A prognostic model for anoikis-related genes in pancreatic cancer.
Anoikis
ICGC-PACA
Pancreatic cancer
Prognostic model
TCGA-PAAD
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
02 07 2024
02 07 2024
Historique:
received:
18
04
2024
accepted:
26
06
2024
medline:
3
7
2024
pubmed:
3
7
2024
entrez:
2
7
2024
Statut:
epublish
Résumé
Anoikis, a distinct form of programmed cell death, is crucial for both organismal development and maintaining tissue equilibrium. Its role extends to the proliferation and progression of cancer cells. This study aimed to establish an anoikis-related prognostic model to predict the prognosis of pancreatic cancer (PC) patients. Gene expression data and patient clinical profiles were sourced from The Cancer Genome Atlas (TCGA-PAAD: Pancreatic Adenocarcinoma) and the International Cancer Genome Consortium (ICGC-PACA: Pancreatic Ductal Adenocarcinoma). Non-cancerous pancreatic tissue gene expression data were obtained from the Genotype-Tissue Expression (GTEx) project. The R package was used to construct anoikis-related PC prognostic models, which were later validated with the ICGC-PACA database. Survival analyses demonstrated a poorer prognosis for patients in the high-risk group, consistent across both TCGA-PAAD and ICGC-PACA datasets. A nomogram was designed as a predictive tool to estimate patient mortality. The study also analyzed tumor mutations and immune infiltration across various risk groups, uncovering notable differences in tumor mutation patterns and immune landscapes between high- and low-risk groups. In conclusion, this research successfully developed a prognostic model centered on anoikis-related genes, offering a novel tool for predicting the clinical trajectory of PC patients.
Identifiants
pubmed: 38956290
doi: 10.1038/s41598-024-65981-7
pii: 10.1038/s41598-024-65981-7
doi:
Substances chimiques
Biomarkers, Tumor
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
15200Informations de copyright
© 2024. The Author(s).
Références
Stoffel, E. M., Brand, R. E. & Goggins, M. Pancreatic cancer: Changing epidemiology and new approaches to risk assessment, early detection, and prevention. Gastroenterology 164(5), 752–765. https://doi.org/10.1053/j.gastro.2023.02.012 (2023).
doi: 10.1053/j.gastro.2023.02.012
pubmed: 36804602
Grossberg, A. J. et al. Multidisciplinary standards of care and recent progress in pancreatic ductal adenocarcinoma. CA Cancer J. Clin. 70(5), 375–403. https://doi.org/10.3322/caac.21626 (2020).
doi: 10.3322/caac.21626
pubmed: 32683683
pmcid: 7722002
Park, W., Chawla, A. & O’Reilly, E. M. Pancreatic cancer: A review. JAMA 326(9), 851–862. https://doi.org/10.1001/jama.2021.13027 (2021).
doi: 10.1001/jama.2021.13027
pubmed: 34547082
pmcid: 9363152
Klein, A. P. Pancreatic cancer epidemiology: Understanding the role of lifestyle and inherited risk factors. Nat. Rev. Gastroenterol. Hepatol. 18(7), 493–502. https://doi.org/10.1038/s41575-021-00457-x (2021).
doi: 10.1038/s41575-021-00457-x
pubmed: 34002083
pmcid: 9265847
Henriksen, A. et al. Checkpoint inhibitors in pancreatic cancer. Cancer Treat. Rev. 78, 17–30 (2019).
doi: 10.1016/j.ctrv.2019.06.005
pubmed: 31325788
Di, A. et al. Immunotherapy in pancreatic cancer: Why do we keep failing? A focus on tumor immune microenvironment predictive biomarkers and treatment outcomes. Cancers (Basel) 14(10), 2429. https://doi.org/10.3390/cancers14102429 (2022).
doi: 10.3390/cancers14102429
Farrow, B., Albo, D. & Berger, D. H. The role of the tumor microenvironment in the progression of pancreatic cancer. J. Surg. Res. 149(2), 319–328. https://doi.org/10.1016/j.jss.2007.12.757 (2008).
doi: 10.1016/j.jss.2007.12.757
pubmed: 18639248
Fearon, D. T. The carcinoma-associated fibroblast expressing fibroblast activation protein and escape from immune surveillance. Cancer Immunol. Res. 2(3), 187–193. https://doi.org/10.1158/2326-6066.CIR-14-0002 (2014).
doi: 10.1158/2326-6066.CIR-14-0002
pubmed: 24778314
Blando, J. et al. Comparison of immune infiltrates in melanoma and pancreatic cancer highlights VISTA as a potential target in pancreatic cancer. Proc. Natl. Acad. Sci. U.S.A. 116(5), 1692–1697. https://doi.org/10.1073/pnas.1811067116 (2019).
doi: 10.1073/pnas.1811067116
pubmed: 30635425
pmcid: 6358697
Vonderheide, R. H. The immune revolution: a case for priming not checkpoint. Cancer Cell 33(4), 563–569. https://doi.org/10.1016/j.ccell.2018.03.008 (2018).
doi: 10.1016/j.ccell.2018.03.008
pubmed: 29634944
pmcid: 5898647
Byrne, K. T. & Vonderheide, R. H. CD40 stimulation obviates innate sensors and drives T cell immunity in cancer. Cell Rep. 15(12), 2719–2732. https://doi.org/10.1016/j.celrep.2016.05.058 (2016).
doi: 10.1016/j.celrep.2016.05.058
pubmed: 27292635
pmcid: 4917417
Winograd, R. et al. Induction of T-cell Immunity overcomes complete resistance to PD-1 and CTLA-4 blockade and improves survival in pancreatic carcinoma. Cancer Immunol. Res. 3(4), 399–411. https://doi.org/10.1158/2326-6066.CIR-14-0215 (2015).
doi: 10.1158/2326-6066.CIR-14-0215
pubmed: 25678581
pmcid: 4390506
O’Hara, M. H. et al. CD40 agonistic monoclonal antibody APX005M (sotigalimab) and chemotherapy, with or without nivolumab, for the treatment of metastatic pancreatic adenocarcinoma: An open-label, multicentre, phase 1b study. Lancet Oncol. 22(1), 118–131. https://doi.org/10.1016/S1470-2045(20)30532-5 (2021).
doi: 10.1016/S1470-2045(20)30532-5
pubmed: 33387490
Weiss, G. J. et al. Phase Ib/II study of gemcitabine, nab-paclitaxel, and pembrolizumab in metastatic pancreatic adenocarcinoma. Investig. New Drugs 36(1), 96–102. https://doi.org/10.1007/s10637-017-0525-1 (2018).
doi: 10.1007/s10637-017-0525-1
Renouf, D. J. et al. The CCTG PA.7 phase II trial of gemcitabine and nab-paclitaxel with or without durvalumab and tremelimumab as initial therapy in metastatic pancreatic ductal adenocarcinoma. Nat. Commun. 13(1), 5020. https://doi.org/10.1038/s41467-022-32591-8 (2022).
doi: 10.1038/s41467-022-32591-8
pubmed: 36028483
pmcid: 9418247
Haller, S. D., Monaco, M. L. & Essani, K. The present status of immuno-oncolytic viruses in the treatment of pancreatic cancer. Viruses 12(11), 1318. https://doi.org/10.3390/v12111318 (2020).
doi: 10.3390/v12111318
pubmed: 33213031
pmcid: 7698570
Khotskaya, Y. B. et al. Targeting TRK family proteins in cancer. Pharmacol. Ther. 173, 58–66. https://doi.org/10.1016/j.pharmthera.2017.02.006 (2017).
doi: 10.1016/j.pharmthera.2017.02.006
pubmed: 28174090
Nakagawara, A. Trk receptor tyrosine kinases: A bridge between cancer and neural development. Cancer Lett. 169(2), 107–114. https://doi.org/10.1016/s0304-3835(01)00530-4 (2001).
doi: 10.1016/s0304-3835(01)00530-4
pubmed: 11431098
Zito Marino, F. et al. NTRK fusions, from the diagnostic algorithm to innovative treatment in the era of precision medicine. Int. J. Mol. Sci. 21(10), 3718. https://doi.org/10.3390/ijms21103718 (2020).
doi: 10.3390/ijms21103718
pubmed: 32466202
pmcid: 7279365
Cocco, E., Scaltriti, M. & Drilon, A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat. Rev. Clin. Oncol. 15(12), 731–747. https://doi.org/10.1038/s41571-018-0113-0 (2018).
doi: 10.1038/s41571-018-0113-0
pubmed: 30333516
pmcid: 6419506
Scott, L. J. Larotrectinib: First global approval. Drugs 79(2), 201–206. https://doi.org/10.1007/s40265-018-1044-x (2019).
doi: 10.1007/s40265-018-1044-x
pubmed: 30635837
Taddei, M. L. et al. Anoikis: An emerging hallmark in health and diseases. J. Pathol. 226(2), 380–393. https://doi.org/10.1002/path.3000 (2012).
doi: 10.1002/path.3000
pubmed: 21953325
Ye, G. et al. Nuclear myh9-induced ctnnb1 transcription, targeted by staurosporin, promotes gastric cancer cell anoikis resistance and metastasis. Theranostics 10(17), 7545–7560. https://doi.org/10.7150/thno.46001 (2020).
doi: 10.7150/thno.46001
pubmed: 32685004
pmcid: 7359096
Jin, L. et al. The plag1-gdh1 axis promotes anoikis resistance and tumor metastasis through camkk2-ampk signaling in lkb1-deficient lung cancer. Mol. Cell 69(1), 87-99 e87. https://doi.org/10.1016/j.molcel.2017.11.025 (2018).
doi: 10.1016/j.molcel.2017.11.025
pubmed: 29249655
Xu, J. et al. Prongf sirna inhibits cell proliferation and invasion of pancreatic cancer cells and promotes anoikis. Biomed. Pharmacother. 111, 1066–1073. https://doi.org/10.1016/j.biopha.2019.01.002 (2019).
doi: 10.1016/j.biopha.2019.01.002
pubmed: 30841420
Advancing on pancreatic cancer. Nat Rev Gastroenterol Hepatol, 18(7): 447. https://doi.org/10.1038/s41575-021-00479-5 (2021).
Zhong, X. & Rescorla, F. J. Cell surface adhesion molecules and adhesion-initiated signaling: Understanding of anoikis resistance mechanisms and therapeutic opportunities. Cell Signal 24(2), 393–401. https://doi.org/10.1016/j.cellsig.2011.10.005 (2012).
doi: 10.1016/j.cellsig.2011.10.005
pubmed: 22024283
Adeshakin, F. O. et al. Mechanisms for modulating anoikis resistance in cancer and the relevance of metabolic reprogramming. Front. Oncol. https://doi.org/10.3389/fonc.2021.626577 (2021).
doi: 10.3389/fonc.2021.626577
pubmed: 33854965
pmcid: 8039382
Wang, J. et al. Anoikis-associated lung cancer metastasis: Mechanisms and therapies. Cancers (Basel) https://doi.org/10.3390/cancers14194791 (2022).
doi: 10.3390/cancers14194791
pubmed: 36612290
pmcid: 10468097
Dai, Y. et al. Anoikis resistance––protagonists of breast cancer cells survive and metastasize after ecm detachment. Cell Commun. Signal. https://doi.org/10.1186/s12964-023-01183-4 (2023).
doi: 10.1186/s12964-023-01183-4
pubmed: 37904190
pmcid: 10399053
Kawataki, T. et al. Laminin isoforms and their integrin receptors in glioma cell migration and invasiveness: Evidence for a role of alpha5-laminin(s) and alpha3beta1 integrin. Exp. Cell Res. 313(18), 3819–3831. https://doi.org/10.1016/j.yexcr.2007.07.038 (2007).
doi: 10.1016/j.yexcr.2007.07.038
pubmed: 17888902
Zhang, G., Li, B. & Lin, Y. Evaluation of itga3 as a biomarker of progression and recurrence in papillary thyroid carcinoma. Front. Oncol. 11, 614955. https://doi.org/10.3389/fonc.2021.614955 (2021).
doi: 10.3389/fonc.2021.614955
pubmed: 35174063
Tian, L. et al. Microrna-199a-5p suppresses cell proliferation, migration and invasion by targeting itga3 in colorectal cancer. Mol. Med. Rep. 22(3), 2307–2317. https://doi.org/10.3892/mmr.2020.11323 (2020).
doi: 10.3892/mmr.2020.11323
pubmed: 32705201
pmcid: 7411411
Kurozumi, A. et al. Tumor-suppressive microrna-223 inhibits cancer cell migration and invasion by targeting itga3/itgb1 signaling in prostate cancer. Cancer Sci. 107(1), 84–94. https://doi.org/10.1111/cas.12842 (2016).
doi: 10.1111/cas.12842
pubmed: 26509963
Koshizuka, K. et al. Regulation of itga3 by the anti-tumor mir-199 family inhibits cancer cell migration and invasion in head and neck cancer. Cancer Sci. 108(8), 1681–1692. https://doi.org/10.1111/cas.13298 (2017).
doi: 10.1111/cas.13298
pubmed: 28612520
pmcid: 5543473
Huang, Y. et al. High expression of itga3 promotes proliferation and cell cycle progression and indicates poor prognosis in intrahepatic cholangiocarcinoma. Biomed Res. Int. 2018, 2352139. https://doi.org/10.1155/2018/2352139 (2018).
doi: 10.1155/2018/2352139
pubmed: 29511671
pmcid: 5817212
Du, J. et al. Silencing of integrin subunit alpha3 inhibits the proliferation, invasion, migration and autophagy of esophageal squamous cell carcinoma cells. Oncol. Lett. 24(2), 271. https://doi.org/10.3892/ol.2022.13391 (2022).
doi: 10.3892/ol.2022.13391
pubmed: 35782901
pmcid: 9247671
Jiao, Y. et al. Itga3 serves as a diagnostic and prognostic biomarker for pancreatic cancer. Onco Targets Ther. 12, 4141–4152. https://doi.org/10.2147/OTT.S201675 (2019).
doi: 10.2147/OTT.S201675
pubmed: 31213833
pmcid: 6549486
Willms, A. et al. Trail-receptor 2-a novel negative regulator of p53. Cell Death Dis. 12(8), 757. https://doi.org/10.1038/s41419-021-04048-1 (2021).
doi: 10.1038/s41419-021-04048-1
pubmed: 34333527
pmcid: 8325694
Thapa, B., Kc, R. & Uludag, H. Trail therapy and prospective developments for cancer treatment. J. Control Release 326, 335–349. https://doi.org/10.1016/j.jconrel.2020.07.013 (2020).
doi: 10.1016/j.jconrel.2020.07.013
pubmed: 32682900
Oh, Y. T. & Sun, S. Y. Regulation of cancer metastasis by trail/death receptor signaling. Biomolecules https://doi.org/10.3390/biom11040499 (2021).
doi: 10.3390/biom11040499
pubmed: 34068780
pmcid: 8151263
Hoogwater, F. J. et al. Oncogenic k-ras turns death receptors into metastasis-promoting receptors in human and mouse colorectal cancer cells. Gastroenterology 138(7), 2357–2367. https://doi.org/10.1053/j.gastro.2010.02.046 (2010).
doi: 10.1053/j.gastro.2010.02.046
pubmed: 20188103
Trauzold, A. et al. Trail promotes metastasis of human pancreatic ductal adenocarcinoma. Oncogene 25(56), 7434–7439. https://doi.org/10.1038/sj.onc.1209719 (2006).
doi: 10.1038/sj.onc.1209719
pubmed: 16751802
Ahmad Mokhtar, A. M. et al. Rhog’s role in t cell activation and function. Front. Immunol. 13, 845064. https://doi.org/10.3389/fimmu.2022.845064 (2022).
doi: 10.3389/fimmu.2022.845064
pubmed: 35280994
pmcid: 8913496
Uprety, D. & Adjei, A. A. Kras: From undruggable to a druggable cancer target. Cancer Treat Rev. 89, 102070. https://doi.org/10.1016/j.ctrv.2020.102070 (2020).
doi: 10.1016/j.ctrv.2020.102070
pubmed: 32711246
Hezel, A. F., Deshpande, V. & Zhu, A. X. Genetics of biliary tract cancers and emerging targeted therapies. J. Clin. Oncol. 28(21), 3531–3540. https://doi.org/10.1200/JCO.2009.27.4787 (2010).
doi: 10.1200/JCO.2009.27.4787
pubmed: 20547994
pmcid: 2982782
Vogelstein, B. et al. Genetic alterations during colorectal-tumor development. N. Engl. J. Med. 319(9), 525–532. https://doi.org/10.1056/NEJM198809013190901 (1988).
doi: 10.1056/NEJM198809013190901
pubmed: 2841597
Peng, N. & Zhao, X. Comparison of k-ras mutations in lung, colorectal and gastric cancer. Oncol. Lett. 8(2), 561–565. https://doi.org/10.3892/ol.2014.2205 (2014).
doi: 10.3892/ol.2014.2205
pubmed: 25013470
pmcid: 4081128
Arber, N. et al. Activation of c-k-ras mutations in human gastrointestinal tumors. Gastroenterology 118(6), 1045–1050. https://doi.org/10.1016/s0016-5085(00)70357-x (2000).
doi: 10.1016/s0016-5085(00)70357-x
pubmed: 10833479
Bezieau, S. et al. High incidence of n and k-ras activating mutations in multiple myeloma and primary plasma cell leukemia at diagnosis. Hum. Mutat. 18(3), 212–224. https://doi.org/10.1002/humu.1177 (2001).
doi: 10.1002/humu.1177
pubmed: 11524732
Padavano, J. et al. Mutant k-ras promotes invasion and metastasis in pancreatic cancer through gtpase signaling pathways. Cancer Growth Metastasis 8(Suppl 1), 95–113. https://doi.org/10.4137/CGM.S29407 (2015).
doi: 10.4137/CGM.S29407
pubmed: 26512205
pmcid: 4612127
Zhang, Y. & Zhang, Z. The history and advances in cancer immunotherapy: Understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell. Mol. Immunol. 17(8), 807–821. https://doi.org/10.1038/s41423-020-0488-6 (2020).
doi: 10.1038/s41423-020-0488-6
pubmed: 32612154
pmcid: 7395159
Qin, Z. et al. B cells inhibit induction of t cell-dependent tumor immunity. Nat. Med. 4(5), 627–630. https://doi.org/10.1038/nm0598-627 (1998).
doi: 10.1038/nm0598-627
pubmed: 9585241
Wang, S.-S. et al. Tumor-infiltrating b cells: Their role and application in anti-tumor immunity in lung cancer. Cell. Mol. Immunol. 16(1), 6–18. https://doi.org/10.1038/s41423-018-0027-x (2018).
doi: 10.1038/s41423-018-0027-x
pubmed: 29628498
pmcid: 6318290
Chalmers, Z. R. et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 9(1), 34. https://doi.org/10.1186/s13073-017-0424-2 (2017).
doi: 10.1186/s13073-017-0424-2
pubmed: 28420421
pmcid: 5395719
Weizman, N. et al. Macrophages mediate gemcitabine resistance of pancreatic adenocarcinoma by upregulating cytidine deaminase. Oncogene 33(29), 3812–3819. https://doi.org/10.1038/onc.2013.357 (2014).
doi: 10.1038/onc.2013.357
pubmed: 23995783
Gordon, S. & Taylor, P. R. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 5(12), 953–964. https://doi.org/10.1038/nri1733 (2005).
doi: 10.1038/nri1733
pubmed: 16322748
Di, G. et al. Dual prognostic significance of tumour-associated macrophages in human pancreatic adenocarcinoma treated or untreated with chemotherapy. Gut 65(10), 1710–1720. https://doi.org/10.1136/gutjnl-2015-309193 (2016).
doi: 10.1136/gutjnl-2015-309193
Griesmann, H. et al. Pharmacological macrophage inhibition decreases metastasis formation in a genetic model of pancreatic cancer. Gut 66(7), 1278–1285. https://doi.org/10.1136/gutjnl-2015-310049 (2017).
doi: 10.1136/gutjnl-2015-310049
pubmed: 27013602
Filippini, D. et al. Immunoevolution of mouse pancreatic organoid isografts from preinvasive to metastatic disease. Sci. Rep. 9(1), 12286. https://doi.org/10.1038/s41598-019-48663-7 (2019).
doi: 10.1038/s41598-019-48663-7
pubmed: 31439856
pmcid: 6706454
Biswas, S. K. & Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. Nat. Immunol. 11(10), 889–896. https://doi.org/10.1038/ni.1937 (2010).
doi: 10.1038/ni.1937
pubmed: 20856220
Mosser, D. M. & Edwards, J. P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8(12), 958–969. https://doi.org/10.1038/nri2448 (2008).
doi: 10.1038/nri2448
pubmed: 19029990
pmcid: 2724991
Mehla, K. & Singh, P. K. Metabolic regulation of macrophage polarization in cancer. Trends Cancer 5(12), 822–834. https://doi.org/10.1016/j.trecan.2019.10.007 (2019).
doi: 10.1016/j.trecan.2019.10.007
pubmed: 31813459
pmcid: 7187927
Rizzo, A. et al. Hypertransaminasemia in cancer patients receiving immunotherapy and immune-based combinations: The MOUSEION-05 study. Cancer Immunol. Immunother. 72(6), 1381–1394. https://doi.org/10.1007/s00262-023-03366-x (2023).
doi: 10.1007/s00262-023-03366-x
pubmed: 36695827
pmcid: 10991194
De Luca, R. et al. Immunonutrition and prehabilitation in pancreatic cancer surgery: A new concept in the era of ERAS
doi: 10.1016/j.ejso.2022.12.006
pubmed: 36577556