Vincristine exposure in Kenyan children with cancer: CHAPATI feasibility study.

feasibility study individualized dosing pediatric oncology pharmacokinetics sub‐Saharan Africa vincristine

Journal

Pediatric blood & cancer
ISSN: 1545-5017
Titre abrégé: Pediatr Blood Cancer
Pays: United States
ID NLM: 101186624

Informations de publication

Date de publication:
02 Jul 2024
Historique:
revised: 05 06 2024
received: 08 02 2024
accepted: 10 06 2024
medline: 3 7 2024
pubmed: 3 7 2024
entrez: 3 7 2024
Statut: aheadofprint

Résumé

The low incidence of vincristine-induced peripheral neuropathy (VIPN) in Kenyan children may result from low vincristine exposure. We studied vincristine exposure in Kenyan children and dose-escalated in case of low vincristine exposure (NCT05844670). Average vincristine exposure was high. Individual vincristine exposure was assessed with a previously developed nomogram. A 20% dose increase was recommended for participants with low exposure and no VIPN, hyperbilirubinemia, or malnutrition. None of the 15 participants developed VIPN. Low vincristine exposure was seen in one participant: a dose increase was implemented without side effects. In conclusion, the participants did not develop VIPN despite having high vincristine exposure.

Identifiants

pubmed: 38956809
doi: 10.1002/pbc.31160
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e31160

Subventions

Organisme : World Child Cancer NL
Organisme : Schumacher-Kramer Foundation
Organisme : Ter Meulen Grant of the Academy Medical Sciences Fund

Informations de copyright

© 2024 The Author(s). Pediatric Blood & Cancer published by Wiley Periodicals LLC.

Références

van de Velde ME, Kaspers GL, Abbink FCH, Wilhelm AJ, Ket JCF, van den Berg MH. Vincristine‐induced peripheral neuropathy in children with cancer: a systematic review. Crit Rev Oncol Hematol. 2017;114:114‐130. doi:10.1016/j.critrevonc.2017.04.004
Triarico S, Romano A, Attinà G, et al. Vincristine‐induced peripheral neuropathy (VIPN) in pediatric tumors: mechanisms, risk factors, strategies of prevention and treatment. Int J Mol Sci. 2021;22(8):4112.
Lew G, Chen Y, Lu X, et al. Outcomes after late bone marrow and very early central nervous system relapse of childhood B‐acute lymphoblastic leukemia: a report from the Children's Oncology Group phase III study AALL0433. Haematologica. 2021;106(1):46‐55. doi:10.3324/haematol.2019.237230
Skiles JL, Chiang C, Li CH, et al. CYP3A5 genotype and its impact on vincristine pharmacokinetics and development of neuropathy in Kenyan children with cancer. Pediatr Blood Cancer. 2018;65(3):e26854. doi:10.1002/pbc.26854
Uittenboogaard A, Njuguna F, Mostert S, et al. Outcomes of Wilms tumor treatment in western Kenya. Pediatr Blood Cancer. 2022;69(4):e29503. doi:10.1002/pbc.29503
Anghelescu DL, Faughnan LG, Jeha S, et al. Neuropathic pain during treatment for childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2011;57(7):1147‐1153. doi:10.1002/pbc.23039
Diouf B, Crews KR, Lew G, et al. Association of an inherited genetic variant with vincristine‐related peripheral neuropathy in children with acute lymphoblastic leukemia. JAMA. 2015;313(8):815‐823. doi:10.1001/jama.2015.0894
Kishi S, Cheng C, French D, et al. Ancestry and pharmacogenetics of antileukemic drug toxicity. Blood. 2007;109(10):4151‐4157. doi:10.1182/blood‐2006‐10‐054528
Renbarger JL, McCammack KC, Rouse CE, Hall SD. Effect of race on vincristine‐associated neurotoxicity in pediatric acute lymphoblastic leukemia patients. Pediatr Blood Cancer. 2008;50(4):769‐771. doi:10.1002/pbc.21435
Dennison JB, Jones DR, Renbarger JL, Hall SD. Effect of CYP3A5 expression on vincristine metabolism with human liver microsomes. J Pharmacol Exp Ther. 2007;321(2):553‐563. doi:10.1124/jpet.106.118471
Arbitrio M, Scionti F, Di Martino MT, Pensabene L, Tassone P, Tagliaferri P. 1.26 ‐ Pharmacogenetics/pharmacogenomics of drug‐metabolizing enzymes and transporters. In: Kenakin T, ed. Comprehensive Pharmacology. Elsevier; 2022:657‐697.
Kuehl P, Zhang J, Lin Y, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet. 2001;27(4):383‐391. doi:10.1038/86882
Roy J‐N, Lajoie J, Zijenah LS, et al. CYP3A5 genetic polymorphisms in different ethnic populations. Drug Metab Dispos. 2005;33(7):884‐887. doi:10.1124/dmd.105.003822
Egbelakin A, Ferguson MJ, MacGill EA, et al. Increased risk of vincristine neurotoxicity associated with low CYP3A5 expression genotype in children with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2011;56(3):361‐367. doi:10.1002/pbc.22845
Lavoie Smith EM, Li L, Hutchinson RJ, et al. Measuring vincristine‐induced peripheral neuropathy in children with acute lymphoblastic leukemia. Cancer Nurs. 2013;36(5):E49‐E60. doi:10.1097/NCC.0b013e318299ad23
Lönnerholm G, Frost BM, Abrahamsson J, et al. Vincristine pharmacokinetics is related to clinical outcome in children with standard risk acute lymphoblastic leukemia. Br J Haematol. 2008;142(4):616‐621. doi:10.1111/j.1365‐2141.2008.07235.x
European Pharmacopoeia (Ph. Eur.) 11th Edition. Council of Europe; 2023.
Van der Heijden LT, Nijstad AL, Uittenboogaard A, et al. Development of a therapeutic drug monitoring strategy for the optimization of vincristine treatment in pediatric oncology populations in Africa. Ther Drug Monit. 2023;45:354‐363. doi:10.1097/ftd.0000000000001090
van der Heijden LT, Gebretensae A, Thijssen B, et al. A highly sensitive bioanalytical method for the quantification of vinblastine, vincristine, vinorelbine and 4‐O‐deacetylvinorelbine in human plasma using LC‐MS/MS. J Pharm Biomed Anal. 2022;215:114772. doi:10.1016/j.jpba.2022.114772
National Institutes of Health. Common Terminology Criteria for Adverse Events (CTCAE) version 5. National Institutes of Health. Accessed May 29, 2024. https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/CTCAE_v5_Quick_Reference_8.5×11.pdf
Gilchrist LS, Tanner L. The pediatric‐modified total neuropathy score: a reliable and valid measure of chemotherapy‐induced peripheral neuropathy in children with non‐CNS cancers. Support Care in Cancer. 2013;21(3):847‐856. doi:10.1007/s00520‐012‐1591‐8
RStudio Team. RStudio: integrated development for R. RStudio, PBC; 2020.
Israels T, Damen CWN, Cole M, et al. Malnourished Malawian patients presenting with large Wilms tumours have a decreased vincristine clearance rate. Eur J Cancer. 2010;46(10):1841‐1847. doi:10.1016/j.ejca.2010.03.002
Barnett S, Hellmann F, Parke E, et al. Vincristine dosing, drug exposure and therapeutic drug monitoring in neonate and infant cancer patients. Eur J Cancer. 2022;164:127‐136. doi:10.1016/j.ejca.2021.09.014
Centanni M, van de Velde ME, Uittenboogaard A, et al. Model‐informed precision dosing to reduce vincristine‐induced peripheral neuropathy in pediatric patients: a pharmacokinetic and pharmacodynamic modeling and simulation analysis. Clin Pharmacokinet. 2024;63(2):197‐209. doi:10.1007/s40262‐023‐01336‐1
Li Y, Drabison T, Nepal M, et al. Targeting a xenobiotic transporter to ameliorate vincristine‐induced sensory neuropathy. JCI Insight. 2023;8(14):e164646. doi:10.1172/jci.insight.164646
Li Y, Jin Y, Taheri H, et al. A metabolomics approach for predicting OATP1B‐type transporter‐mediated drug‐drug interaction liabilities. Pharmaceutics. 2022;14(9):1933. doi:10.3390/pharmaceutics14091933
Mora E, Smith EML, Donohoe C, Hertz DL. Vincristine‐induced peripheral neuropathy in pediatric cancer patients. Am J Cancer Res. 2016;6(11):2416‐2430.
Uittenboogaard A. A pharmacokinetically guided dose‐escalation feasibility study of vincristine in Kenyan children with cancer (CHAPATI study). Mendeley Data, V1; 2024. doi:10.17632/r4hgntw52m.1

Auteurs

Aniek Uittenboogaard (A)

Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.

Mirjam van de Velde (M)

Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

Lisa van de Heijden (L)

Department of Pharmacy & Pharmacology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
Department of Clinical Pharmacy, OLVG, Amsterdam, The Netherlands.

Leah Mukuhi (L)

Academic Model Providing Access to Healthcare (AMPATH), Eldoret, Kenya.

Niels de Vries (N)

Department of Pharmacy & Pharmacology, Netherlands Cancer Institute, Amsterdam, The Netherlands.

Sandra Langat (S)

Academic Model Providing Access to Healthcare (AMPATH), Eldoret, Kenya.

Gilbert Olbara (G)

Department of Child Health and Paediatrics, Moi University/Moi Teaching and Referral Hospital, Eldoret, Kenya.

Alwin D R Huitema (ADR)

Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
Department of Pharmacy & Pharmacology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.

Terry Vik (T)

Pediatric Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana, USA.

Gertjan Kaspers (G)

Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.

Festus Njuguna (F)

Department of Child Health and Paediatrics, Moi University/Moi Teaching and Referral Hospital, Eldoret, Kenya.

Classifications MeSH