Vincristine exposure in Kenyan children with cancer: CHAPATI feasibility study.
feasibility study
individualized dosing
pediatric oncology
pharmacokinetics
sub‐Saharan Africa
vincristine
Journal
Pediatric blood & cancer
ISSN: 1545-5017
Titre abrégé: Pediatr Blood Cancer
Pays: United States
ID NLM: 101186624
Informations de publication
Date de publication:
02 Jul 2024
02 Jul 2024
Historique:
revised:
05
06
2024
received:
08
02
2024
accepted:
10
06
2024
medline:
3
7
2024
pubmed:
3
7
2024
entrez:
3
7
2024
Statut:
aheadofprint
Résumé
The low incidence of vincristine-induced peripheral neuropathy (VIPN) in Kenyan children may result from low vincristine exposure. We studied vincristine exposure in Kenyan children and dose-escalated in case of low vincristine exposure (NCT05844670). Average vincristine exposure was high. Individual vincristine exposure was assessed with a previously developed nomogram. A 20% dose increase was recommended for participants with low exposure and no VIPN, hyperbilirubinemia, or malnutrition. None of the 15 participants developed VIPN. Low vincristine exposure was seen in one participant: a dose increase was implemented without side effects. In conclusion, the participants did not develop VIPN despite having high vincristine exposure.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e31160Subventions
Organisme : World Child Cancer NL
Organisme : Schumacher-Kramer Foundation
Organisme : Ter Meulen Grant of the Academy Medical Sciences Fund
Informations de copyright
© 2024 The Author(s). Pediatric Blood & Cancer published by Wiley Periodicals LLC.
Références
van de Velde ME, Kaspers GL, Abbink FCH, Wilhelm AJ, Ket JCF, van den Berg MH. Vincristine‐induced peripheral neuropathy in children with cancer: a systematic review. Crit Rev Oncol Hematol. 2017;114:114‐130. doi:10.1016/j.critrevonc.2017.04.004
Triarico S, Romano A, Attinà G, et al. Vincristine‐induced peripheral neuropathy (VIPN) in pediatric tumors: mechanisms, risk factors, strategies of prevention and treatment. Int J Mol Sci. 2021;22(8):4112.
Lew G, Chen Y, Lu X, et al. Outcomes after late bone marrow and very early central nervous system relapse of childhood B‐acute lymphoblastic leukemia: a report from the Children's Oncology Group phase III study AALL0433. Haematologica. 2021;106(1):46‐55. doi:10.3324/haematol.2019.237230
Skiles JL, Chiang C, Li CH, et al. CYP3A5 genotype and its impact on vincristine pharmacokinetics and development of neuropathy in Kenyan children with cancer. Pediatr Blood Cancer. 2018;65(3):e26854. doi:10.1002/pbc.26854
Uittenboogaard A, Njuguna F, Mostert S, et al. Outcomes of Wilms tumor treatment in western Kenya. Pediatr Blood Cancer. 2022;69(4):e29503. doi:10.1002/pbc.29503
Anghelescu DL, Faughnan LG, Jeha S, et al. Neuropathic pain during treatment for childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2011;57(7):1147‐1153. doi:10.1002/pbc.23039
Diouf B, Crews KR, Lew G, et al. Association of an inherited genetic variant with vincristine‐related peripheral neuropathy in children with acute lymphoblastic leukemia. JAMA. 2015;313(8):815‐823. doi:10.1001/jama.2015.0894
Kishi S, Cheng C, French D, et al. Ancestry and pharmacogenetics of antileukemic drug toxicity. Blood. 2007;109(10):4151‐4157. doi:10.1182/blood‐2006‐10‐054528
Renbarger JL, McCammack KC, Rouse CE, Hall SD. Effect of race on vincristine‐associated neurotoxicity in pediatric acute lymphoblastic leukemia patients. Pediatr Blood Cancer. 2008;50(4):769‐771. doi:10.1002/pbc.21435
Dennison JB, Jones DR, Renbarger JL, Hall SD. Effect of CYP3A5 expression on vincristine metabolism with human liver microsomes. J Pharmacol Exp Ther. 2007;321(2):553‐563. doi:10.1124/jpet.106.118471
Arbitrio M, Scionti F, Di Martino MT, Pensabene L, Tassone P, Tagliaferri P. 1.26 ‐ Pharmacogenetics/pharmacogenomics of drug‐metabolizing enzymes and transporters. In: Kenakin T, ed. Comprehensive Pharmacology. Elsevier; 2022:657‐697.
Kuehl P, Zhang J, Lin Y, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet. 2001;27(4):383‐391. doi:10.1038/86882
Roy J‐N, Lajoie J, Zijenah LS, et al. CYP3A5 genetic polymorphisms in different ethnic populations. Drug Metab Dispos. 2005;33(7):884‐887. doi:10.1124/dmd.105.003822
Egbelakin A, Ferguson MJ, MacGill EA, et al. Increased risk of vincristine neurotoxicity associated with low CYP3A5 expression genotype in children with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2011;56(3):361‐367. doi:10.1002/pbc.22845
Lavoie Smith EM, Li L, Hutchinson RJ, et al. Measuring vincristine‐induced peripheral neuropathy in children with acute lymphoblastic leukemia. Cancer Nurs. 2013;36(5):E49‐E60. doi:10.1097/NCC.0b013e318299ad23
Lönnerholm G, Frost BM, Abrahamsson J, et al. Vincristine pharmacokinetics is related to clinical outcome in children with standard risk acute lymphoblastic leukemia. Br J Haematol. 2008;142(4):616‐621. doi:10.1111/j.1365‐2141.2008.07235.x
European Pharmacopoeia (Ph. Eur.) 11th Edition. Council of Europe; 2023.
Van der Heijden LT, Nijstad AL, Uittenboogaard A, et al. Development of a therapeutic drug monitoring strategy for the optimization of vincristine treatment in pediatric oncology populations in Africa. Ther Drug Monit. 2023;45:354‐363. doi:10.1097/ftd.0000000000001090
van der Heijden LT, Gebretensae A, Thijssen B, et al. A highly sensitive bioanalytical method for the quantification of vinblastine, vincristine, vinorelbine and 4‐O‐deacetylvinorelbine in human plasma using LC‐MS/MS. J Pharm Biomed Anal. 2022;215:114772. doi:10.1016/j.jpba.2022.114772
National Institutes of Health. Common Terminology Criteria for Adverse Events (CTCAE) version 5. National Institutes of Health. Accessed May 29, 2024. https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/CTCAE_v5_Quick_Reference_8.5×11.pdf
Gilchrist LS, Tanner L. The pediatric‐modified total neuropathy score: a reliable and valid measure of chemotherapy‐induced peripheral neuropathy in children with non‐CNS cancers. Support Care in Cancer. 2013;21(3):847‐856. doi:10.1007/s00520‐012‐1591‐8
RStudio Team. RStudio: integrated development for R. RStudio, PBC; 2020.
Israels T, Damen CWN, Cole M, et al. Malnourished Malawian patients presenting with large Wilms tumours have a decreased vincristine clearance rate. Eur J Cancer. 2010;46(10):1841‐1847. doi:10.1016/j.ejca.2010.03.002
Barnett S, Hellmann F, Parke E, et al. Vincristine dosing, drug exposure and therapeutic drug monitoring in neonate and infant cancer patients. Eur J Cancer. 2022;164:127‐136. doi:10.1016/j.ejca.2021.09.014
Centanni M, van de Velde ME, Uittenboogaard A, et al. Model‐informed precision dosing to reduce vincristine‐induced peripheral neuropathy in pediatric patients: a pharmacokinetic and pharmacodynamic modeling and simulation analysis. Clin Pharmacokinet. 2024;63(2):197‐209. doi:10.1007/s40262‐023‐01336‐1
Li Y, Drabison T, Nepal M, et al. Targeting a xenobiotic transporter to ameliorate vincristine‐induced sensory neuropathy. JCI Insight. 2023;8(14):e164646. doi:10.1172/jci.insight.164646
Li Y, Jin Y, Taheri H, et al. A metabolomics approach for predicting OATP1B‐type transporter‐mediated drug‐drug interaction liabilities. Pharmaceutics. 2022;14(9):1933. doi:10.3390/pharmaceutics14091933
Mora E, Smith EML, Donohoe C, Hertz DL. Vincristine‐induced peripheral neuropathy in pediatric cancer patients. Am J Cancer Res. 2016;6(11):2416‐2430.
Uittenboogaard A. A pharmacokinetically guided dose‐escalation feasibility study of vincristine in Kenyan children with cancer (CHAPATI study). Mendeley Data, V1; 2024. doi:10.17632/r4hgntw52m.1