Natural dyes developed by microbial-nanosilver to produce antimicrobial and anticancer textiles.


Journal

Microbial cell factories
ISSN: 1475-2859
Titre abrégé: Microb Cell Fact
Pays: England
ID NLM: 101139812

Informations de publication

Date de publication:
02 Jul 2024
Historique:
received: 15 03 2024
accepted: 10 06 2024
medline: 3 7 2024
pubmed: 3 7 2024
entrez: 3 7 2024
Statut: epublish

Résumé

Developing special textiles (for patients in hospitals for example) properties, special antimicrobial and anticancer, was the main objective of the current work. The developed textiles were produced after dyeing by the novel formula of natural (non-environmental toxic) pigments (melanin amended by microbial-AgNPs). Streptomyces torulosus isolate OSh10 with accession number KX753680.1 was selected as a superior producer for brown natural pigment. By optimization processes, some different pigment colors were observed after growing the tested strain on the 3 media. Dextrose and malt extract enhanced the bacteria to produce a reddish-black color. However, glycerol as the main carbon source and NaNO

Identifiants

pubmed: 38956629
doi: 10.1186/s12934-024-02457-3
pii: 10.1186/s12934-024-02457-3
doi:

Substances chimiques

Coloring Agents 0
Antineoplastic Agents 0
Silver 3M4G523W1G
Anti-Infective Agents 0
Pigments, Biological 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

189

Informations de copyright

© 2024. The Author(s).

Références

Health and Safety Executive (HSE). Dyes and Chemicals in Textile Finishing: An introduction. Dyeing and Finishing Information Sheet No 1-HSE Information Sheet. 2016. https://www.hse.gov.uk/textiles/dyes-dyeing.htm . Accessed 4 Nov 2023.
Hassaan MA, Nemr AE. Health and environmental impacts of dyes: mini review. Am J Environ Sci Eng. 2017;1:64–7. https://doi.org/10.11648/j.ajese.20170103.11 .
doi: 10.11648/j.ajese.20170103.11
Pizzicato B, Pacifico S, Cayuela D, Mijas G, Riba-Moliner M. Advancements in sustainable natural dyes for textile applications: a review. Molecules. 2023;28:5954. https://doi.org/10.3390/molecules28165954 .
doi: 10.3390/molecules28165954 pubmed: 37630206 pmcid: 10458907
Çelik Yilmaz N, Yilmaz A, Yilmaz F. Coloring of woolen fabrics with natural resources and investigating the color perceptions of children on these fabrics. J Nat Fibers. 2023. https://doi.org/10.1080/15440478.2022.2134269 .
doi: 10.1080/15440478.2022.2134269
Mouro C, Gomes AP, Costa RV, Moghtader F, Gouveia IC. The sustainable bioactive dyeing of textiles: a novel strategy using bacterial pigments, natural antibacterial ingredients, and deep eutectic solvents. Gels. 2023;9:800. https://doi.org/10.3390/gels9100800 .
doi: 10.3390/gels9100800 pubmed: 37888373 pmcid: 10606059
Affat SS. Classifications, advantages, disadvantages, toxicity effects of natural and synthetic dyes: a review. Univ Thi-Qar J Sci. 2021;8:130–5.
Bahtiyari Mİ, Yilmaz F. Evaluation of different natural dye sources in terms of metamerism. AATCC J Res. 2018;5(3):21–7. https://doi.org/10.14504/ajr.5.3.4 .
doi: 10.14504/ajr.5.3.4
Che J, Yang X. A recent (2009–2021) perspective on sustainable color and textile coloration using natural plant resources. Heliyon. 2022;8:e10979. https://doi.org/10.1016/j.heliyon.2022.e10979 .
doi: 10.1016/j.heliyon.2022.e10979 pubmed: 36281409 pmcid: 9587285
Lara L, Cabral I, Cunha J. Ecological approaches to textile dyeing: a review. Sustainability. 2022;14:8353. https://doi.org/10.3390/su14148353 .
doi: 10.3390/su14148353
Yılmaz F, Bahtiyari Mİ. An approach for linen fabrics coloring and antibacterial activity by cumin in combination with nano copper and iron. J Nat Fibers. 2022;19(14):7406–13. https://doi.org/10.1080/15440478.2021.1946884 .
doi: 10.1080/15440478.2021.1946884
Darwesh OM, Barakat KM, Mattar MZ, Sabae SZ, Hassan SH. Production of antimicrobial blue green pigment Pyocyanin by marine Pseudomonas aeruginosa. Biointerf Res Appl Chem. 2019;9:4334–9. https://doi.org/10.33263/BRIAC95.334339 .
doi: 10.33263/BRIAC95.334339
Azman AS, Mawang CI, Abu BS. Bacterial pigments: the bioactivities and as an alternative for therapeutic applications. Nat Prod Comm. 2018;13:1747–54. https://doi.org/10.1177/1934578X1801301240 .
doi: 10.1177/1934578X1801301240
Agarwal H, Bajpai S, Mishra A, Kohli I, Varma A, Fouillaud M, Dufossé L, Joshi NC. Bacterial pigments and their multifaceted roles in contemporary biotechnology and pharmacological applications. Microorganisms. 2023;11:614. https://doi.org/10.3390/microorganisms11030614 .
doi: 10.3390/microorganisms11030614 pubmed: 36985186 pmcid: 10053885
Siddiqua UH, Zaib-un-Nisa RA, et al. Effect of silver nanoparticles finishing on dyeing properties of newly synthesized reactive dye applied on cellulosic fabric. Fibers Polym. 2024;25:987–95. https://doi.org/10.1007/s12221-024-00472-0 .
doi: 10.1007/s12221-024-00472-0
Zhang F, Wu X, Chen Y, et al. Application of silver nanoparticles to cotton fabric as an antibacterial textile finish. Fibers Polym. 2009;10:496–501. https://doi.org/10.1007/s12221-009-0496-8 .
doi: 10.1007/s12221-009-0496-8
Van Der Kraan M. Equilibrium study on the disperse dyeing of polyester textile in supercritical carbon dioxide. Text Res J. 2007;77:550–8. https://doi.org/10.1177/0040517507077483 .
doi: 10.1177/0040517507077483
Rahman NA, Tajuddin R, Tumin S. Optimization of natural dyeing using ultrasonic method and biomordant. Int J Chem Eng Appl. 2013;4:161–4. https://doi.org/10.7763/IJCEA.2013.V4.285 .
doi: 10.7763/IJCEA.2013.V4.285
Orylska-Ratynska M, Placek W, Owczarczyk-Saczonek A. Tetracyclines-an important therapeutic tool for dermatologists. Int J Environ Res Public Health. 2022;19(12):7246. https://doi.org/10.3390/ijerph19127246 .
doi: 10.3390/ijerph19127246 pubmed: 35742496 pmcid: 9224192
Bidell MR, Pai MP, Lodise TP. Use of oral tetracyclines in the treatment of adult patients with community-acquired bacterial pneumonia: a literature review on the often-overlooked antibiotic class. Antibiotics. 2020;9(12):905. https://doi.org/10.3390/antibiotics9120905 .
doi: 10.3390/antibiotics9120905 pubmed: 33327437 pmcid: 7764829
do Barreto JV, Casanova LM, Junior AN, Reis-Mansur MCPP, Vermelho AB. Microbial pigments: major groups and industrial applications. Microorganisms. 2023;11(12):2920. https://doi.org/10.3390/microorganisms11122920 .
doi: 10.3390/microorganisms11122920 pubmed: 38138065 pmcid: 10745774
Kheiralla ZH, Hewedy MA, Mohammed HR, Darwesh OM. Isolation of pigment producing actinomycetes from rhizosphere soil and application it in textiles dyeing. J Pharm Biol Chem Sci. 2016;7:2128–36.
Mourad R, Helaly F, Darwesh OM, Sawy SE. Antimicrobial and physicomechanical natures of silver nanoparticles incorporated into silicone- hydrogel films. Cont Lens Anterior Eye. 2019;42:325–33. https://doi.org/10.1016/j.clae.2019.02.007 .
doi: 10.1016/j.clae.2019.02.007 pubmed: 30827719
El-Shanshoury AR, Darwesh OM, Sabae SZ, Awadallah OA, Hassan SH. Bio-manufacturing of selenium nanoparticles by Bacillus subtilis isolated from Qarun Lake and evaluation their activity for water remediation. Biointerf Res Appl Chem. 2020;10:5834–42. https://doi.org/10.33263/BRIAC104.834842 .
doi: 10.33263/BRIAC104.834842
Mourad RM, Darwesh OM, Abdel-Hakim A. Enhancing physico-mechanical and antibacterial properties of natural rubber using synthesized Ag-SiO
doi: 10.1016/j.ijbiomac.2020.08.063 pubmed: 32795572
Abdelhameed RM, Darwesh OM, El-Shahat M. Synthesis of arylidene hydrazinylpyrido[2,3-d]pyrimidin-4-ones as potent anti-microbial agents. Heliyon. 2020;6:e04956. https://doi.org/10.1016/j.heliyon.2020.e04956 .
doi: 10.1016/j.heliyon.2020.e04956 pubmed: 32995633 pmcid: 7511821
Mosaad RM, Alhalafi MH, Emam E-AM, Ibrahim MA, Ibrahim H. Enhancement of antimicrobial and dyeing properties of cellulosic fabrics via chitosan nanoparticles. Polymers. 2022;14:4211. https://doi.org/10.3390/polym14194211 .
doi: 10.3390/polym14194211 pubmed: 36236159 pmcid: 9573385
Baaka N, Khiari R, Haji A. Ecofriendly dyeing of textile materials with natural colorants from date palm fiber fibrillium. Sustainability. 2023;15:1688. https://doi.org/10.3390/su15021688 .
doi: 10.3390/su15021688
Zhao Z, Yan C, Xu F, Liu J. Study on dyeing properties and color characteristics of wool fabrics dyed with Geranium caespitosum L. extract- a new natural yellow dye. Coatings. 2023;13:1125. https://doi.org/10.3390/coatings13061125 .
doi: 10.3390/coatings13061125
Kumpikaitė E, Tautkutė-Stankuvienė I, Milašienė D, Petraitienė S. Analysis of color fastness and shrinkage of dyed and printed linen/silk fabrics. Coatings. 2022;12:408. https://doi.org/10.3390/coatings12030408 .
doi: 10.3390/coatings12030408
Mabrouk AM, El-khrisy EAM, Youssef YA, Asem AM. Production of textile reddish brown dyes by fungi. Malays J Microbiol. 2011;7:33–40.
Repetto G, Del Peso A, Zurita JL. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Proto. 2008;3:1125–31. https://doi.org/10.1038/nprot.2008.75 .
doi: 10.1038/nprot.2008.75
Darwesh OM, Eweys AS, Zhao YS, Matter IA. Application of environmental-safe fermentation with Saccharomyces cerevisiae for increasing the cinnamon biological activities. Bioresour Bioproc. 2023;10:12. https://doi.org/10.1186/s40643-023-00632-9 .
doi: 10.1186/s40643-023-00632-9
Abd El-Fattah NM. Bioleaching and biosorption of some rare earth elements and actinides from soil sample in Sinai. MSC Thesis, Ain shams university, Cairo, 2012; 180 pp.
Schmidt FR. Optimization and scale up of industrial fermentation processes. Appl Microbiol Biotechnol. 2005;68:425–35. https://doi.org/10.1007/s00253-005-0003-0 .
doi: 10.1007/s00253-005-0003-0 pubmed: 16001256
Hewedy MA, Ashour SM. Production of a melanin like pigment by Kluyveromyces marxianus and Streptomyces chibaensis. Aust J Basic Appl Sci. 2009;3:920–7.
Pandey R, Chander R, Sainis KB. Prodigiosins: a novel family of immunosuppressants with anticancer activity. Indian J Biochem Biophys. 2007;44:295–302.
pubmed: 18341204
Abussaud MJ, Alanagreh L, Abu-Elteen K. Isolation, characterization and antimicrobial activity of Streptomyces strains from hot spring areas in the northern part of Jordan. Afr J Biotechnol. 2013;12:7124–32. https://doi.org/10.5897/AJB09.1489 .
doi: 10.5897/AJB09.1489
Abo El-Ola SM. Recent developments in finishing of synthetic fibers for medical applications. Des Monomers Polym. 2008;11(6):483–533. https://doi.org/10.1163/156855508X363816 .
doi: 10.1163/156855508X363816
Abo El-Ola SM. New approach for imparting antimicrobial properties for polyamide and wool containing fabrics. Polym Plast Technol Eng. 2007;46:831–9. https://doi.org/10.1080/03602550701278095 .
doi: 10.1080/03602550701278095
Rosu L, Gavat C-C, Rosu D, Varganici C-D, Mustata F. Photochemical stability of a cotton fabric surface dyed with a reactive triphenodioxazine dye. Polymers. 2021;13:3986. https://doi.org/10.3390/polym13223986 .
doi: 10.3390/polym13223986 pubmed: 34833287 pmcid: 8623128
Yusoff WFW, Mohamad SAS, Ahmad WYW. Fastness properties and color analysis of natural colorants from actinomycetes isolates on silk fabric. In: Ahmad MR, Yahya MF, editors. Proceedings of the international colloquium in textile engineering. Singapore: Springer; 2014. p. 113–8.
Joko K, Koga J. Proc. 9th Internat. Wool Text. Res. Conference, 1990; 19–26.
Musnickas J, Rupainyte V, Treigiene R, Rageliene L. Dye migration influences on color characteristics of wool fabric dyed with acid dye. Fibres Text East Eur. 2005;13:65–9.
Darwesh OM, Al-Balakocy NG, Ghanem A, Matter IA. Application of microalgal-ZnO-NPs for reusing polyester/cotton blended fabric wastes after modification by cellulases enzymes. Waste Dispos Sustain Energy. 2023;5(4):471–82. https://doi.org/10.1007/s42768-023-00170-2 .
doi: 10.1007/s42768-023-00170-2
Darwesh OM, Li H, Matter IA. Nano-bioremediation of textile industry wastewater using immobilized CuO-NPs myco-synthesized by a novel Cu-resistant Fusarium oxysporum OSF18. Environ Sci Pollut Res. 2023;30:16694–706. https://doi.org/10.1007/s11356-022-23360-7 .
doi: 10.1007/s11356-022-23360-7
Namasivayam SKR. Silver nanoparticle synthesis from lecanicillium lecanii and evolutionary treatment on cotton fabrics by measuring their improved antibacterial activity with antibiotics against staphylococcus aureus (ATCC 29213) and E. coli (ATCC 25922) strains. Int J Pharm Sci. 2011;3:190–5.
Abdel-Hadi A, Iqbal D, Alharbi R, Jahan S, Darwish O, Alshehri B, Banawas S, Palanisamy M, et al. Myco-synthesis of silver nanoparticles and their bioactive role against pathogenic microbes. Biology. 2023;12:661. https://doi.org/10.3390/biology12050661 .
doi: 10.3390/biology12050661 pubmed: 37237475 pmcid: 10215515
Ishida K, Cipriano TF, Rocha GM, Weissmüller G, Gomes F, Miranda K, Rozental S. Silver nanoparticle production by the fungus Fusarium oxysporum: nanoparticle characterisation and analysis of antifungal activity against pathogenic yeasts. Mem Inst Oswaldo Cruz. 2014;109:220–8.
doi: 10.1590/0074-0276130269 pubmed: 24714966
Bamal D, Singh A, Chaudhary G, Kumar M, Singh M, Rani N, Mundlia P, Sehrawat AR. Silver nanoparticles biosynthesis, characterization, antimicrobial activities, applications, cytotoxicity and safety issues: an updated review. Nanomaterials. 2021;11:2086. https://doi.org/10.3390/nano11082086 .
doi: 10.3390/nano11082086 pubmed: 34443916 pmcid: 8402060
Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M. Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci. 2008;4:141–4. https://doi.org/10.2174/157341308784340804 .
doi: 10.2174/157341308784340804
Srinivas K. The role of nanotechnology in modern textiles. J Chem Pharm Res. 2016;8:173–80.
Ribeiro AI, Shvalya V, Cvelbar U, Silva R, Marques-Oliveira R, Remião F, Felgueiras HP, Padrão J, Zille A. Stabilization of silver nanoparticles on polyester fabric using organo-matrices for controlled antimicrobial performance. Polymers. 2022;14:1138. https://doi.org/10.3390/polym14061138 .
doi: 10.3390/polym14061138 pubmed: 35335469 pmcid: 8950105
Tanasa F, Teaca C-A, Nechifor M, Ignat M, Duceac IA, Ignat L. Highly specialized textiles with antimicrobial functionality-advances and challenges. Textiles. 2023;3:219–45. https://doi.org/10.3390/textiles3020015 .
doi: 10.3390/textiles3020015
Broadhead R, Craeye L, Callewaert C. The future of functional clothing for an improved skin and textile microbiome relationship. Microorganisms. 2021;9:1192. https://doi.org/10.3390/microorganisms9061192 .
doi: 10.3390/microorganisms9061192 pubmed: 34073029 pmcid: 8226598
Eremenko AM, Petrik IS, Smirnova NP, Rudenko AV, Marikvas YS. Antibacterial and antimycotic activity of cotton fabrics, impregnated with silver and binary silver/copper nanoparticles. Nanoscale Res Lett. 2016. https://doi.org/10.1186/s11671-016-1240-0 .
doi: 10.1186/s11671-016-1240-0 pubmed: 26909781 pmcid: 4766180
Hoque E, Tran P, Jacobo U, Bergfeld N, Acharya S, Shamshina JL, Reid TW, Abidi N. Antimicrobial coatings for medical textiles via reactive organo-selenium compounds. Molecules. 2023;28:6381. https://doi.org/10.3390/molecules28176381 .
doi: 10.3390/molecules28176381 pubmed: 37687210 pmcid: 10490204
Tang YLA, Jin S, Lee CH, Law HS, Yu J, Wang Y, Kan C-W. Reverse micellar dyeing of cotton fabric with reactive dye using biodegradable non-ionic surfactant as nanoscale carrier: an optimization study by one-factor-at-one-time approach. Polymers. 2023;15:4175. https://doi.org/10.3390/polym15204175 .
doi: 10.3390/polym15204175 pubmed: 37896419 pmcid: 10610894
Abd El-Aziz E, Zayed M, Mohamed AL, Hassabo AG. Enhancement of the functional performance of cotton and polyester fabrics upon treatment with polymeric materials having different functional groups in the presence of different metal nanoparticles. Polymers. 2023;15:3047. https://doi.org/10.3390/polym15143047 .
doi: 10.3390/polym15143047 pubmed: 37514435 pmcid: 10385963

Auteurs

Osama M Darwesh (OM)

Agricultural Microbiology Department, National Research Centre, Dokki, Cairo, 12622, Egypt. darweshosama@yahoo.com.

Ahmed Marzoog (A)

Department of Soil and Water Sciences, College of Agriculture, University of Anbar, Ramadi, Iraq.

Ibrahim A Matter (IA)

Agricultural Microbiology Department, National Research Centre, Dokki, Cairo, 12622, Egypt.

Mohammad K Okla (MK)

Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia.

Mohamed A El-Tayeb (MA)

Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia.

Mohammed Aufy (M)

Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria.

Turki M Dawoud (TM)

Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia.

Mostafa A Abdel-Maksoud (MA)

Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH