao C, Lingappan K. Role of growth differentiation factor 15 in lung disease and senescence: potential role across the lifespan. Front Med. 2020;7: 594137.
doi: 10.3389/fmed.2020.594137
Wan Y, Fu J. GDF15 as a key disease target and biomarker: linking chronic lung diseases and ageing. Mol Cell Biochem. 2023;479:453–66.
pubmed: 37093513
pmcid: 10123484
doi: 10.1007/s11010-023-04743-x
Zhang Y, Jiang W, Wang L, Lingappan K. Sex-specific differences in the modulation of growth differentiation factor 15 (GDF15) by hyperoxia in vivo and in vitro: role of Hif-1α. Toxicol Appl Pharm. 2017;332:8–14.
doi: 10.1016/j.taap.2017.07.016
Wang G, Wen B, Deng Z, Zhang Y, Kolesnichenko OA, Ustiyan V, et al. Endothelial progenitor cells stimulate neonatal lung angiogenesis through FOXF1-mediated activation of BMP9/ACVRL1 signaling. Nat Commun. 2022;13:2080.
pubmed: 35440116
pmcid: 9019054
doi: 10.1038/s41467-022-29746-y
Collaco JM, McGrath-Morrow SA, Griffiths M, Chavez-Valdez R, Parkinson C, Zhu J, et al. Perinatal inflammatory biomarkers and respiratory disease in preterm infants. J Pediatrics. 2022;246:34-39.e3.
doi: 10.1016/j.jpeds.2022.04.028
Oak P, Hilgendorff A. The BPD trio? Interaction of dysregulated PDGF, VEGF, and TGF signaling in neonatal chronic lung disease. Mol Cell Pediatrics. 2017;4:11.
doi: 10.1186/s40348-017-0076-8
Course CW, Lewis PA, Kotecha SJ, Cousins M, Hart K, Watkins WJ, et al. Characterizing the urinary proteome of prematurity-associated lung disease in school-aged children. Respir Res. 2023;24:191.
pubmed: 37474963
pmcid: 10357627
doi: 10.1186/s12931-023-02494-3
Bose CL, Dammann CEL, Laughon MM. Bronchopulmonary dysplasia and inflammatory biomarkers in the premature neonate. Arch Dis Child Fetal Neonatal Ed. 2008;93:F455.
pubmed: 18676410
doi: 10.1136/adc.2007.121327
Zasada M, Suski M, Bokiniec R, Szwarc-Duma M, Borszewska-Kornacka MK, Madej J, et al. Comparative two time-point proteome analysis of the plasma from preterm infants with and without bronchopulmonary dysplasia. Ital J Pediatr. 2019;45:112.
pubmed: 31445514
pmcid: 6708124
doi: 10.1186/s13052-019-0676-0
Lassus P, Heikkilä P, Andersson LC, von Boguslawski K, Andersson S. Lower concentration of pulmonary hepatocyte growth factor is associated with more severe lung disease in preterm infants. J Pediatr. 2003;143:199–202.
pubmed: 12970632
doi: 10.1067/S0022-3476(03)00297-X
Wagner BD, Babinec AE, Carpenter C, Gonzalez S, O’Brien G, Rollock K, et al. Proteomic profiles associated with early echocardiogram evidence of pulmonary vascular disease in preterm infants. Am J Respir Crit Care Med. 2018;197:394–7.
pubmed: 28650220
pmcid: 5811950
doi: 10.1164/rccm.201703-0654LE
Guasti L, Silvennoinen S, Bulstrode NW, Ferretti P, Sankilampi U, Dunkel L. Elevated FGF21 leads to attenuated postnatal linear growth in preterm infants through GH resistance in chondrocytes. J Clin Endocrinol Metab. 2014;99:E2198–206.
pubmed: 25137423
doi: 10.1210/jc.2014-1566
Spencer R, Maksym K, Hecher K, Maršál K, Figueras F, Ambler G, et al. Ultrasound and biochemical predictors of pregnancy outcome at diagnosis of early-onset fetal growth restriction. Medrxiv. 2023;2023:298.
Qiu Q, Bell M, Lu X, Yan X, Rodger M, Walker M, et al. Significance of IGFBP-4 in the development of fetal growth restriction. J Clin Endocrinol Metab. 2012;97:E1429–39.
pubmed: 22689691
doi: 10.1210/jc.2011-2511
Voller SB, Chock S, Ernst LM, Su E, Liu X, Farrow KN, et al. Cord blood biomarkers of vascular endothelial growth (VEGF and sFlt-1) and postnatal growth: a preterm birth cohort study. Early Hum Dev. 2014;90:195–200.
pubmed: 24480606
pmcid: 4096942
doi: 10.1016/j.earlhumdev.2014.01.003
Kim MJ, Romero R, Kim CJ, Tarca AL, Chhauy S, LaJeunesse C, et al. Villitis of unknown etiology is associated with a distinct pattern of chemokine up-regulation in the feto-maternal and placental compartments: implications for conjoint maternal allograft rejection and maternal anti-fetal graft-versus-host disease. J Immunol. 2009;182:3919–27.
pubmed: 19265171
doi: 10.4049/jimmunol.0803834
Romero R, Chaemsaithong P, Chaiyasit N, Docheva N, Dong Z, Kim CJ, et al. CXCL10 and IL-6: markers of two different forms of intra-amniotic inflammation in preterm labor. Am J Reprod Immunol. 2017;78: e12685.
pubmed: 28544362
pmcid: 5488235
doi: 10.1111/aji.12685
Sellmer A, Henriksen TB, Palmfeldt J, Bech BH, Astono J, Bennike TB, et al. The patent ductus arteriosus in extremely preterm neonates is more than a hemodynamic challenge: new molecular insights. Biomol. 2022;12:1179.
Olsson KW, Larsson A, Jonzon A, Sindelar R. Exploration of potential biochemical markers for persistence of patent ductus arteriosus in preterm infants at 22–27 weeks’ gestation. Pediatr Res. 2019;86:333–8.
pubmed: 30287890
doi: 10.1038/s41390-018-0182-x
Waleh N, Seidner S, McCurnin D, Giavedoni L, Hodara V, Goelz S, et al. Anatomic closure of the premature patent ductus arteriosus: the role of CD14+/CD163+ mononuclear cells and VEGF in neointimal mound formation. Pediatr Res. 2011;70:332–8.
pubmed: 21691249
pmcid: 3166370
doi: 10.1203/PDR.0b013e3182294471
Xu C, Su X, Chen Y, Xu Y, Wang Z, Mo X. Proteomics analysis of plasma protein changes in patent ductus arteriosus patients. Ital J Pediatr. 2020;46:64.
pubmed: 32430045
pmcid: 7236322
doi: 10.1186/s13052-020-00831-6
Cheng Y, Zhu X, Linghu D, Xu Y, Liang J. Serum levels of cytokines in infants treated with conbercept for retinopathy of prematurity. Sci Rep-uk. 2020;10:12695.
doi: 10.1038/s41598-020-69684-7
Sato T, Kusaka S, Shimojo H, Fujikado T. Simultaneous analyses of vitreous levels of 27 cytokines in eyes with retinopathy of prematurity. Ophthalmology. 2009;116:2165–9.
pubmed: 19700197
doi: 10.1016/j.ophtha.2009.04.026
Rathi S, Jalali S, Patnaik S, Shahulhameed S, Musada GR, Balakrishnan D, et al. Abnormal complement activation and inflammation in the pathogenesis of retinopathy of prematurity. Front Immunol. 2017;8:1868.
pubmed: 29312345
pmcid: 5743907
doi: 10.3389/fimmu.2017.01868
The Royal College of Ophthalmologists. Treating Retinopathy of Prematurity in the UK. The Royal College of Ophthalmologists; 2022
Rivera JC, Holm M, Austeng D, Morken TS, Zhou Ellen T, Beaudry-Richard A, et al. Retinopathy of prematurity: inflammation, choroidal degeneration, and novel promising therapeutic strategies. J Neuroinflamm. 2017;14:165.
doi: 10.1186/s12974-017-0943-1
Klerk DH, Plösch T, Verkaik-Schakel RN, Hulscher JBF, Kooi EMW, Bos AF. DNA methylation of TLR4, VEGFA, and DEFA5 is associated with necrotizing enterocolitis in preterm infants. Front Pediat. 2021;9: 630817.
doi: 10.3389/fped.2021.630817
Olaloye OO, Liu P, Toothaker JM, McCourt BT, McCourt CC, Xiao J, et al. CD16+CD163+ monocytes traffic to sites of inflammation during necrotizing enterocolitis in premature infants. J Exp Med. 2021;218: e20200344.
pubmed: 34269788
pmcid: 8289692
doi: 10.1084/jem.20200344
Pammi M, Suresh G. Enteral lactoferrin supplementation for prevention of sepsis and necrotizing enterocolitis in preterm infants. Cochrane Db Syst Rev. 2020;3:CD007137.
Satrom KM, Ennis K, Sweis BM, Matveeva TM, Chen J, Hanson L, et al. Neonatal hyperglycemia induces CXCL10/CXCR3 signaling and microglial activation and impairs long-term synaptogenesis in the hippocampus and alters behavior in rats. J Neuroinflamm. 2018;15:82.
doi: 10.1186/s12974-018-1121-9
Groselj-Grenc M, Ihan A, Derganc M. Neutrophil and monocyte CD64 and CD163 expression in critically Ill neonates and children with sepsis: comparison of fluorescence intensities and calculated indexes. Mediat Inflamm. 2008;2008: 202646.
doi: 10.1155/2008/202646
Kingsmore SF, Kennedy N, Halliday HL, Velkinburgh JCV, Zhong S, Gabriel V, et al. Identification of diagnostic biomarkers for infection in premature neonates. Mol Cell Proteomics. 2008;7:1863–75.
pubmed: 18622029
pmcid: 2559932
doi: 10.1074/mcp.M800175-MCP200
Zilow EP, Hauck W, Linderkamp O, Zilow G. Alternative pathway activation of the complement system in preterm infants with early onset infection. Pediatr Res. 1997;41:334–9.
pubmed: 9078531
doi: 10.1203/00006450-199703000-00005
Mohammed A, Okwor I, Shan L, Onyilagha C, Uzonna JE, Gounni AS. Semaphorin 3E regulates the response of macrophages to lipopolysaccharide-induced systemic inflammation. J Immunol. 2020;204:128–36.
pubmed: 31776203
doi: 10.4049/jimmunol.1801514
Leviton A, Allred EN, Fichorova RN, O’Shea TM, Fordham LA, Kuban KKC, et al. Circulating biomarkers in extremely preterm infants associated with ultrasound indicators of brain damage. Eur J Paediatr Neuro. 2018;22:440–50.
doi: 10.1016/j.ejpn.2018.01.018
Schultz SJ, Aly H, Hasanen BM, Khashaba MT, Lear SC, Bendon RW, et al. Complement component 9 activation, consumption, and neuronal deposition in the post-hypoxic–ischemic central nervous system of human newborn infants. Neurosci Lett. 2005;378:1–6.
pubmed: 15763162
doi: 10.1016/j.neulet.2004.12.008
Morales DM, Townsend RR, Malone JP, Ewersmann CA, Macy EM, Inder TE, et al. Alterations in protein regulators of neurodevelopment in the cerebrospinal fluid of infants with posthemorrhagic hydrocephalus of prematurity. Mol Cell Proteom. 2012;11:M1110.11973.
doi: 10.1074/mcp.M111.011973
Ochoa TJ, Sizonenko SV. Lactoferrin and prematurity: a promising milk protein? Biochem Cell Biol. 2017;95:22–30.
pubmed: 28085488
doi: 10.1139/bcb-2016-0066
Che X, Hornig M, Bresnahan M, Stoltenberg C, Magnus P, Surén P, et al. Maternal mid-gestational and child cord blood immune signatures are strongly associated with offspring risk of ASD. Mol Psychiatr. 2022;27:1527–41.
doi: 10.1038/s41380-021-01415-4
Leviton A, Joseph RM, Fichorova RN, Allred EN, Taylor HG, O’Shea TM, et al. Executive dysfunction early postnatal biomarkers among children born extremely preterm. J Neuroimmune Pharm. 2019;14:188–99.
doi: 10.1007/s11481-018-9804-7
Allred EN, Dammann O, Fichorova RN, Hooper SR, Hunter SJ, Joseph RM, et al. Systemic inflammation during the first postnatal month and the risk of attention deficit hyperactivity disorder characteristics among 10 year-old children born extremely preterm. J Neuroimmune Pharm. 2017;12:531–43.
doi: 10.1007/s11481-017-9742-9
Aly H, Khashaba M, Nada A, Hasanen B, McCarter R, Schultz S, et al. The role of complement in neurodevelopmental impairment following neonatal hypoxic-ischemic encephalopathy. Am J Perinatol. 2009;26:659–65.
pubmed: 19391086
doi: 10.1055/s-0029-1220793
Limbrick DD, Morales DM, Shannon CN, Wellons JC, Kulkarni AV, Alvey JS, et al. Cerebrospinal fluid NCAM-1 concentration is associated with neurodevelopmental outcome in post-hemorrhagic hydrocephalus of prematurity. PLoS ONE. 2021;16: e0247749.
pubmed: 33690655
pmcid: 7946285
doi: 10.1371/journal.pone.0247749
Voegele AF, Jerković L, Wellenzohn B, Eller P, Kronenberg F, Liedl KR, et al. Characterization of the vitazmin E-binding properties of human plasma afamin. Biochemistry. 2002;41:14532–8.
pubmed: 12463752
doi: 10.1021/bi026513v
Paetau S, Rolova T, Ning L, Gahmberg CG. Neuronal ICAM-5 inhibits microglia adhesion and phagocytosis and promotes an anti-inflammatory response in LPS stimulated microglia. Front Mol Neurosci. 2017;10:431.
pubmed: 29311819
pmcid: 5743933
doi: 10.3389/fnmol.2017.00431
Skeel A, Yoshimura T, Showalter SD, Tanaka S, Appella E, Leonard EJ. Macrophage stimulating protein: purification, partial amino acid sequence, and cellular activity. J Exp Med. 1991;173:1227–34.
pubmed: 1827141
doi: 10.1084/jem.173.5.1227
Kronenberg F, Kollerits B, Kiechl S, Lamina C, Kedenko L, Meisinger C, et al. Plasma concentrations of afamin are associated with the prevalence and development of metabolic syndrome. Circ Cardiovasc Genet. 2018;7:822–9.
doi: 10.1161/CIRCGENETICS.113.000654
Montez JK, Bromberger JT, Harlow SD, Kravitz HM, Matthews KA. Life-course socioeconomic status and metabolic syndrome among midlife women. J Gerontol: Ser B. 2016;71:1097–107.
doi: 10.1093/geronb/gbw014
Castagné R, Delpierre C, Kelly-Irving M, Campanella G, Guida F, Krogh V, et al. A life course approach to explore the biological embedding of socioeconomic position and social mobility through circulating inflammatory markers. Sci Rep. 2016;6:25170.
pubmed: 27117519
pmcid: 4846829
doi: 10.1038/srep25170
Leviton A, Allred EN, Dammann O, Joseph RM, Fichorova RN, O’Shea TM, et al. Socioeconomic status and early blood concentrations of inflammation-related and neurotrophic proteins among extremely preterm newborns. PLoS ONE. 2019;14: e0214154.
pubmed: 30913246
pmcid: 6435168
doi: 10.1371/journal.pone.0214154
Chybowska AD, Gadd DA, Cheng Y, Bernabeu E, Campbell A, Walker RM, et al. Epigenetic contributions to clinical risk prediction of cardiovascular disease. Circ Genom Precis Med. 2024;17:004265.
doi: 10.1161/CIRCGEN.123.004265
Cheng Y, Gadd DA, Gieger C, Monterrubio-Gómez K, Zhang Y, Berta I, et al. Development and validation of DNA methylation scores in two European cohorts augment 10-year risk prediction of type 2 diabetes. Nat Aging. 2023;3:450–8.
pubmed: 37117793
doi: 10.1038/s43587-023-00391-4
Smith HM, Moodie JE, Monterrubio-Gómez K, Gadd DA, Hillary RF, Chybowska AD, et al. Epigenetic scores of blood-based proteins as biomarkers of general cognitive function and brain health. Clin Epigenet. 2024;16:46.
doi: 10.1186/s13148-024-01661-7
Cross B, Turner R, Pirmohamed M. Polygenic risk scores: an overview from bench to bedside for personalised medicine. Front Genet. 2022;13:1000667.
pubmed: 36437929
pmcid: 9692112
doi: 10.3389/fgene.2022.1000667
Lewis CM, Vassos E. Polygenic risk scores: from research tools to clinical instruments. Genome Med. 2020;12:44.
pubmed: 32423490
pmcid: 7236300
doi: 10.1186/s13073-020-00742-5
Yousefi PD, Suderman M, Langdon R, Whitehurst O, Smith GD, Relton CL. DNA methylation-based predictors of health: applications and statistical considerations. Nat Rev Genet. 2022;23:369–83.
pubmed: 35304597
doi: 10.1038/s41576-022-00465-w
Suarez A, Lahti J, Lahti-Pulkkinen M, Girchenko P, Czamara D, Arloth J, et al. A polyepigenetic glucocorticoid exposure score at birth and childhood mental and behavioral disorders. Neurobiol Stress. 2020;13: 100275.
pubmed: 33344728
pmcid: 7739178
doi: 10.1016/j.ynstr.2020.100275
Blostein FA, Fisher J, Dou J, Schneper L, Ware EB, Notterman DA, et al. Polymethylation scores for prenatal maternal smoke exposure persist until age 15 and are detected in saliva in the Fragile Families and Child Wellbeing cohort. Epigenetics. 2022;17:2223–40.
pubmed: 35980258
pmcid: 9665138
doi: 10.1080/15592294.2022.2112815