Modulation of gut microbiota composition and predicted metabolic capacity after nutritional programming with a plant-rich diet in Atlantic salmon (Salmo salar): insights across developmental stages.
Atlantic salmon
First feeding
Fishmeal
Intestinal microbiota
Metabolic programming
Microbio
Nutritional history
Nutritional programming
Plant-based diet
Vegetable-based diet
Journal
Animal microbiome
ISSN: 2524-4671
Titre abrégé: Anim Microbiome
Pays: England
ID NLM: 101759457
Informations de publication
Date de publication:
01 Jul 2024
01 Jul 2024
Historique:
received:
12
01
2024
accepted:
05
06
2024
medline:
2
7
2024
pubmed:
2
7
2024
entrez:
2
7
2024
Statut:
epublish
Résumé
To promote sustainable aquaculture, the formulation of Atlantic salmon (Salmo salar) feeds has changed in recent decades, focusing on replacing standard marine-based ingredients with plant-based alternatives, increasingly demonstrating successful outcomes in terms of fish performance. However, little is known about how these plant-based diets may impact the gut microbiota at first feeding and onwards. Nutritional programming (NP) is one strategy applied for exposing fish to a plant-based (V) diet at an early stage in life to promote full utilisation of plant-based ingredients and prevent potential adverse impacts of exposure to a plant-rich diet later in life. We investigated the impact of NP on gut microbiota by introducing fish to plant ingredients (V fish) during first feeding for a brief period of two weeks (stimulus phase) and compared those to fish fed a marine-based diet (M fish). Results demonstrated that V fish not only maintained growth performance at 16 (intermediate phase) and 22 (challenge phase) weeks post first feeding (wpff) when compared to M fish but also modulated gut microbiota. PERMANOVA general effects revealed gut microbiota dissimilarity by fish group (V vs. M fish) and phases (stimulus vs. intermediate vs. challenge). However, no interaction effect of both groups and phases was demonstrated, suggesting a sustained impact of V diet (nutritional history) on fish across time points/phases. Moreover, the V diet exerted a significant cumulative modulatory effect on the Atlantic salmon gut microbiota at 16 wpff that was not demonstrated at two wpff, although both fish groups were fed the M diet at 16 wpff. The nutritional history/dietary regime is the main NP influencing factor, whereas environmental and host factors significantly impacted microbiota composition in M fish. Microbial metabolic reactions of amino acid metabolism were higher in M fish when compared to V fish at two wpff suggesting microbiota played a role in digesting the essential amino acids of M feed. The excessive mucin O-degradation revealed in V fish at two wpff was mitigated in later life stages after NP, suggesting physiological adaptability and tolerance to V diet. Future studies are required to explore more fully how the microbiota functionally contributes to the NP.
Identifiants
pubmed: 38951941
doi: 10.1186/s42523-024-00321-8
pii: 10.1186/s42523-024-00321-8
doi:
Types de publication
Journal Article
Langues
eng
Pagination
38Subventions
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/R018812/1
Pays : United Kingdom
Informations de copyright
© 2024. The Author(s).
Références
Hardy RW. Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal. Aquac Res. 2010;41:770–6.
doi: 10.1111/j.1365-2109.2009.02349.x
Naylor RL, Hardy RW, Bureau DP, Chiu A, Elliott M, Farrell AP, et al. Feeding aquaculture in an era of finite resources. Proc Natl Acad Sci. 2009;106:15103–10.
pubmed: 19805247
pmcid: 2741212
doi: 10.1073/pnas.0905235106
Naylor RL, Hardy RW, Buschmann AH, Bush SR, Cao L, Klinger DH, et al. A 20-year retrospective review of global aquaculture. Nature. 2021;591:551–63.
pubmed: 33762770
doi: 10.1038/s41586-021-03308-6
Fry JP, Love DC, MacDonald GK, West PC, Engstrom PM, Nachman KE, et al. Environmental health impacts of feeding crops to farmed fish. Environ Int. 2016;91:201–14.
pubmed: 26970884
doi: 10.1016/j.envint.2016.02.022
Dimina L, Rémond D, Huneau J-F, Mariotti F. Combining plant proteins to achieve amino acid profiles adapted to various nutritional objectives—An exploratory analysis using linear programming. Front Nutr. 2022;8.
Egerton S, Wan A, Murphy K, Collins F, Ahern G, Sugrue I, et al. Replacing fishmeal with plant protein in Atlantic salmon (Salmo salar) diets by supplementation with fish protein hydrolysate. Sci Rep. 2020;10:4194.
pubmed: 32144276
pmcid: 7060232
doi: 10.1038/s41598-020-60325-7
Francis G, Makkar HPS, Becker K. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture. 2001;199:197.
doi: 10.1016/S0044-8486(01)00526-9
Nagappan S, Das P, AbdulQuadir M, Thaher M, Khan S, Mahata C, et al. Potential of microalgae as a sustainable feed ingredient for aquaculture. J Biotechnol. 2021;341:1–20.
pubmed: 34534593
doi: 10.1016/j.jbiotec.2021.09.003
Pratoomyot J, Bendiksen EÅ, Bell JG, Tocher DR. Effects of increasing replacement of dietary fishmeal with plant protein sources on growth performance and body lipid composition of Atlantic salmon (Salmo salar L). Aquaculture. 2010;305:124–32.
doi: 10.1016/j.aquaculture.2010.04.019
Alhazzaa R, Nichols PD, Carter CG. Sustainable alternatives to dietary fish oil in tropical fish aquaculture. Rev Aquac. 2019;11:1195–218.
doi: 10.1111/raq.12287
Napier JA, Haslam RP, Olsen R-E, Tocher DR, Betancor MB. Agriculture can help aquaculture become greener. Nat Food. 2020;1:680–3.
pubmed: 37128041
doi: 10.1038/s43016-020-00182-9
Al-Thobaiti A, Al-Ghanim K, Ahmed Z, Suliman EM, Mahboob S. Impact of replacing fish meal by a mixture of different plant protein sources on the growth performance in Nile Tilapia (Oreochromis niloticus L.) diets. Braz J Biol Rev Brasleira Biol. 2018;78:525–34.
Cardona E, Segret E, Cachelou Y, Vanderesse T, Larroquet L, Hermann A, et al. Effect of micro-algae Schizochytrium sp. supplementation in plant diet on reproduction of female rainbow trout (Oncorhynchus mykiss): maternal programming impact of progeny. J Anim Sci Biotechnol. 2022;13:33.
pubmed: 35264245
pmcid: 8908652
doi: 10.1186/s40104-022-00680-9
Espe M, Lemme A, Petri A, El-Mowafi A. Can Atlantic salmon (Salmo salar) grow on diets devoid of fish meal? Aquaculture. 2006;255:255–62.
doi: 10.1016/j.aquaculture.2005.12.030
Furuya WM, Pezzato LE, Barros MM, Pezzato AC, Furuya VRB, Miranda EC. Use of ideal protein concept for precision formulation of amino acid levels in fish-meal-free diets for juvenile Nile tilapia (Oreochromis niloticus L). Aquac Res. 2004;35:1110–6.
doi: 10.1111/j.1365-2109.2004.01133.x
Nunes AJP, Sá MVC, Browdy CL, Vazquez-Anon M. Practical supplementation of shrimp and fish feeds with crystalline amino acids. Aquaculture. 2014;431:20–7.
doi: 10.1016/j.aquaculture.2014.04.003
Samtiya M, Aluko RE, Dhewa T. Plant food anti-nutritional factors and their reduction strategies: an overview. Food Prod Process Nutr. 2020;2:6.
doi: 10.1186/s43014-020-0020-5
Savolainen LC, Gatlin DM. Evaluation of sulfur amino acid and zinc supplements to soybean-meal-based diets for hybrid striped bass. Aquaculture. 2010;307:260–5.
doi: 10.1016/j.aquaculture.2010.07.027
Hou Z, Fuiman LA. Nutritional programming in fishes: insights from mammalian studies. Rev Fish Biol Fish. 2020;30:67–92.
doi: 10.1007/s11160-019-09590-y
Clarkson M, Migaud H, Metochis C, Vera LM, Leeming D, Tocher DR, et al. Early nutritional intervention can improve utilisation of vegetable-based diets in diploid and triploid Atlantic salmon (Salmo salar L). Br J Nutr. 2017;118:17–29.
pubmed: 28735572
pmcid: 5565931
doi: 10.1017/S0007114517001842
Geurden I, Borchert P, Balasubramanian MN, Schrama JW, Dupont-Nivet M, Quillet E, et al. The positive impact of the early-feeding of a plant-based Diet on its Future Acceptance and Utilisation in Rainbow Trout. PLoS ONE. 2013;8:e83162.
pubmed: 24386155
pmcid: 3873907
doi: 10.1371/journal.pone.0083162
Izquierdo MS, Turkmen S, Montero D, Zamorano MJ, Afonso JM, Karalazos V, et al. Nutritional programming through broodstock diets to improve utilization of very low fishmeal and fish oil diets in gilthead sea bream. Aquaculture. 2015;449:18–26.
doi: 10.1016/j.aquaculture.2015.03.032
Kumar S, J. Sándor Z, Biró J, Gyalog G, Kumar Sinha A, De Boeck G. Does nutritional history impact on future performance and utilization of plant based diet in common carp? Aquaculture. 2022;551:737935.
doi: 10.1016/j.aquaculture.2022.737935
Kwasek K, Wojno M, Iannini F, McCracken VJ, Molinari GS, Terova G. Nutritional programming improves dietary plant protein utilization in zebrafish Danio rerio. PLoS ONE. 2020;15:e0225917.
pubmed: 32142555
pmcid: 7059923
doi: 10.1371/journal.pone.0225917
Molinari GS, Wojno M, Kwasek K. The use of live food as a vehicle of soybean meal for nutritional programming of largemouth bass Micropterus salmoides. Sci Rep. 2021;11:10899.
pubmed: 34035318
pmcid: 8149696
doi: 10.1038/s41598-021-89803-2
Perera E, Yúfera M. Soybean meal and soy protein concentrate in early Diet Elicit different Nutritional Programming effects on juvenile zebrafish. Zebrafish. 2016;13:61–9.
pubmed: 26716770
doi: 10.1089/zeb.2015.1131
Butt RL, Volkoff H. Gut microbiota and energy homeostasis in fish. Front Endocrinol. 2019;10.
Legrand TPRA, Wynne JW, Weyrich LS, Oxley APA. A microbial sea of possibilities: current knowledge and prospects for an improved understanding of the fish microbiome. Rev Aquac. 2020;12:1101–34.
doi: 10.1111/raq.12375
López Nadal A, Ikeda-Ohtsubo W, Sipkema D, Peggs D, McGurk C, Forlenza M et al. Feed, microbiota, and gut immunity: Using the zebrafish model to understand fish health. Front Immunol. 2020;11.
Pérez T, Balcázar JL, Ruiz-Zarzuela I, Halaihel N, Vendrell D, de Blas I, et al. Host–microbiota interactions within the fish intestinal ecosystem. Mucosal Immunol. 2010;3:355–60.
pubmed: 20237466
doi: 10.1038/mi.2010.12
Sommer F, Bäckhed F. The gut microbiota — masters of host development and physiology. Nat Rev Microbiol. 2013;11:227–38.
pubmed: 23435359
doi: 10.1038/nrmicro2974
Yu Y-Y, Ding L-G, Huang Z-Y, Xu H-Y, Xu Z. Commensal bacteria-immunity crosstalk shapes mucosal homeostasis in teleost fish. Rev Aquac. 2021;13:2322–43.
doi: 10.1111/raq.12570
Chen C-Z, Li P, Liu L, Li Z-H. Exploring the interactions between the gut microbiome and the shifting surrounding aquatic environment in fisheries and aquaculture: a review. Environ Res. 2022;214:114202.
pubmed: 36030922
doi: 10.1016/j.envres.2022.114202
Hanning I, Diaz-Sanchez S. The functionality of the gastrointestinal microbiome in non-human animals. Microbiome. 2015;3:51.
pubmed: 26552373
pmcid: 4640220
doi: 10.1186/s40168-015-0113-6
Perry WB, Lindsay E, Payne CJ, Brodie C, Kazlauskaite R. The role of the gut microbiome in sustainable teleost aquaculture. Proc R Soc B Biol Sci. 2020;287:20200184.
doi: 10.1098/rspb.2020.0184
Kononova SV, Zinchenko DV, Muranova TA, Belova NA, Miroshnikov AI. Intestinal microbiota of salmonids and its changes upon introduction of soy proteins to fish feed. Aquac Int. 2019;27:475–96.
doi: 10.1007/s10499-019-00341-1
Zhou Z, Ringø E, e. Olsen R, k. Song S. Dietary effects of soybean products on gut microbiota and immunity of aquatic animals: a review. Aquac Nutr. 2018;24:644–65.
doi: 10.1111/anu.12532
Dehler CE, Secombes CJ, Martin SAM. Environmental and physiological factors shape the gut microbiota of Atlantic salmon parr (Salmo salar L). Aquaculture. 2017;467:149–57.
pubmed: 28111483
pmcid: 5142738
doi: 10.1016/j.aquaculture.2016.07.017
Navarrete P, Espejo RT, Romero J. Molecular analysis of Microbiota along the Digestive Tract of Juvenile Atlantic Salmon (Salmo salar L). Microb Ecol. 2009;57:550–61.
pubmed: 18797955
doi: 10.1007/s00248-008-9448-x
Desai AR, Links MG, Collins SA, Mansfield GS, Drew MD, Van Kessel AG, et al. Effects of plant-based diets on the distal gut microbiome of rainbow trout (Oncorhynchus mykiss). Aquaculture. 2012;350–353:134–42.
doi: 10.1016/j.aquaculture.2012.04.005
Green TJ, Smullen R, Barnes AC. Dietary soybean protein concentrate-induced intestinal disorder in marine farmed Atlantic salmon, Salmo salar is associated with alterations in gut microbiota. Vet Microbiol. 2013;166:286–92.
pubmed: 23810699
doi: 10.1016/j.vetmic.2013.05.009
Hartviksen M, Vecino Jl. g., Ringø E, Bakke A-M, Wadsworth S, Krogdahl Å et al. Alternative dietary protein sources for Atlantic salmon (Salmo salar L.) effect on intestinal microbiota, intestinal and liver histology and growth. Aquac Nutr. 2014;20:381–98.
Larios-Soriano E, Zavala RC, López LM, Gómez-Gil B, Ramírez DT, Sanchez S, et al. Soy protein concentrate effects on gut microbiota structure and digestive physiology of Totoaba macdonaldi. J Appl Microbiol. 2022;132:1384–96.
pubmed: 34469017
doi: 10.1111/jam.15269
Król E, Douglas A, Tocher DR, Crampton VO, Speakman JR, Secombes CJ, et al. Differential responses of the gut transcriptome to plant protein diets in farmed Atlantic salmon. BMC Genomics. 2016;17:156.
pubmed: 26925977
pmcid: 4772681
doi: 10.1186/s12864-016-2473-0
Kwasek K, Wojno M, Patula S, Oliaro F, Cabay C, Pinnell LJ. The Effect of First Feeding exposure of Larval Largemouth Bass to a formulated soybean meal-based or soy saponin-supplemented Diet on Fish Growth Performance and Gut Microbiome. North Am J Aquac. 2021;83:312–26.
doi: 10.1002/naaq.10200
Kwasek K, Patula S, Wojno M, Oliaro F, Cabay C, Pinnell LJ. Does exposure of broodstock to dietary soybean meal affect its utilization in the offspring of zebrafish (Danio rerio)? Animals. 2022;12:1475.
pubmed: 35739814
pmcid: 9219465
doi: 10.3390/ani12121475
Michl SC, Ratten J-M, Beyer M, Hasler M, LaRoche J, Schulz C. The malleable gut microbiome of juvenile rainbow trout (Oncorhynchus mykiss): Diet-dependent shifts of bacterial community structures. PLoS ONE. 2017;12:e0177735.
pubmed: 28498878
pmcid: 5428975
doi: 10.1371/journal.pone.0177735
Michl SC, Beyer M, Ratten J-M, Hasler M, LaRoche J, Schulz C. A diet-change modulates the previously established bacterial gut community in juvenile brown trout (Salmo trutta). Sci Rep. 2019;9:2339.
pubmed: 30787388
pmcid: 6382790
doi: 10.1038/s41598-019-38800-7
Patula S, Wojno M, Pinnell LJ, Oliaro F, Cabay C, Molinari GS, et al. Nutritional programming with dietary soybean meal and its effect on gut microbiota in zebrafish (Danio rerio). Zebrafish. 2021;18:125–38.
pubmed: 33761297
doi: 10.1089/zeb.2020.1952
Geurden I, Mennigen J, Plagnes-Juan E, Veron V, Cerezo T, Mazurais D, et al. High or low dietary carbohydrate:protein ratios during first-feeding affect glucose metabolism and intestinal microbiota in juvenile rainbow trout. J Exp Biol. 2014;217:3396–406.
pubmed: 25274323
doi: 10.1242/jeb.106062
McMillan S, Martin SAM, Król E, Norambuena F, Baumgärtner S, Gong X, et al. Can nutritional programming in Atlantic salmon (Salmo salar) be optimised with a reduced stimulus period? Aquaculture. 2024;585:740686.
doi: 10.1016/j.aquaculture.2024.740686
Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:e1.
pubmed: 22933715
doi: 10.1093/nar/gks808
Lorgen-Ritchie M, Clarkson M, Chalmers L, Taylor JF, Migaud H, Martin SAM. A temporally dynamic gut microbiome in atlantic salmon during freshwater recirculating aquaculture system (RAS) production and post-seawater transfer. Front Mar Sci. 2021;8.
Krueger F, James F, Ewels P, Afyounian E, Schuster-Boeckler B. FelixKrueger/TrimGalore: v0.6.7. Zenodo; 2021. https://zenodo.org/record/5127899 .
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–2.
doi: 10.14806/ej.17.1.200
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.
pubmed: 27214047
pmcid: 4927377
doi: 10.1038/nmeth.3869
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–596.
pubmed: 23193283
doi: 10.1093/nar/gks1219
Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome. 2018;6:226.
pubmed: 30558668
pmcid: 6298009
doi: 10.1186/s40168-018-0605-2
Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014;12:87.
pubmed: 25387460
pmcid: 4228153
doi: 10.1186/s12915-014-0087-z
Callahan. Singletons still present after dada2. Qiime2. 2018. https://forum.qiime2.org/t/singletons-still-present-after-dada2/4308 .
Heidrich V, Karlovsky P, Beule L. SRS’ R Package and ‘q2-srs’ QIIME 2 Plugin: normalization of Microbiome Data using scaling with ranked Subsampling (SRS). Appl Sci. 2021;11:11473.
doi: 10.3390/app112311473
Liu C, Cui Y, Li X, Yao M. Microeco: an R package for data mining in microbial community ecology. FEMS Microbiol Ecol. 2021;97:fiaa255.
pubmed: 33332530
doi: 10.1093/femsec/fiaa255
McMurdie PJ, Holmes S. Phyloseq: an R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE. 2013;8:e61217.
pubmed: 23630581
pmcid: 3632530
doi: 10.1371/journal.pone.0061217
Bray JR, Curtis JT. An ordination of the Upland Forest Communities of Southern Wisconsin. Ecol Monogr. 1957;27:326–49.
doi: 10.2307/1942268
Yilmaz B, Juillerat P, Øyås O, Ramon C, Bravo FD, Franc Y, et al. Microbial network disturbances in relapsing refractory Crohn’s disease. Nat Med. 2019;25:323–36.
pubmed: 30664783
doi: 10.1038/s41591-018-0308-z
Magnúsdóttir S, Heinken A, Kutt L, Ravcheev DA, Bauer E, Noronha A, et al. Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nat Biotechnol. 2017;35:81–9.
pubmed: 27893703
doi: 10.1038/nbt.3703
Agboola JO, Rocha SDC, Mensah DD, Hansen JØ, Øyås O, Lapeña D, et al. Effect of yeast species and processing on intestinal microbiota of Atlantic salmon (Salmo salar) fed soybean meal-based diets in seawater. Anim Microbiome. 2023;5:21.
pubmed: 37016467
pmcid: 10074822
doi: 10.1186/s42523-023-00242-y
R Core Team. R: A language and environment for statistical computing. [Internet]. R Foundation for Statistical Computing, Vienna, Austria. 2021. https://www.R-project.org/ .
Mann HB, Whitney DR. On a test of whether one of two Random variables is stochastically larger than the other. Ann Math Stat. 1947;18:50–60.
doi: 10.1214/aoms/1177730491
Benjamini Y, Hochberg Y. Controlling the false Discovery rate: a practical and powerful Approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57:289–300.
doi: 10.1111/j.2517-6161.1995.tb02031.x
Oksanen J, Simpson GL, Blanchet FG, Kindt R, Legendre P, Minchin PR et al. vegan: Community Ecology Package. 2022. https://CRAN.R-project.org/package=vegan .
Salazar G, EcolUtils. Utilities for community ecology analysis. 2023. https://github.com/GuillemSalazar/EcolUtils .
Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. 2020;17:261–72.
pubmed: 32015543
pmcid: 7056644
doi: 10.1038/s41592-019-0686-2
Ghanbari M, Kneifel W, Domig KJ. A new view of the fish gut microbiome: advances from next-generation sequencing. Aquaculture. 2015;448:464–75.
doi: 10.1016/j.aquaculture.2015.06.033
Bolnick DI, Snowberg LK, Hirsch PE, Lauber CL, Org E, Parks B, et al. Individual diet has sex-dependent effects on vertebrate gut microbiota. Nat Commun. 2014;5:4500.
pubmed: 25072318
doi: 10.1038/ncomms5500
Yan Q, Li J, Yu Y, Wang J, He Z, Van Nostrand JD, et al. Environmental filtering decreases with fish development for the assembly of gut microbiota. Environ Microbiol. 2016;18:4739–54.
pubmed: 27130138
doi: 10.1111/1462-2920.13365
Lokesh J, Kiron V, Sipkema D, Fernandes JMO, Moum T. Succession of embryonic and the intestinal bacterial communities of Atlantic salmon (Salmo salar) reveals stage-specific microbial signatures. MicrobiologyOpen. 2019;8:e00672.
pubmed: 29897674
doi: 10.1002/mbo3.672
Wong S, Stephens WZ, Burns AR, Stagaman K, David LA, Bohannan BJM, et al. Ontogenetic Differences in Dietary Fat Influence Microbiota Assembly in the zebrafish gut. mBio. 2015;6:e00687–00615.
pubmed: 26419876
pmcid: 4611033
doi: 10.1128/mBio.00687-15
Stephens WZ, Burns AR, Stagaman K, Wong S, Rawls JF, Guillemin K, et al. The composition of the zebrafish intestinal microbial community varies across development. ISME J. 2016;10:644–54.
pubmed: 26339860
doi: 10.1038/ismej.2015.140
Torrecillas S, Rimoldi S, Montero D, Serradell A, Acosta F, Fontanillas R, et al. Genotype x nutrition interactions in European sea bass (Dicentrarchus labrax): effects on gut health and intestinal microbiota. Aquaculture. 2023;574:739639.
doi: 10.1016/j.aquaculture.2023.739639
Naya-Català F, Piazzon MC, Torrecillas S, Toxqui-Rodríguez S, Calduch-Giner JÀ, Fontanillas R, et al. Genetics and Nutrition drive the gut microbiota succession and host-transcriptome interactions through the Gilthead Sea Bream (Sparus aurata) production cycle. Biology. 2022;11:1744.
pubmed: 36552254
pmcid: 9774573
doi: 10.3390/biology11121744
Gajardo K, Rodiles A, Kortner TM, Krogdahl Å, Bakke AM, Merrifield DL, et al. A high-resolution map of the gut microbiota in Atlantic salmon (Salmo salar): a basis for comparative gut microbial research. Sci Rep. 2016;6:30893.
pubmed: 27485205
pmcid: 4971465
doi: 10.1038/srep30893
Li Y, Bruni L, Jaramillo-Torres A, Gajardo K, Kortner TM, Krogdahl Å. Differential response of digesta- and mucosa-associated intestinal microbiota to dietary insect meal during the seawater phase of Atlantic salmon. Anim Microbiome. 2021;3:8.
pubmed: 33500000
pmcid: 7934271
doi: 10.1186/s42523-020-00071-3
Ingerslev H-C, Strube ML, Jørgensen L, von Dalsgaard G, Boye I, Madsen M. Diet type dictates the gut microbiota and the immune response against Yersinia ruckeri in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2014;40:624–33.
pubmed: 25150450
doi: 10.1016/j.fsi.2014.08.021
Gajardo K, Jaramillo-Torres A, Kortner TM, Merrifield DL, Tinsley J, Bakke AM, et al. Alternative protein sources in the Diet modulate Microbiota and Functionality in the distal intestine of Atlantic Salmon (Salmo salar). Appl Environ Microbiol. 2017;83:e02615–16.
pubmed: 27986728
pmcid: 5311410
doi: 10.1128/AEM.02615-16
Belkaid Y, Hand TW. Role of the Microbiota in immunity and inflammation. Cell. 2014;157:121–41.
pubmed: 24679531
pmcid: 4056765
doi: 10.1016/j.cell.2014.03.011
Montalban-Arques A, De Schryver P, Bossier P, Gorkiewicz G, Mulero V, Gatlin DM et al. Selective manipulation of the gut microbiota improves immune status in vertebrates. Front Immunol. 2015;6.
Purchiaroni F, Tortora A, Gabrielli M, Bertucci F, Gigante G, Ianiro G, et al. The role of intestinal microbiota and the immune system. Eur Rev Med Pharmacol Sci. 2013;17:323–33.
pubmed: 23426535
Ringø E, Harikrishnan R, Soltani M, Ghosh K. The Effect of Gut Microbiota and Probiotics on metabolism in fish and shrimp. Animals. 2022;12:3016.
pubmed: 36359140
pmcid: 9655696
doi: 10.3390/ani12213016
Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9:313–23.
pubmed: 19343057
pmcid: 4095778
doi: 10.1038/nri2515
Ni J, Yan Q, Yu Y, Zhang T. Factors influencing the grass carp gut microbiome and its effect on metabolism. FEMS Microbiol Ecol. 2014;87:704–14.
pubmed: 24256454
doi: 10.1111/1574-6941.12256
Muegge BD, Kuczynski J, Knights D, Clemente JC, González A, Fontana L, et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science. 2011;332:970–4.
pubmed: 21596990
pmcid: 3303602
doi: 10.1126/science.1198719
Wheeler KM, Cárcamo-Oyarce G, Turner BS, Dellos-Nolan S, Co JY, Lehoux S, et al. Mucin glycans attenuate the virulence of Pseudomonas aeruginosa in infection. Nat Microbiol. 2019;4:2146–54.
pubmed: 31611643
pmcid: 7157942
doi: 10.1038/s41564-019-0581-8
Pestova MI, Clift RE, Vickers RJ, Franklin MA, Mathew AG. Effect of weaning and dietary galactose supplementation on digesta glycoproteins in pigs. J Sci Food Agric. 2000;80:1918–24.
doi: 10.1002/1097-0010(200010)80:13<1918::AID-JSFA731>3.0.CO;2-B
Xia B, Zhong R, Wu W, Luo C, Meng Q, Gao Q, et al. Mucin O-glycan-microbiota axis orchestrates gut homeostasis in a diarrheal pig model. Microbiome. 2022;10:139.
pubmed: 36045454
pmcid: 9429786
doi: 10.1186/s40168-022-01326-8
Yamada T, Hino S, Iijima H, Genda T, Aoki R, Nagata R, et al. Mucin O-glycans facilitate symbiosynthesis to maintain gut immune homeostasis. EBioMedicine. 2019;48:513–25.
pubmed: 31521614
pmcid: 6838389
doi: 10.1016/j.ebiom.2019.09.008
Matchado MS, Rühlemann M, Reitmeier S, Kacprowski T, Frost F, Haller D, et al. On the limits of 16S rRNA gene-based metagenome prediction and functional profiling. Microb Genomics. 2024;10:001203.
doi: 10.1099/mgen.0.001203
Chistoserdova L. Functional metagenomics: recent advances and Future challenges. Biotechnol Genet Eng Rev. 2009;26:335–52.
doi: 10.5661/bger-26-335
Jovel J, Patterson J, Wang W, Hotte N, O’Keefe S, Mitchel T et al. Characterization of the gut microbiome using 16S or shotgun metagenomics. Front Microbiol. 2016;7.