A prognostic model for anoikis-related genes in pancreatic cancer.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
02 07 2024
Historique:
received: 18 04 2024
accepted: 26 06 2024
medline: 3 7 2024
pubmed: 3 7 2024
entrez: 2 7 2024
Statut: epublish

Résumé

Anoikis, a distinct form of programmed cell death, is crucial for both organismal development and maintaining tissue equilibrium. Its role extends to the proliferation and progression of cancer cells. This study aimed to establish an anoikis-related prognostic model to predict the prognosis of pancreatic cancer (PC) patients. Gene expression data and patient clinical profiles were sourced from The Cancer Genome Atlas (TCGA-PAAD: Pancreatic Adenocarcinoma) and the International Cancer Genome Consortium (ICGC-PACA: Pancreatic Ductal Adenocarcinoma). Non-cancerous pancreatic tissue gene expression data were obtained from the Genotype-Tissue Expression (GTEx) project. The R package was used to construct anoikis-related PC prognostic models, which were later validated with the ICGC-PACA database. Survival analyses demonstrated a poorer prognosis for patients in the high-risk group, consistent across both TCGA-PAAD and ICGC-PACA datasets. A nomogram was designed as a predictive tool to estimate patient mortality. The study also analyzed tumor mutations and immune infiltration across various risk groups, uncovering notable differences in tumor mutation patterns and immune landscapes between high- and low-risk groups. In conclusion, this research successfully developed a prognostic model centered on anoikis-related genes, offering a novel tool for predicting the clinical trajectory of PC patients.

Identifiants

pubmed: 38956290
doi: 10.1038/s41598-024-65981-7
pii: 10.1038/s41598-024-65981-7
doi:

Substances chimiques

Biomarkers, Tumor 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

15200

Informations de copyright

© 2024. The Author(s).

Références

Stoffel, E. M., Brand, R. E. & Goggins, M. Pancreatic cancer: Changing epidemiology and new approaches to risk assessment, early detection, and prevention. Gastroenterology 164(5), 752–765. https://doi.org/10.1053/j.gastro.2023.02.012 (2023).
doi: 10.1053/j.gastro.2023.02.012 pubmed: 36804602
Grossberg, A. J. et al. Multidisciplinary standards of care and recent progress in pancreatic ductal adenocarcinoma. CA Cancer J. Clin. 70(5), 375–403. https://doi.org/10.3322/caac.21626 (2020).
doi: 10.3322/caac.21626 pubmed: 32683683 pmcid: 7722002
Park, W., Chawla, A. & O’Reilly, E. M. Pancreatic cancer: A review. JAMA 326(9), 851–862. https://doi.org/10.1001/jama.2021.13027 (2021).
doi: 10.1001/jama.2021.13027 pubmed: 34547082 pmcid: 9363152
Klein, A. P. Pancreatic cancer epidemiology: Understanding the role of lifestyle and inherited risk factors. Nat. Rev. Gastroenterol. Hepatol. 18(7), 493–502. https://doi.org/10.1038/s41575-021-00457-x (2021).
doi: 10.1038/s41575-021-00457-x pubmed: 34002083 pmcid: 9265847
Henriksen, A. et al. Checkpoint inhibitors in pancreatic cancer. Cancer Treat. Rev. 78, 17–30 (2019).
doi: 10.1016/j.ctrv.2019.06.005 pubmed: 31325788
Di, A. et al. Immunotherapy in pancreatic cancer: Why do we keep failing? A focus on tumor immune microenvironment predictive biomarkers and treatment outcomes. Cancers (Basel) 14(10), 2429. https://doi.org/10.3390/cancers14102429 (2022).
doi: 10.3390/cancers14102429
Farrow, B., Albo, D. & Berger, D. H. The role of the tumor microenvironment in the progression of pancreatic cancer. J. Surg. Res. 149(2), 319–328. https://doi.org/10.1016/j.jss.2007.12.757 (2008).
doi: 10.1016/j.jss.2007.12.757 pubmed: 18639248
Fearon, D. T. The carcinoma-associated fibroblast expressing fibroblast activation protein and escape from immune surveillance. Cancer Immunol. Res. 2(3), 187–193. https://doi.org/10.1158/2326-6066.CIR-14-0002 (2014).
doi: 10.1158/2326-6066.CIR-14-0002 pubmed: 24778314
Blando, J. et al. Comparison of immune infiltrates in melanoma and pancreatic cancer highlights VISTA as a potential target in pancreatic cancer. Proc. Natl. Acad. Sci. U.S.A. 116(5), 1692–1697. https://doi.org/10.1073/pnas.1811067116 (2019).
doi: 10.1073/pnas.1811067116 pubmed: 30635425 pmcid: 6358697
Vonderheide, R. H. The immune revolution: a case for priming not checkpoint. Cancer Cell 33(4), 563–569. https://doi.org/10.1016/j.ccell.2018.03.008 (2018).
doi: 10.1016/j.ccell.2018.03.008 pubmed: 29634944 pmcid: 5898647
Byrne, K. T. & Vonderheide, R. H. CD40 stimulation obviates innate sensors and drives T cell immunity in cancer. Cell Rep. 15(12), 2719–2732. https://doi.org/10.1016/j.celrep.2016.05.058 (2016).
doi: 10.1016/j.celrep.2016.05.058 pubmed: 27292635 pmcid: 4917417
Winograd, R. et al. Induction of T-cell Immunity overcomes complete resistance to PD-1 and CTLA-4 blockade and improves survival in pancreatic carcinoma. Cancer Immunol. Res. 3(4), 399–411. https://doi.org/10.1158/2326-6066.CIR-14-0215 (2015).
doi: 10.1158/2326-6066.CIR-14-0215 pubmed: 25678581 pmcid: 4390506
O’Hara, M. H. et al. CD40 agonistic monoclonal antibody APX005M (sotigalimab) and chemotherapy, with or without nivolumab, for the treatment of metastatic pancreatic adenocarcinoma: An open-label, multicentre, phase 1b study. Lancet Oncol. 22(1), 118–131. https://doi.org/10.1016/S1470-2045(20)30532-5 (2021).
doi: 10.1016/S1470-2045(20)30532-5 pubmed: 33387490
Weiss, G. J. et al. Phase Ib/II study of gemcitabine, nab-paclitaxel, and pembrolizumab in metastatic pancreatic adenocarcinoma. Investig. New Drugs 36(1), 96–102. https://doi.org/10.1007/s10637-017-0525-1 (2018).
doi: 10.1007/s10637-017-0525-1
Renouf, D. J. et al. The CCTG PA.7 phase II trial of gemcitabine and nab-paclitaxel with or without durvalumab and tremelimumab as initial therapy in metastatic pancreatic ductal adenocarcinoma. Nat. Commun. 13(1), 5020. https://doi.org/10.1038/s41467-022-32591-8 (2022).
doi: 10.1038/s41467-022-32591-8 pubmed: 36028483 pmcid: 9418247
Haller, S. D., Monaco, M. L. & Essani, K. The present status of immuno-oncolytic viruses in the treatment of pancreatic cancer. Viruses 12(11), 1318. https://doi.org/10.3390/v12111318 (2020).
doi: 10.3390/v12111318 pubmed: 33213031 pmcid: 7698570
Khotskaya, Y. B. et al. Targeting TRK family proteins in cancer. Pharmacol. Ther. 173, 58–66. https://doi.org/10.1016/j.pharmthera.2017.02.006 (2017).
doi: 10.1016/j.pharmthera.2017.02.006 pubmed: 28174090
Nakagawara, A. Trk receptor tyrosine kinases: A bridge between cancer and neural development. Cancer Lett. 169(2), 107–114. https://doi.org/10.1016/s0304-3835(01)00530-4 (2001).
doi: 10.1016/s0304-3835(01)00530-4 pubmed: 11431098
Zito Marino, F. et al. NTRK fusions, from the diagnostic algorithm to innovative treatment in the era of precision medicine. Int. J. Mol. Sci. 21(10), 3718. https://doi.org/10.3390/ijms21103718 (2020).
doi: 10.3390/ijms21103718 pubmed: 32466202 pmcid: 7279365
Cocco, E., Scaltriti, M. & Drilon, A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat. Rev. Clin. Oncol. 15(12), 731–747. https://doi.org/10.1038/s41571-018-0113-0 (2018).
doi: 10.1038/s41571-018-0113-0 pubmed: 30333516 pmcid: 6419506
Scott, L. J. Larotrectinib: First global approval. Drugs 79(2), 201–206. https://doi.org/10.1007/s40265-018-1044-x (2019).
doi: 10.1007/s40265-018-1044-x pubmed: 30635837
Taddei, M. L. et al. Anoikis: An emerging hallmark in health and diseases. J. Pathol. 226(2), 380–393. https://doi.org/10.1002/path.3000 (2012).
doi: 10.1002/path.3000 pubmed: 21953325
Ye, G. et al. Nuclear myh9-induced ctnnb1 transcription, targeted by staurosporin, promotes gastric cancer cell anoikis resistance and metastasis. Theranostics 10(17), 7545–7560. https://doi.org/10.7150/thno.46001 (2020).
doi: 10.7150/thno.46001 pubmed: 32685004 pmcid: 7359096
Jin, L. et al. The plag1-gdh1 axis promotes anoikis resistance and tumor metastasis through camkk2-ampk signaling in lkb1-deficient lung cancer. Mol. Cell 69(1), 87-99 e87. https://doi.org/10.1016/j.molcel.2017.11.025 (2018).
doi: 10.1016/j.molcel.2017.11.025 pubmed: 29249655
Xu, J. et al. Prongf sirna inhibits cell proliferation and invasion of pancreatic cancer cells and promotes anoikis. Biomed. Pharmacother. 111, 1066–1073. https://doi.org/10.1016/j.biopha.2019.01.002 (2019).
doi: 10.1016/j.biopha.2019.01.002 pubmed: 30841420
Advancing on pancreatic cancer. Nat Rev Gastroenterol Hepatol, 18(7): 447. https://doi.org/10.1038/s41575-021-00479-5 (2021).
Zhong, X. & Rescorla, F. J. Cell surface adhesion molecules and adhesion-initiated signaling: Understanding of anoikis resistance mechanisms and therapeutic opportunities. Cell Signal 24(2), 393–401. https://doi.org/10.1016/j.cellsig.2011.10.005 (2012).
doi: 10.1016/j.cellsig.2011.10.005 pubmed: 22024283
Adeshakin, F. O. et al. Mechanisms for modulating anoikis resistance in cancer and the relevance of metabolic reprogramming. Front. Oncol. https://doi.org/10.3389/fonc.2021.626577 (2021).
doi: 10.3389/fonc.2021.626577 pubmed: 33854965 pmcid: 8039382
Wang, J. et al. Anoikis-associated lung cancer metastasis: Mechanisms and therapies. Cancers (Basel) https://doi.org/10.3390/cancers14194791 (2022).
doi: 10.3390/cancers14194791 pubmed: 36612290 pmcid: 10468097
Dai, Y. et al. Anoikis resistance––protagonists of breast cancer cells survive and metastasize after ecm detachment. Cell Commun. Signal. https://doi.org/10.1186/s12964-023-01183-4 (2023).
doi: 10.1186/s12964-023-01183-4 pubmed: 37904190 pmcid: 10399053
Kawataki, T. et al. Laminin isoforms and their integrin receptors in glioma cell migration and invasiveness: Evidence for a role of alpha5-laminin(s) and alpha3beta1 integrin. Exp. Cell Res. 313(18), 3819–3831. https://doi.org/10.1016/j.yexcr.2007.07.038 (2007).
doi: 10.1016/j.yexcr.2007.07.038 pubmed: 17888902
Zhang, G., Li, B. & Lin, Y. Evaluation of itga3 as a biomarker of progression and recurrence in papillary thyroid carcinoma. Front. Oncol. 11, 614955. https://doi.org/10.3389/fonc.2021.614955 (2021).
doi: 10.3389/fonc.2021.614955 pubmed: 35174063
Tian, L. et al. Microrna-199a-5p suppresses cell proliferation, migration and invasion by targeting itga3 in colorectal cancer. Mol. Med. Rep. 22(3), 2307–2317. https://doi.org/10.3892/mmr.2020.11323 (2020).
doi: 10.3892/mmr.2020.11323 pubmed: 32705201 pmcid: 7411411
Kurozumi, A. et al. Tumor-suppressive microrna-223 inhibits cancer cell migration and invasion by targeting itga3/itgb1 signaling in prostate cancer. Cancer Sci. 107(1), 84–94. https://doi.org/10.1111/cas.12842 (2016).
doi: 10.1111/cas.12842 pubmed: 26509963
Koshizuka, K. et al. Regulation of itga3 by the anti-tumor mir-199 family inhibits cancer cell migration and invasion in head and neck cancer. Cancer Sci. 108(8), 1681–1692. https://doi.org/10.1111/cas.13298 (2017).
doi: 10.1111/cas.13298 pubmed: 28612520 pmcid: 5543473
Huang, Y. et al. High expression of itga3 promotes proliferation and cell cycle progression and indicates poor prognosis in intrahepatic cholangiocarcinoma. Biomed Res. Int. 2018, 2352139. https://doi.org/10.1155/2018/2352139 (2018).
doi: 10.1155/2018/2352139 pubmed: 29511671 pmcid: 5817212
Du, J. et al. Silencing of integrin subunit alpha3 inhibits the proliferation, invasion, migration and autophagy of esophageal squamous cell carcinoma cells. Oncol. Lett. 24(2), 271. https://doi.org/10.3892/ol.2022.13391 (2022).
doi: 10.3892/ol.2022.13391 pubmed: 35782901 pmcid: 9247671
Jiao, Y. et al. Itga3 serves as a diagnostic and prognostic biomarker for pancreatic cancer. Onco Targets Ther. 12, 4141–4152. https://doi.org/10.2147/OTT.S201675 (2019).
doi: 10.2147/OTT.S201675 pubmed: 31213833 pmcid: 6549486
Willms, A. et al. Trail-receptor 2-a novel negative regulator of p53. Cell Death Dis. 12(8), 757. https://doi.org/10.1038/s41419-021-04048-1 (2021).
doi: 10.1038/s41419-021-04048-1 pubmed: 34333527 pmcid: 8325694
Thapa, B., Kc, R. & Uludag, H. Trail therapy and prospective developments for cancer treatment. J. Control Release 326, 335–349. https://doi.org/10.1016/j.jconrel.2020.07.013 (2020).
doi: 10.1016/j.jconrel.2020.07.013 pubmed: 32682900
Oh, Y. T. & Sun, S. Y. Regulation of cancer metastasis by trail/death receptor signaling. Biomolecules https://doi.org/10.3390/biom11040499 (2021).
doi: 10.3390/biom11040499 pubmed: 34068780 pmcid: 8151263
Hoogwater, F. J. et al. Oncogenic k-ras turns death receptors into metastasis-promoting receptors in human and mouse colorectal cancer cells. Gastroenterology 138(7), 2357–2367. https://doi.org/10.1053/j.gastro.2010.02.046 (2010).
doi: 10.1053/j.gastro.2010.02.046 pubmed: 20188103
Trauzold, A. et al. Trail promotes metastasis of human pancreatic ductal adenocarcinoma. Oncogene 25(56), 7434–7439. https://doi.org/10.1038/sj.onc.1209719 (2006).
doi: 10.1038/sj.onc.1209719 pubmed: 16751802
Ahmad Mokhtar, A. M. et al. Rhog’s role in t cell activation and function. Front. Immunol. 13, 845064. https://doi.org/10.3389/fimmu.2022.845064 (2022).
doi: 10.3389/fimmu.2022.845064 pubmed: 35280994 pmcid: 8913496
Uprety, D. & Adjei, A. A. Kras: From undruggable to a druggable cancer target. Cancer Treat Rev. 89, 102070. https://doi.org/10.1016/j.ctrv.2020.102070 (2020).
doi: 10.1016/j.ctrv.2020.102070 pubmed: 32711246
Hezel, A. F., Deshpande, V. & Zhu, A. X. Genetics of biliary tract cancers and emerging targeted therapies. J. Clin. Oncol. 28(21), 3531–3540. https://doi.org/10.1200/JCO.2009.27.4787 (2010).
doi: 10.1200/JCO.2009.27.4787 pubmed: 20547994 pmcid: 2982782
Vogelstein, B. et al. Genetic alterations during colorectal-tumor development. N. Engl. J. Med. 319(9), 525–532. https://doi.org/10.1056/NEJM198809013190901 (1988).
doi: 10.1056/NEJM198809013190901 pubmed: 2841597
Peng, N. & Zhao, X. Comparison of k-ras mutations in lung, colorectal and gastric cancer. Oncol. Lett. 8(2), 561–565. https://doi.org/10.3892/ol.2014.2205 (2014).
doi: 10.3892/ol.2014.2205 pubmed: 25013470 pmcid: 4081128
Arber, N. et al. Activation of c-k-ras mutations in human gastrointestinal tumors. Gastroenterology 118(6), 1045–1050. https://doi.org/10.1016/s0016-5085(00)70357-x (2000).
doi: 10.1016/s0016-5085(00)70357-x pubmed: 10833479
Bezieau, S. et al. High incidence of n and k-ras activating mutations in multiple myeloma and primary plasma cell leukemia at diagnosis. Hum. Mutat. 18(3), 212–224. https://doi.org/10.1002/humu.1177 (2001).
doi: 10.1002/humu.1177 pubmed: 11524732
Padavano, J. et al. Mutant k-ras promotes invasion and metastasis in pancreatic cancer through gtpase signaling pathways. Cancer Growth Metastasis 8(Suppl 1), 95–113. https://doi.org/10.4137/CGM.S29407 (2015).
doi: 10.4137/CGM.S29407 pubmed: 26512205 pmcid: 4612127
Zhang, Y. & Zhang, Z. The history and advances in cancer immunotherapy: Understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell. Mol. Immunol. 17(8), 807–821. https://doi.org/10.1038/s41423-020-0488-6 (2020).
doi: 10.1038/s41423-020-0488-6 pubmed: 32612154 pmcid: 7395159
Qin, Z. et al. B cells inhibit induction of t cell-dependent tumor immunity. Nat. Med. 4(5), 627–630. https://doi.org/10.1038/nm0598-627 (1998).
doi: 10.1038/nm0598-627 pubmed: 9585241
Wang, S.-S. et al. Tumor-infiltrating b cells: Their role and application in anti-tumor immunity in lung cancer. Cell. Mol. Immunol. 16(1), 6–18. https://doi.org/10.1038/s41423-018-0027-x (2018).
doi: 10.1038/s41423-018-0027-x pubmed: 29628498 pmcid: 6318290
Chalmers, Z. R. et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 9(1), 34. https://doi.org/10.1186/s13073-017-0424-2 (2017).
doi: 10.1186/s13073-017-0424-2 pubmed: 28420421 pmcid: 5395719
Weizman, N. et al. Macrophages mediate gemcitabine resistance of pancreatic adenocarcinoma by upregulating cytidine deaminase. Oncogene 33(29), 3812–3819. https://doi.org/10.1038/onc.2013.357 (2014).
doi: 10.1038/onc.2013.357 pubmed: 23995783
Gordon, S. & Taylor, P. R. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 5(12), 953–964. https://doi.org/10.1038/nri1733 (2005).
doi: 10.1038/nri1733 pubmed: 16322748
Di, G. et al. Dual prognostic significance of tumour-associated macrophages in human pancreatic adenocarcinoma treated or untreated with chemotherapy. Gut 65(10), 1710–1720. https://doi.org/10.1136/gutjnl-2015-309193 (2016).
doi: 10.1136/gutjnl-2015-309193
Griesmann, H. et al. Pharmacological macrophage inhibition decreases metastasis formation in a genetic model of pancreatic cancer. Gut 66(7), 1278–1285. https://doi.org/10.1136/gutjnl-2015-310049 (2017).
doi: 10.1136/gutjnl-2015-310049 pubmed: 27013602
Filippini, D. et al. Immunoevolution of mouse pancreatic organoid isografts from preinvasive to metastatic disease. Sci. Rep. 9(1), 12286. https://doi.org/10.1038/s41598-019-48663-7 (2019).
doi: 10.1038/s41598-019-48663-7 pubmed: 31439856 pmcid: 6706454
Biswas, S. K. & Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. Nat. Immunol. 11(10), 889–896. https://doi.org/10.1038/ni.1937 (2010).
doi: 10.1038/ni.1937 pubmed: 20856220
Mosser, D. M. & Edwards, J. P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8(12), 958–969. https://doi.org/10.1038/nri2448 (2008).
doi: 10.1038/nri2448 pubmed: 19029990 pmcid: 2724991
Mehla, K. & Singh, P. K. Metabolic regulation of macrophage polarization in cancer. Trends Cancer 5(12), 822–834. https://doi.org/10.1016/j.trecan.2019.10.007 (2019).
doi: 10.1016/j.trecan.2019.10.007 pubmed: 31813459 pmcid: 7187927
Rizzo, A. et al. Hypertransaminasemia in cancer patients receiving immunotherapy and immune-based combinations: The MOUSEION-05 study. Cancer Immunol. Immunother. 72(6), 1381–1394. https://doi.org/10.1007/s00262-023-03366-x (2023).
doi: 10.1007/s00262-023-03366-x pubmed: 36695827 pmcid: 10991194
De Luca, R. et al. Immunonutrition and prehabilitation in pancreatic cancer surgery: A new concept in the era of ERAS
doi: 10.1016/j.ejso.2022.12.006 pubmed: 36577556

Auteurs

Wenbin Song (W)

Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.
Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin, 300052, People's Republic of China.

Haiyang Hu (H)

Department of Cardiac Critical Care Medicine, Affiliated Hospital of Jining Medical University, Jining, 272007, People's Republic of China.

Zhengbo Yuan (Z)

School of Medicine, Xiamen University, No.4221 Xiangan South Road, Xiangan District, Xiamen, 361102, People's Republic of China. yzbvans@outlook.com.
Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, No.55 Zhenghai load, Siming District, Xiamen, 361001, People's Republic of China. yzbvans@outlook.com.

Hao Yao (H)

Department of Hepatological Surgery, The Second Hospital of Tianjin Medical University, No.23 Pingjiang Road, Hexi District, Tianjin, 300211, People's Republic of China. yaohao0417@163.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH