Self-Sampling by Adolescents at Home: Assessment of the Feasibility to Successfully Collect Blood Microsamples by Inexperienced Individuals.


Journal

The AAPS journal
ISSN: 1550-7416
Titre abrégé: AAPS J
Pays: United States
ID NLM: 101223209

Informations de publication

Date de publication:
02 Jul 2024
Historique:
received: 28 03 2024
accepted: 13 06 2024
medline: 3 7 2024
pubmed: 3 7 2024
entrez: 2 7 2024
Statut: epublish

Résumé

Blood microsampling has increasingly attracted interest in the past decades as a more patient-centric sampling approach, offering the possibility to collect a minimal volume of blood following a finger or arm prick at home. In addition to conventional dried blood spots (DBS), many different devices allowing self-sampling of blood have become available. Obviously, the success of home-sampling can only be assured when (inexperienced) users collect samples of good quality. Therefore, the feasibility of six different microsampling devices to collect capillary blood by inexperienced adolescents at home was evaluated. Participants (n = 95) were randomly assigned to collect blood (dried or liquid) at different time points using four of six different self-sampling devices (i.e., DBS, Mitra volumetric absorptive microsampling (VAMS), Capitainer B, Tasso M20, Minicollect tube and Tasso

Identifiants

pubmed: 38955903
doi: 10.1208/s12248-024-00947-1
pii: 10.1208/s12248-024-00947-1
doi:

Types de publication

Journal Article Randomized Controlled Trial

Langues

eng

Sous-ensembles de citation

IM

Pagination

75

Informations de copyright

© 2024. The Author(s), under exclusive licence to American Association of Pharmaceutical Scientists.

Références

Guthrie R, Susi A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics. 1963;32:338–43.
doi: 10.1542/peds.32.3.338 pubmed: 14063511
Takahashi K, Hattori N, Yokoyama H, Jinno F, Ohtsuka H, Nakai K, et al. Impact of microsampling on toxicological evaluation in rodent safety studies. J Appl Toxicol. 2024;44(1):118–28. https://doi.org/10.1002/jat.4523 .
doi: 10.1002/jat.4523 pubmed: 37548051
Stove CP, Ingels AS, De Kesel PM, Lambert WE. Dried blood spots in toxicology: from the cradle to the grave? Crit Rev Toxicol. 2012;42(3):230–43. https://doi.org/10.3109/10408444.2011.650790 .
doi: 10.3109/10408444.2011.650790 pubmed: 22348353
Sadones N, Capiau S, De Kesel PM, Lambert WE, Stove CP. Spot them in the spot: analysis of abused substances using dried blood spots. Bioanalysis. 2014;6(17):2211–27. https://doi.org/10.4155/bio.14.156 .
doi: 10.4155/bio.14.156 pubmed: 25383733
Thevis M, Kuuranne T, Geyer H. Annual banned-substance review: Analytical approaches in human sports drug testing 2020/2021. Drug Test Anal. 2022;14(1):7–30. https://doi.org/10.1002/dta.3199 .
doi: 10.1002/dta.3199 pubmed: 34788500
Tey HY, See HH. A review of recent advances in microsampling techniques of biological fluids for therapeutic drug monitoring. J Chromatogr A. 2021;1635:461731. https://doi.org/10.1016/j.chroma.2020.461731 .
doi: 10.1016/j.chroma.2020.461731 pubmed: 33285415
Müller IR, Linden G, Charão MF, Antunes MV, Linden R. Dried blood spot sampling for therapeutic drug monitoring: challenges and opportunities. Expert Rev Clin Pharmacol. 2023;16(8):691–701. https://doi.org/10.1080/17512433.2023.2224562 .
doi: 10.1080/17512433.2023.2224562 pubmed: 37300458
Vidal A, Belova L, Stove C, De Boevre M, De Saeger S. Volumetric absorptive microsampling as an alternative tool for biomonitoring of multi-mycotoxin exposure in resource-limited areas. Toxins (Basel). 2021;13(5). https://doi.org/10.3390/toxins13050345 .
Koutsimpani-Wagner A, Quartucci C, Rooney JPK, Bose-O’Reilly S, Rakete S. Mercury biomonitoring in German adults using volumetric absorptive microsampling. Environ Monit Assess. 2022;194(4):315. https://doi.org/10.1007/s10661-022-09962-1 .
doi: 10.1007/s10661-022-09962-1 pubmed: 35355133 pmcid: 8969040
González-Rubio JM, Domínguez-Morueco N, Pedraza-Díaz S, Cañas Portilla A, Lucena M, Rodriguez A, et al. A simple method for direct mercury analysis in dried blood spots (DBS) samples for human biomonitoring studies. Environ Int. 2023;177:107958. https://doi.org/10.1016/j.envint.2023.107958 .
doi: 10.1016/j.envint.2023.107958 pubmed: 37285712
Partington JM, Marchiandi J, Szabo D, Gooley A, Kouremenos K, Smith F, et al. Validating blood microsampling for per- and polyfluoroalkyl substances quantification in whole blood. J Chromatogr A. 2024;1713:464522. https://doi.org/10.1016/j.chroma.2023.464522 .
doi: 10.1016/j.chroma.2023.464522 pubmed: 38041975
De Kesel PM, Sadones N, Capiau S, Lambert WE, Stove CP. Hemato-critical issues in quantitative analysis of dried blood spots: challenges and solutions. Bioanalysis. 2013;5(16):2023–41. https://doi.org/10.4155/bio.13.156 .
doi: 10.4155/bio.13.156 pubmed: 23937137
Velghe S, Delahaye L, Stove CP. Is the hematocrit still an issue in quantitative dried blood spot analysis? J Pharm Biomed Anal. 2019;163:188–96. https://doi.org/10.1016/j.jpba.2018.10.010 .
doi: 10.1016/j.jpba.2018.10.010 pubmed: 30317075
Delahaye L, Veenhof H, Koch BCP, Alffenaar JC, Linden R, Stove C. Alternative sampling devices to collect dried blood microsamples: state-of-the-art. Ther Drug Monit. 2021;43(3):310–21. https://doi.org/10.1097/ftd.0000000000000864 .
doi: 10.1097/ftd.0000000000000864 pubmed: 33470777
Thangavelu MU, Wouters B, Kindt A, Reiss IKM, Hankemeier T. Blood microsampling technologies: innovations and applications in 2022. Anal Sci Adv. 2023;4(5–6):154–80. https://doi.org/10.1002/ansa.202300011 .
doi: 10.1002/ansa.202300011 pubmed: 38716066 pmcid: 10989553
Zuur MA, Veenhof H, Aleksa A, Vanʼt Boveneind-Vrubleuskaya N, Darmawan E, Hasnain MG, et al. Quality assessment of dried blood spots from patients with tuberculosis from 4 countries. Ther Drug Monit. 2019;41(6):714–8. https://doi.org/10.1097/ftd.0000000000000659 .
doi: 10.1097/ftd.0000000000000659 pubmed: 31169760
Veenhof H, Koster RA, Junier LAT, Berger SP, Bakker SJL, Touw DJ. Volumetric absorptive microsampling and dried blood spot microsampling vs. conventional venous sampling for tacrolimus trough concentration monitoring. Clin Chem Lab Med. 2020;58(10):1687–95. https://doi.org/10.1515/cclm-2019-1260 .
doi: 10.1515/cclm-2019-1260 pubmed: 32412437
Delahaye L, Stove C. Alternative sampling strategies in therapeutic drug monitoring: Microsampling growing toward maturity. Ther Drug Monit. 2021;43(3):307–9. https://doi.org/10.1097/ftd.0000000000000893 .
doi: 10.1097/ftd.0000000000000893 pubmed: 33973965
Van Uytfanghe K, Heughebaert L, Stove CP. Self-sampling at home using volumetric absorptive microsampling: coupling analytical evaluation to volunteers’ perception in the context of a large scale study. Clin Chem Lab Med. 2021;59(5):e185–7. https://doi.org/10.1515/cclm-2020-1180 .
doi: 10.1515/cclm-2020-1180 pubmed: 33112777
Boons C, Timmers L, Janssen J, Swart EL, Hugtenburg JG, Hendrikse NH. Feasibility of and patients’ perspective on nilotinib dried blood spot self-sampling. Eur J Clin Pharmacol. 2019;75(6):825–9. https://doi.org/10.1007/s00228-019-02640-1 .
doi: 10.1007/s00228-019-02640-1 pubmed: 30729257
Otten AT, van der Meulen HH, Steenhuis M, Loeff FC, Touw DJ, Kosterink JGW, et al. Clinical validation of a capillary blood home-based self-sampling technique for monitoring of Infliximab, Vedolizumab, and C-reactive protein concentrations in patients with inflammatory bowel disease. Inflamm Bowel Dis. 2023. https://doi.org/10.1093/ibd/izad103 .
doi: 10.1093/ibd/izad103 pubmed: 36762763 pmcid: 10906358
Mohammed T, Brewer JVV, Pyatt M, Whitbourne SB, Gaziano JM, Edson C, et al. Evaluation of independent self-collected blood specimens for COVID-19 antibody detection among the US veteran population. Diagn Microbiol Infect Dis. 2022;104(2):115770. https://doi.org/10.1016/j.diagmicrobio.2022.115770 .
doi: 10.1016/j.diagmicrobio.2022.115770 pubmed: 35985109 pmcid: 9287846
Capiau S, Stove VV, Lambert WE, Stove CP. Prediction of the hematocrit of dried blood spots via potassium measurement on a routine clinical chemistry analyzer. Anal Chem. 2013;85(1):404–10. https://doi.org/10.1021/ac303014b .
doi: 10.1021/ac303014b pubmed: 23190205
Delahaye L, Heughebaert L, Luhr C, Lambrecht S, Stove CP. Near-infrared-based hematocrit prediction of dried blood spots: an in-depth evaluation. Clin Chim Acta. 2021;523:239–46. https://doi.org/10.1016/j.cca.2021.10.002 .
doi: 10.1016/j.cca.2021.10.002 pubmed: 34624275
Boffel L, Heughebaert L, Lambrecht S, Luginbühl M, Stove CP. In-depth evaluation of automated non-contact reflectance-based hematocrit prediction of dried blood spots. Analyst. 2022;147(23):5445–54. https://doi.org/10.1039/d2an01642g .
doi: 10.1039/d2an01642g pubmed: 36317701
Heughebaert L, Boffel L, Lühr C, Lambrecht S, Stove C. Near-infrared-based hematocrit determination of dried blood samples collected by volumetric absorptive microsampling: an in-depth evaluation. Microchem J. 2024. https://doi.org/10.2139/ssrn.4735643 .
Johar RS, Smith RP. Assessing gravimetric estimation of intraoperative blood loss. J Gynecol Surg. 1993;9(3):151–4. https://doi.org/10.1089/gyn.1993.9.151 .
doi: 10.1089/gyn.1993.9.151 pubmed: 10171989
Ekins R. Immunoassay design and optimization. In: Price CP, Newman DJ, editors. Principles and Practice of Immunoassay. London: Palgrave Macmillan UK; 1991. pp. 96–153.
Deprez S, Heughebaert L, Boffel L, Stove CP. Application of non-contact hematocrit prediction technologies to overcome hematocrit effects on immunosuppressant quantification from dried blood spots. Talanta. 2023;254:124111. https://doi.org/10.1016/j.talanta.2022.124111 .
doi: 10.1016/j.talanta.2022.124111 pubmed: 36462285
The Royal College of Pathologists of Australasia Quality Assurance Programs. Pathology Tests 2024 [cited date: 14 March 2024]. https://www.rcpa.edu.au/Manuals/RCPA-Manual/Pathology-Tests .
Verougstraete N, Lapauw B, Van Aken S, Delanghe J, Stove C, Stove V. Volumetric absorptive microsampling at home as an alternative tool for the monitoring of HbA1c in diabetes patients. Clin Chem Lab Med. 2017;55(3):462–9. https://doi.org/10.1515/cclm-2016-0411 .
doi: 10.1515/cclm-2016-0411 pubmed: 27732552
Verougstraete N, Stove V, Stove C. Wet absorptive microsampling at home for HbA1c monitoring in diabetic children. Clin Chem Lab Med. 2018;56(12):e291–4. https://doi.org/10.1515/cclm-2018-0207 .
doi: 10.1515/cclm-2018-0207 pubmed: 29902153
Veenhof H, van Boven JFM, van der Voort A, Berger SP, Bakker SJL, Touw DJ. Effects, costs and implementation of monitoring kidney transplant patients’ tacrolimus levels with dried blood spot sampling: a randomized controlled hybrid implementation trial. Br J Clin Pharmacol. 2020;86(7):1357–66. https://doi.org/10.1111/bcp.14249 .
doi: 10.1111/bcp.14249 pubmed: 32077134 pmcid: 7318995
Verstraete J, Stove C. Volumetric absorptive microsampling (VAMS) as a reliable tool to assess thiamine status in dried blood microsamples: a comparative study. Am J Clin Nutr. 2021;114(3):1200–7. https://doi.org/10.1093/ajcn/nqab146 .
doi: 10.1093/ajcn/nqab146 pubmed: 34020458
Wieske L, van Dam KPJ, Steenhuis M, Stalman EW, Kummer LYL, van Kempen ZLE, et al. Humoral responses after second and third SARS-CoV-2 vaccination in patients with immune-mediated inflammatory disorders on immunosuppressants: a cohort study. Lancet Rheumatol. 2022;4(5):e338–50. https://doi.org/10.1016/s2665-9913(22)00034-0 .
doi: 10.1016/s2665-9913(22)00034-0 pubmed: 35317410 pmcid: 8930018
Groenendijk WN, Griffin TP, Islam MN, Blake L, Wall D, Bell M, et al. Remote capillary blood collection for HbA(1c) measurement during the COVID-19 pandemic: a laboratory and patient perspective. Diabet Med. 2022;39(8):e14897. https://doi.org/10.1111/dme.14897 .
doi: 10.1111/dme.14897 pubmed: 35686665 pmcid: 9347990
Vethe NT, Åsberg A, Andersen AM, Heier Skauby R, Bergan S, Midtvedt K. Clinical performance of volumetric finger-prick sampling for the monitoring of tacrolimus, creatinine and haemoglobin in kidney transplant recipients. Br J Clin Pharmacol. 2023;89(12):3690–701. https://doi.org/10.1111/bcp.15870 .
doi: 10.1111/bcp.15870 pubmed: 37537150
Kromdijk W, Mulder JW, Smit PM, Ter Heine R, Beijnen JH, Huitema AD. Therapeutic drug monitoring of antiretroviral drugs at home using dried blood spots: a proof-of-concept study. Antivir Ther. 2013;18(6):821–5. https://doi.org/10.3851/imp2501 .
doi: 10.3851/imp2501 pubmed: 23234680
Solheim SA, Ringsted TK, Nordsborg NB, Dehnes Y, Levernaes MCS, Mørkeberg J. No pain, just gain: painless, easy, and fast dried blood spot collection from fingertip and upper arm in doping control. Drug Test Anal. 2021;13(10):1783–90. https://doi.org/10.1002/dta.3135 .
doi: 10.1002/dta.3135 pubmed: 34346172
Heughebaert L, Stove CP. Is the stability of folates in dried blood microsamples sufficient to perform home-sampling studies? Analyst. 2024;149(3):895–908. https://doi.org/10.1039/d3an01004j .
doi: 10.1039/d3an01004j pubmed: 38189100
Capiau S, Veenhof H, Koster RA, Bergqvist Y, Boettcher M, Halmingh O, et al. Official International Association for Therapeutic Drug Monitoring and Clinical Toxicology Guideline: Development and validation of dried blood spot-based methods for therapeutic drug monitoring. Ther Drug Monit. 2019;41(4):409–30. https://doi.org/10.1097/Ftd.0000000000000643 .
doi: 10.1097/Ftd.0000000000000643 pubmed: 31268966

Auteurs

Laura Boffel (L)

Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ottergemsesteenweg 46, Ghent, B-9000, Belgium.

Anskje Van Mensel (A)

Provincial Institute of Hygiene, Antwerp, Belgium.

Janne Pauwels (J)

VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium.

Elly Den Hond (E)

Provincial Institute of Hygiene, Antwerp, Belgium.

Jos Bessems (J)

VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium.

Katleen Van Uytfanghe (K)

Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ottergemsesteenweg 46, Ghent, B-9000, Belgium.

Christophe P Stove (CP)

Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ottergemsesteenweg 46, Ghent, B-9000, Belgium. christophe.stove@ugent.be.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH